POPULATION GENETICS

SPECIES

POPULATION

Assumption for population structure analysis:

- **neutral loci** = no effect of natural selection included
- classical population genetics approach = populations are a priori (thought to be) known (e.g. we want to quantify level of genetic differentiation between two localities / ?populations)
- BUT populations are not usually known (e.g. due to no obvious spatial heterogeneity over the distribution range)

 we want to reveal any potential population differentiation/structure according to our genetic data -> non-a priori methods

Genetic structure – any pattern in the genetic make-up of individuals within a population

AIMS:

- Detection of **any** genetic structure (subdivision) in a population (in my dataset)
- Are there any **differences** between "different" (in space and time) populations?
- Quantification of such differences = description of genetic structure in population (of genetic differentiation between (sub)populations)
- What factors shape (have shaped) these differences? e.g. **population history**
- Is there any migration/connection between different populations? = detection and quantification of gene flow, what influences gene flow (e.g. spatial heterogeneity)
- What happens during migration/connection of populations? = hybridisation

Population genetic structure

neutral markers

GENETIC DRIFT

MUTATION

INBREEDING

- AGAINST subpopulation

differentiation

- creates subpopulation differentiation

(changes in allele frequencies extremely up to fixation of distinct alleles)

may increase differentiation

Effect of population structure on heterozygosity

- Wahlund effect first documented by Swedish geneticist Sten Wahlund (1901-1976) in 1928
- both SUBPOPULATIONS are in HWE, but the pooled dataset (the whole POPULATION) shows deficit of heterozygotes
- Extreme ex.: two isolated subpopulations with fixed distinct alleles (more generally subpopulations with different allele frequencies)

\rightarrow isolation breaking

Homozygosity reduction when subpopulations merge

Wahlund, S. (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. *Hereditas,* 11: 65–106

Wahlund effect – an example

- Bunnersjöarna lake (northern Sweden) Salmo trutta
- one trait with 2 alleles

	170/170	170/172 (= Ho)	172/172	Total	р	2pq (=He)
Přítok	50	0 (0)	0	50	1.000	0.000
Odtok	1	13 (0.26)	36	50	0.150	0.255
Whole lake	51	13 <mark>(0.13)</mark>	36	100	0.575	0.489

DECREASE OF HETEROZYGOSITY DUE TO POPULATION SUBDIVISION

Ryman et al. 1979

Wright's F-statistics

 F_{IS}, F_{ST}, F_{IT}

Masatoshi Nei *1931

Sewall Wright 1889 - 1988

• Wright (1951), Nei (1987)

for two alleles at a single locus (Wright 1951)
more complicated for more alleles (Nei 1987)

- detecting and describing heterozygosity decrease
- describing heterozygosity (and its deviation from HWE) at different levels

TADY SKONČIL

F-statistics and heterozygosity

 H_I – averaged **observed** heterozygosity of an individual in a subpopulation H_S – **expected** heterozygosity of an individual in a subpopulation under HWE H_T – **expected** heterozygosity of an individual over the total population under HWE

F-statistics and heterozygosity

 H_I – averaged **observed** heterozygosity of an individual in a subpopulation H_S – **expected** heterozygosity of an individual in a subpopulation under HWE H_T – **expected** heterozygosity of an individual over the total population under HWE

 $H_I = \sum_{k=0}^{k} H_O / k$ $H_x = \text{observed heterozygosity in subpopulation } x$

 $H_{S} = 1 - \sum_{i=1}^{j} p_{i,x}^{2}$

 $p_{i,x}^{2}$ = frequency of *i*-th allele in subpopulation *x*

 $\overline{H}_{S} = \sum_{k=1}^{k} H_{S} / k$

averaged expected heterozygosity over subpopulations

 $H_T = 2p_0q_0$

 p_o = allele frequency in the total population

F-statistics

$$F_{IT} = \frac{H_T - H_I}{H_T}$$

Total coefficient of inbreeding F_{IT} - measures heterozygosity decrease of an individual in relation to the total population

$(1-F_{IT})=(1-F_{ST})(1-F_{IS})$

Weir & Cockerham (1984) $f(\sim F_{IS}), \theta(\sim F_{ST}), F(\sim F_{IT})$ Correction for sample size and number of subpopulations

Computation of F-statistics

											_
	Subpopulation 1 (N ₁ =40)			Subpopulation 2 (N ₂ =20)]	
Locus	AA	AB	BB	$p_{1(j)}$	AA	AB	BB	p _{2(j)}	$p_{0(j)}$	Note	
Loc I	10	20	10	0.5	5	10	5	0.5	0.5	HWE	
Loc II	16	8	16	0.5	4	4	12	0.3	0.4	heterozygote deficit	
Loc III	12	28	0	0.65	6	12	2	0.6	0.625	heterozygote excess	
Loc IV	0	0	40	0.0	20	0	0	1.0	0.5	alternatively fixed alleles	

Computation of allele frequencies

Mean allele A frequency in the whole population

Computation of heterozygosities

	Obso heteroz	erved zygosity	Expected heterozygosity			Wright's F-statistics			
Locus	H _{1 ()}	H _{2 ()}	H _{I ())}	H _{S ()}	$H_{T(j)}$	F _{IS ()}	F _{ST()}	F _{IT ()}	
Loc I	0.5	0.5	0.5	0.5	0.5	0.0	0.0	0.0	
Loc II	0.2	0.2	0.2	0.46	0.48	0.565	0.042	0.583	
Loc III	0.7	0.6	0.65	0.4675	0.46875	-0.39	0.0027	-0.387	
Loc IV	0.0	0.0	0.0	0.0	0.5		1.0	1.0	
Mean						0.058	0.261	0.300	

Mean values of F-statistics may hide distinct evolution history of different loci

F-statistics

- F_{IS} decrease of heterozygosity in local subpopulation high values –> inbreeding
- **F**_{IT} summary measure limited use
- F_{ST} = subdivision measure = limited gene flow between subpopulations (i.e. existence of a barrier -> Wahlund effect)
 - originally developed for estimation of the amount of allelic fixation due to genetic drift (fixation index)

F_{ST} computation – an example

	A/A	A/B (=Ho)	B/B	Total	р	2pq (=He)
Přítok	50	0 (0)	0	50	1.000	0.000
Odtok	1	13 (0.26)	36	50	0.150	0.255
Whole lake	51	13 (0.13)	36	100	0.575	0.489
(expected)	(33.1)	(48.9)	(18.1)			

$$F_{ST} = \frac{H_T - \overline{H}_S}{H_T} = \frac{0.489 - 0.128}{0.489} = 0.728$$

As a consequence of gene flow barrier: Heterozygosity is about 72.8% lower than would be under HWE

Ryman et al. 1979

Permutation test of F_{ST} significance

0.8 % simulated values higher than real Fst p = 0.008 (i.e. significant difference)

35.4 % simulated values higher than real Fst p = 0.354 (e.g. non-significant difference)

F_{ST} analysis – BE AWARE

Global vs. pairwise indices

Absolute values depends on heterozygosity level of used loci!!! (i.e. microsatellite-based F_{ST} cannot be compared to allozyme-based F_{ST}) Demands standardization: $F_{ST}' = F_{ST}/F_{STmax}$ (Hedrick 2005) – e.g. GenAlEx

> In case of null alleles presence: needs to be corrected! (increase of homozygosity); FreeNA software

. \ 4/4

Giant Panda

- 192 feces samples → 136 genotypes → 53 unique genotypes
- separation by a river (ca 26 ky ago) and by roads (recently)
- even the roads are important barriers, even if less

Table 3 Pairwise F_{ST} in the Xiaoxiangling and Daxiangling populations

Patch	А	В	С	D
А				
В	0.033*			
С	0.107*	0.062*		
D	0.107*	0.097*	0.037*	

*Significant level after Bonferroni correction (P < 0.01).

(Zhu et al., 2011)

G_{ST} (Nei 1973)

- Analogy of F_{ST} for haploid (haplodiploid) organisms, mtDNA sequences
- Takes into account haplotype (gene) diversity instead of heterozygosity
- *Haplotype diversity* = probability that any two randomly chosen sequences in a population will be different

- Analogy of F_{ST}
- Takes into account the size of alleles (number of repeats in microsatellite loci)
- Assumption of a known mutation model assumption of SMM (*stepwise mutation model*)
- Indicates traces of mutations
 - $R_{ST} > F_{ST}$ higher effect of mutations
 - $R_{ST} = F_{ST}$ higher effect of genetic drift
- Randomisation tests for R_{ST} significance (Hardy et al. 2003, program SPAGeDi 1.1)