POPULATION **GENETICS**

SPECIES

POPULATION

Assumption for population structure analysis:

- **neutral loci** = no effect of natural selection included
- classical population genetics approach = populations are *a priori (thought to be)* known (e.g. we want to quantify level of genetic differentiation between two localities / ?populations)
- BUT populations are **not usually known** (e.g. due to no obvious spatial heterogeneity over the distribution range) – we want to **reveal any potential population differentiation/structure according to our genetic data -> non-***a priori* **methods**

Genetic structure – any pattern in the genetic make-up of individuals within a population

AIMS:

- Detection of **any** genetic structure (subdivision) in a population (in my dataset)
- Are there any **differences** between "different" (in space and time) populations?
- Quantification of such differences = **description of genetic structure in population (of genetic differentiation between (sub)populations)**
- What factors shape (have shaped) these differences? e.g. **population history**
- Is there any migration/connection between different populations? = detection and quantification of **gene flow**, what influences gene flow (e.g. **spatial heterogeneity**)
- What happens during migration/connection of populations? = **hybridisation**

Population genetic structure

neutral markers

• **GENETIC DRIFT**

• **MUTATION**

• **INBREEDING**

differentiation

- creates subpopulation differentiation

(changes in allele frequencies – extremely up to fixation of distinct alleles)

may increase differentiation

MIGRATION (GENE FLOW)

- AGAINST subpopulation

Effect of population structure on heterozygosity

- **Wahlund effect** first documented by Swedish geneticist Sten Wahlund (1901-1976) in 1928
- both SUBPOPULATIONS are in HWE, but the pooled dataset (the whole POPULATION) shows **deficit of heterozygotes**
- Extreme ex.: two isolated subpopulations with fixed distinct alleles (more generally – subpopulations with different allele frequencies)

\rightarrow isolation breaking

Homozygosity reduction when subpopulations merge

Wahlund, S. (1928) Zusammensetzung von Population und Korrelationserscheinung vom Standpunkt der Vererbungslehre aus betrachtet. *Hereditas,* 11: 65–106

Wahlund effect – an example

- Bunnersjöarna lake (northern Sweden) *Salmo trutta*
- one trait with 2 alleles

DECREASE OF HETEROZYGOSITY DUE TO POPULATION SUBDIVISION

Ryman et al. 1979

Wright´s F-statistics

 F_{IS} , F_{ST} , F_{IT}

Masatoshi Nei *1931

Sewall Wright 1889 - 1988

• Wright (1951), Nei (1987)

 \triangleright for two alleles at a single locus (Wright 1951) ➢ more complicated for more alleles (Nei 1987)

- detecting and describing heterozygosity decrease
- describing heterozygosity (and its deviation from HWE) **at different levels**

TADY SKONČIL

F-statistics and heterozygosity

HI – averaged **observed** heterozygosity of an individual in a subpopulation H_S – expected heterozygosity of an individual in a subpopulation under HWE H_T – expected heterozygosity of an individual over the total population under HWE

F-statistics and heterozygosity

HI – averaged **observed** heterozygosity of an individual in a subpopulation H_S – expected heterozygosity of an individual in a subpopulation under HWE H_T – expected heterozygosity of an individual over the total population under **HWE**

 H_x = observed heterozygosity in subpopulation *x*

 \sum = $=$ 1 $$ *j i* $H_{S} = 1 - \sum p_{i,x}^{2}$ 1 $1-\sum p_{i,}^2$

 \sum

 $H_{I} = \sum H_{O}/k$

k

=

=

1

x

 $p_{i,x}^2$ = frequency of *i*-th allele in subpopulation *x*

 \sum == *k x* $H_s = \sum H_s / k$ 1

averaged expected heterozygosity over subpopulations

 $H_{_T} = 2\, p_{_0} q_{_0}$

 p_o = allele frequency in the total population

F-statistics

$$
F_{IT} = \frac{H_T - H_I}{H_T}
$$

Total coefficient of inbreeding F_{IT} - measures **heterozygosity decrease of an individual in relation to the total population**

$(1-F_{1T})=(1-F_{ST})(1-F_{IS})$

Weir & Cockerham (1984) *f (~ FIS), θ (~ FST), F (~ FIT)* Correction for sample size and number of subpopulations

Computation of F-statistics

Computation of allele frequencies

Mean allele A frequency in the whole population

Computation of heterozygosities

Mean values of F-statistics may hide distinct evolution history of different loci

F-statistics

- **F_{IS}** decrease of heterozygosity in local subpopulation high values \rightarrow inbreeding
- F_{IT} summary measure limited use
- F_{ST} = subdivision measure = *limited gene flow between subpopulations* (i.e. existence of a barrier –> Wahlund effect)
	- originally developed for estimation of the amount of allelic fixation due to genetic drift (**fixation index**)

F_{ST} computation – an example

$$
F_{ST} = \frac{H_T - \overline{H}_S}{H_T} = \frac{0.489 - 0.128}{0.489} = 0.728
$$

As a consequence of gene flow barrier: **Heterozygosity is about 72.8% lower than would be under HWE**

Ryman et al. 1979

Permutation test of F_{ST} significance

0.8 % simulated values higher than real Fst $p = 0.008$ (i.e. significant difference)

35.4 % simulated values higher than real Fst $p = 0.354$ (e.g. non-significant difference)

F_{ST} analysis – BE AWARE

Global vs. pairwise indices

Absolute values depends on heterozygosity level of used loci!!! (i.e. microsatellite-based F_{ST} cannot be compared to allozyme-based F_{ST}) Demands standardization: F_{ST} ^{\dot{F}_{ST}} F_{STmax} (Hedrick 2005) – e.g. GenAlEx

> In case of null alleles presence: needs to be corrected! (increase of homozygosity); FreeNA software

1/1 1/1 3/3 $\frac{1}{1/1}$ 1/1 **1/1 2/2 4/4 1/2 2/2 2/2 2/2 1/3 2/4**

Giant Panda

- 192 feces samples \rightarrow 136 genotypes \rightarrow 53 unique genotypes
- separation by a river (ca 26 ky ago) and by roads (recently)
- even the roads are important barriers, even if less

Table 3 Pairwise F_{ST} in the Xiaoxiangling and Daxiangling populations

*Significant level after Bonferroni correction ($P < 0.01$).

(Zhu et al., 2011)

G_{ST} (Nei 1973)

- Analogy of F_{ST} for **haploid (haplodiploid) organisms, mtDNA sequences**
- Takes into account **haplotype (gene) diversity** instead of heterozygosity
- *Haplotype diversity* = probability that any two randomly chosen sequences in a population will be different

 R_{ST}

- Analogy of F_{ST}
- Takes into account **the size of alleles** (number of repeats in microsatellite loci)
- Assumption of a known mutation model assumption of SMM (*stepwise mutation model*)
- Indicates traces of mutations
	- R_{ST} **>** F_{ST} higher effect of mutations
	- R_{ST} = F_{ST} higher effect of genetic drift
- Randomisation tests for R_{ST} significance (Hardy et al. 2003, program SPAGeDi 1.1)