
REVIEWS Drug Discovery Today �Volume 15, Numbers 15/16 �August 2010

R
eview

s
�P

O
S
T
S
C
R
E
E
N

Druggable pockets and binding site
centric chemical space: a paradigm shift in
drug discovery
Stéphanie Pérot1, Olivier Sperandio1,2, Maria A. Miteva1, Anne-Claude Camproux1 and
Bruno O. Villoutreix1,2
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Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design

endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to

the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein–

ligand complexes and discuss methods that assist binding site identification, prediction of druggability

and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that

better understanding of the pocket space will have far-reaching implications in the field of drug

discovery, such as the design of pocket-specific compound libraries and scoring functions.
The growing track record of small molecule leads derived from

structure-based drug design (SBDD), together with the increasing

number of experimental macromolecular structures [1–3] and

high-quality homology models reported at unprecedented speed

[4], prompt drug designers to develop and refine concepts about

ligand-binding sites through different levels of abstraction. In the

1990s, binding pockets were essentially seen as concavities with

some shape and chemical complementarity with the ligands,

whereas today, new concepts about ligand-binding sites are emer-

ging, from the notions of ‘druggable’ pockets [5–8] and binding

site centric chemical space [9] to the observation of conserved

binding sites across different target classes [10,11].

Binding pockets are today one of the cornerstones of modern

drug discovery projects and at the crossroad of several research

fields, from structural biology to mathematical modeling [12–17].

This increased awareness stresses that pockets are the actual drug

targets and as such, complement the notion of protein families and

superfamilies [18,19]. Medium-to-large-scale surveys of high-qual-

ity protein–ligand complexes through the ‘lens of the pocket con-

cept’ could have far-reaching implications for drug discovery

scientists because they support the idea that it is possible to develop

pocket-dependent chemical libraries and scoring functions. Antici-
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pating similarities between binding pockets should also facilitate

the understanding of compoundbinding tooff- and anti-targetsand

help compound profiling and/or de-orphanization of protein cav-

ities and/or functions. Enhanced understanding of binding pockets

at the protein–protein or protein–membrane interfaces will also be

of major importance to address these difficult target classes [13,20–

24]. For instance, Fuller et al. [13]have reportedrecently thatpockets

at the protein–protein interface are statistically significant different

from those present at protein–ligand interfaces. The importance of

studying binding pockets is further highlighted in a recent research

article entitled ‘Form follows function’ [25]. Although it is still not

possible to answer this long-lasting question (i.e. which is first, form

or function?), that study will certainly boost research in the field.

Here, we review several key studies dealing with binding pockets,

pocket detection methods and concepts about druggable pockets.

We also discuss pocket similarity search engines and other recent

trends in the field. We end this review with a case study, in which we

analyze high-resolution pocket–ligand complexes extracted from

the Astex data set to illustrate some of the points discussed in the

other paragraphs [26].

Anatomy of protein pockets and associated ligands
A major issue that hampers the analysis of binding pockets is the

lack of a standard definition of what constitutes a pocket. Geo-

metric descriptions of the depth or size and, therefore, volume,
ee front matter � 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2010.05.015
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amino acid composition, and so on of binding pockets are

method-dependent and, to some extent, subjective [13]. Ligand-

binding sites vary widely in size and shape; they can be nearly

spherical or form a curved groove composed of several inter-

connected subpockets [27]. Catalytic sites usually occur in large

and deep clefts on the protein surface, and drugs have been

observed to essentially bind into the largest surface cavities [27–

29]. Overall, it has been found that larger cavities tend to be less

spherical [30]. Pockets’ volume is known to be of major impor-

tance for predicting binding sites [31]. The average volume of a

drug-binding cavity was found to be around 930 Å3 using a geo-

metry-based method [28], whereas in another report using an

energy-based approach, the average envelope volume enclosing

pockets was found to be approximately 610 Å3 [32]. These values

cannot be compared directly because volumes are computed dif-

ferently and because there are still no gold standards in the field.

From the ligand side, the average volume of drug-like compounds

was found to be 439 Å3 and most often above 200 Å3 [32]. There is,

in general, a good correlation between the ligand volume and the

binding site volume when the pocket volume is less than 700 Å3

[27], and this is even more pronounced when the pockets tend to

be closed.

Shape and chemical complementarity are the underlying bases

of molecular recognition. Comparisons between high- and low-

affinity enzymatic and non-enzymatic complexes have also been

performed, for instance using the Binding Mother of All Databases

[33]. The results showed that enzymes’ high-affinity ligands tend

to be much larger than those with low affinity, indicating that the

addition of complementary functional groups is likely to improve

the affinity of an enzyme inhibitor; however, this process might

not be as fruitful for nonenzymes’ ligands. High- and low-affinity

ligands of nonenzymes are nearly the same size, so modest mod-

ifications and isosteric replacement might be most productive.

Nonenzymes were found to have greater ligand efficiencies than

enzymes, and these differences seem to come not from the ligands

but from the pockets [34]. Interestingly, protein–protein interac-

tion inhibitors in pockets located at the interface tend to have

ligand efficiencies similar to those computed for protease inhibi-

tors, suggesting that at least some members of this target class can

be drugged [21]. Geometrical complementarity in general is not

sufficient to fully drive molecular recognition. Nevertheless, it has

been shown – when considering only shape and size – that a

significant proportion of the recognition ‘power’ of a binding

pocket for its ligand resides in its shape. In addition, a ‘buffer

zone’, or a region of free space between the ligand and protein, is

often observed, which results in binding pockets being, on aver-

age, three times larger than the ligand they bind [16]. This is

somewhat expected because in many cases, small drug ligands

bind to catalytic sites, regions that usually accommodate much

larger peptide or protein substrates. With regard to SBDD methods,

it has been noted that depending on the shape and nature of the

binding pockets (and, in some cases, on the nature of the ligands),

some docking and scoring approaches seem to be more efficient

than others [35,36].

Protein pocket and druggability predictions
There are issues associated with finding pockets because they can

change shape considerably upon (or before) ligand binding.
Assuming a somewhat preformed cavity, pocket detection meth-

ods can be applied using as input the 3D structure of the receptor.

These methods can be divided into two major categories: geo-

metric algorithms (e.g. SURFNET, LIGSITE, PocketDepth and Pock-

etPicker [37–40]) and probe and/or energy-based methods (e.g.

GRID, CS-Map, QSiteFinder, AutoLigand [41–43] and ICM-Pock-

etFinder [32]), although some approaches can use several princi-

ples. Furthermore, two other methods can be considered:

evolutionary methods (structure and/or sequence alignment)

can be applied, but they tend to be used for identifying pro-

tein–protein interaction sites and docking methods that can be

used to predict drug-like molecule binding sites (Table 1).

Geometric pocket detection algorithms cover a variety of tech-

niques, from the fitting of virtual spheres into the solvent-acces-

sible space between protein atoms to the use of Delaunay

triangulation or of the alpha-shapes approach to delineate cavities

(for a recent review, see Ref. [14]). Several techniques have been

developed for estimating the interaction energy between a probe

molecule (e.g. methyl, hydroxyl or amine groups) at a given point

and a protein (probe-mapping algorithms) [44]. These tools incor-

porate some levels of protein physics into the pocket identification

process. For example, AutoLigand [43] uses a grid-based represen-

tation of the binding affinity potential to define envelopes of

maximal affinity. Affinity potentials are generated for six atom

types (aliphatic carbon, aromatic carbon, hydrogen, oxygen, nitro-

gen and sulfur), and the best envelope within the energy grid is

calculated using a three-step process of flood fill, local migration

and ray-casting neighborhood search. The energy-based method,

called QSiteFinder [42], describes zones where methyl probes can

interact favorably at the protein surface. The computational sol-

vent mapping (CS-Map) algorithm [45] can be used for the iden-

tification of hot spots (i.e. regions of protein binding sites that are

major contributors to the binding energy and, hence, are prime

targets in drug design) [46]. The ICM-PocketFinder method, an

energy-based method, performs a Gaussian convolution of the

Lennard–Jones potential around a protein [32]. The resulting field

calculated as a 3D grid map is contoured to produce envelopes, the

location, shape and volume of which are indicative of the ligand-

binding pockets. Like pure geometric approaches, the package is

fast and capable of identifying clefts and cavities regardless of the

nature of the substrate [15].

Finding pocket cavities is a first step in predicting protein

druggability, and the next step attempts to define whether the

predicted pocket can bind a drug-like molecule. Research groups

have thus been developing tools that compute a ‘druggability

index’ [31]. Although some of the tools mentioned above score

pockets and in some ways can be considered to predict drugg-

ability, we report below some recent methods dedicated to drugg-

ability prediction. For instance, Soga et al. [47] have developed a

method on the basis of the specific amino acid composition

observed at the ligand-binding sites of ligand–protein complexes

determined by X-ray analysis (the Alpha Site Finder implemented

in the software system MOE was used to detect concavities on the

surface of the proteins). A profile representing the preference of

each of the 20 standard amino acids at the binding sites of drug-

like molecules was obtained, and an index termed ‘propensity for

ligand binding’ was created from these profiles. The authors found

particularly interesting that the binding sites could be predicted
www.drugdiscoverytoday.com 657
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TABLE 1

Main algorithms to search for binding pockets.

Method type Name Refs. Search method URL

Geometric and
genomic

LigSitecsc

(csc = Conolly Surface

and Conservation)

[87] Optimized version of LigSite: re-ranking of predicted

pockets by the degree of conservation of the closest

surface residues

http://projects.biotec.tu-dresden.de/

cgi-bin/index.php

Geometric and
genomic

SURFNET-ConSurf [88] Optimized version of SURFNET: re-ranking to further
increase prediction accuracy with conservation scores

http://www.biochem.ucl.ac.uk/�roman/

Geometric APROPOS (Automatic

PROtein Pocket Search)

[89] Identification of pockets using the alpha-shape

principles

http://www.csb.yale.edu/userguides/

datamanip/apropos/manual.html

Geometric Binding-response [90] Putative binding regions are defined with the

sphere-based method of DOCK; re-clustering
of spheres is done with a clustering algorithm

implemented in CHARMM. Development of

a novel descriptor, the binding response, to

quantitatively evaluate putative binding sites

http://mackerell.umaryland.edu/CADD/

CADD_bindingresponse.html

Geometric CAST (Computed

Atlas of Surface

Topography)

[27] Identification and measurement of surface accessible

pockets using the weighted-Delaunay triangulation

and the alpha-shape principles

Geometric CASTp [91] Server for CAST incorporating some new utilities

as compared to the original version

http://sts.bioengr.uic.edu/castp/

Geometric CAVER [92] A 3D-grid that is constructed over a molecule and

stripped to its convex hull. Nodes are evaluated

using a cost function and the algorithm finds

the lowest cost pathway between a point and
the surface of the molecule

http://loschmidt.chemi.muni.cz/caver/

Geometric Fpocket [93] Clustering of alpha-shape spheres and scoring of

each pocket with atoms properties

http://sourceforge.net/projects/fpocket/

Geometric GHECOM

(Probe-based
HECOMi finder)

[94] Placing small and large probe spheres on the protein

VdW surface: pocket regions are defined as a space
into which a small probe can enter, but a large

probe cannot

http://biunit.naist.jp/ghecom/

Geometric LigSite [38] Scanning along 14 search vectors (x-, y- and z- axes

plus the cubic diagonals) to delineate pockets

Geometric McVol [95] Identification of pockets by solving a Monte Carlo

algorithm originally used for the computation of

the van der Waals volume and the molecular

volume of proteins

http://www.bisb.uni-bayreuth.de/People/

ullmann/mcvol/mcvol.html

Geometric PASS (Putative

Active Sites

with Spheres)

[96] Cavities in a protein are filled with a set of spheres http://www.ccl.net/cca/software/UNIX/

pass/index.shtml

Geometric POCKET [97] 3D grid and spherical probes to map protein surface

and pockets

Geometric PocketDepth [39] Division of a given space into multiple subspaces using

a grid and computation of their depths, which are used

to retain and cluster only the high-depth subspaces,

corresponding to pockets

http://proline.physics.iisc.ernet.in/

pocketdepth/

Geometric PocketPicker [40] Identification of clusters of grid points with a

buriedness index

http://gecco.org.chemie.uni-frankfurt.de/

pocketpicker/

Geometric Screen (Surface

Cavity REcognition

and EvaluatioN)

[28] Geometrical definition of surface cavity in terms of the

empty space between the protein’s molecular surface

and an envelope surface constructed by rolling a
probe and characterization with molecular descriptors

http://interface.bioc.columbia.edu/

screen/

Geometric SplitPocket [98,99] Triangulation of a protein with weighted-Delaunay

method and computation of a discrete flow algorithm

with customized probes to obtain the pockets. The
concept of a split pocket (comparison between the

pocket found with or without ligand) is used to

identify the functional surface of the protein

http://pocket.uchicago.edu/

Geometric SURFNET [37] Fitting a virtual spheres into the solvent-accessible
space between protein atoms

http://www.biochem.ucl.ac.uk/�roman/
surfnet/surfnet.html
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TABLE 1 (Continued )

Method type Name Refs. Search method URL

Geometric TravelDepth [100] Grid-based approach consisting of coating the protein

with a 3D-grid and searching for grid points not in
the protein satisfying some conditions

Geometric VICE (Vectorial

Identification of

Cavity Extends)

[101] Determination of grid points, which are scored

according to a metric roughly similar to degree

of burial.

Geometric VOIDOO [102] VOIDOO and Flood are tools to delineate cavities http://xray.bmc.uu.se/usf/

voidoo.html

Geometric Xie and Bourne [103] Application of a geometric potential depending on

both the global shape of the protein structure as well

as the surrounding environment of each residue for
binding-site prediction. Note that the protein structure

is represented by Ca atoms only

Geometric and
energy-based

SiteMap [48] Relevant points are selected on a 3D-grid based on

geometric and energetic properties and the points
are grouped into sets to define the sites

http://www.schrodinger.com/

Energy-based ICM-PocketFinder [32] Calculation of a Lennard-Jones potential over a grid

and prediction of the envelopes representing the

shape and size of potential binding sites

http://www.molsoft.com/

Energy-based Q-SiteFinder [42] Positioning of a methyl probe at grid points and
calculation of an interaction energy with the protein

http://www.modelling.leeds.ac.uk/
qsitefinder/

Energy-based SITEHOUND [104] Identification of the regions characterized by favorable

van der Waals interactions and computation of a

cluster algorithm.

http://bsbbsinai.org/SHserver/

SiteHound/download.html

Probe-mapping/
energy-based

AutoLigand [43] The method searches the space surrounding the

protein and finds the contiguous envelope with the

specified volume of atoms which has the largest

possible interaction energy with the protein

http://mgltools.scripps.edu/

downloads

Probe-mapping/
energy-based

GRID [41] GRID is a computational procedure for determining
energetically favorable binding sites on molecules

of known structure.

http://www.moldiscovery.com/
soft_grid.php

Probe-mapping/
energy-based

Surflex–Protomol [44] Coating of the protein surface with 3 types of

probes (hydrophobic, donor and acceptor probes)

www.biopharmics.com

Docking MEDock (Maximum-

Entropy based Docking)

[105] Binding sites found via docking http://medock.csie.ntu.edu.tw/
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accurately by the specific amino acid composition surrounding the

concavities on the surface of proteins. Another type of druggability

score has been developed and implemented in SiteMap [48]. The

druggability of targets has also been addressed through simplified

descriptions of the binding site (e.g. the hydrophobic nature and

an additional term taking into account the concavity of the

pocket, among others) [49] or from first-principle molecular simu-

lations to quantify the maximal binding affinity without the need

of any training set [50]. A direct application of these findings could

be that if a pocket is ranked as difficult, it could be beneficial to

develop a prodrug rather than trying to design a regular compound

[48,49].

Similarity between binding sites
It is known that one compound can bind to different targets. One

example involves celecoxib (Celebrex), a nonsteroidal anti-inflam-

matory drug that binds to the cyclooxygenase COX-2 (PDB code

6cox, all alpha protein) and the totally unrelated carbonic anhy-

drase (PDB code 1oq5, all beta protein) [51]. Interestingly, both

proteins share structural and/or physico-chemical similarities in

the binding pocket area. In this particular case, resemblance

between the binding pockets could be inferred through the use
of CavBase [52], a database of pockets associated with a tool to

compare binding sites. This illustrates previous observations that

targets, unrelated in sequence or structure, can bind the same

ligands [12]. Thus, binding site prediction and comparison can

have a crucial role for the annotation of protein function. Further-

more, toxicity can be due to a drug binding to anti-targets. Several

methodologies and databases have been developed to annotate or

compare binding sites (Table 2). In general, structure-based meth-

ods for local comparison of unrelated proteins use a simplified

representation of the cavity residues [10]. These patterns are then

structurally aligned and a scoring function is applied to quantify

the similarity of the aligned features. The methods usually differ

depending on the way the cavity or the entire surface is repre-

sented (all surface or pseudo-atoms), the way the molecular infor-

mation of the binding pocket is encoded and how the best

structural alignment is identified.

Ligand-binding pockets, chemical space, drug
discovery and chemical biology
Structural analysis and computational modeling of ligand-binding

sites bring key information to designing drugs and annotating

proteins [16,17,46,53–56]. Among the different challenges facing
www.drugdiscoverytoday.com 659
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TABLE 2

Methods for evaluating binding site similarities and related databases.

Name Refs. Method URL

CavBase [52] Condense the physico-chemical properties of the

cavity-flanking residues into a restricted set of generic

pseudocenters (interpreted as nodes of a graph)

corresponding to properties essential for molecular
recognition. Then find similarities using a clique-detection

algorithm. The solutions are ranked according to the

similarity of property-based surface patches

http://relibase.ccdc.cam.ac.uk http://

relibase.rutgers.edu

CPASS (Comparison of Protein
Active Site Structures)

[106] Determines the optimal sequence and structural
alignment between two binding sites without

maintaining sequence connectivity. An iterative

search for best rotation/translation is then performed

http://bionmr-c1.unl.edu/CPASS_OV/
CPASS.htm

CSC (Common
Structural Cliques)

[107] A method for locating functionally relevant atoms in
protein structures. The search method is based on

comparison of local structure features of proteins that

share a common biochemical function and does not

depend on overall similarity of structures and sequences

eF-seek [108] Performs clique detection on the vertices of the
triangulated solvent-accessible surface. eF-seek and

a database of binding sites (eF-site) are available

http://ef-site.hgc.jp/eF-seek/top.do

FINDSITE [109] A method for ligand-binding site prediction and functional

annotation based on binding site similarity across groups
of weakly homologous template structures identified

from threading

http://cssb.biology.gatech.edu/skolnick/

files/FINDSITE/

IsoCleft [110] Graph matching-based method for the detection of

pairwise local 3D atomic similarities without utilizing
any sequence alignment information

Can be obtained from the authors

MultiBind [111] The method aims at finding binding patterns common to a

set of protein structures. It performs a multiple alignment

between protein binding sites in the absence of overall
sequence, fold or binding partner similarity. MultiBind

recognizes common spatial arrangements of

physico-chemical properties in the binding sites. It

applies an efficient geometric hashing technique to
detect a potential set of multiple alignments of the

given binding sites. To overcome the exponential number

of possible multiple combinations, a very efficient

filtering procedure is applied

http://bioinfo3d.cs.tau.ac.il/MultiBind/

Park and Kim [112] Binding sites are transformed into graphs, which consist

of nodes. Nodes are defined as Calpha carbon of each

binding site residue. Comparison is then made by a

maximum clique-detection algorithm

PROSURFER
(PROteinSURFaceExploreR)

[113] A method for the structural alignment of atoms in the

solvent-accessible surface of proteins that uses

similarities in the local atomic environment

http://www.tsurumi.yokohama-cu.ac.jp/

fold/database.html

Query3d [114] A method that integrates many existing databases

and programs for 3D functional annotation together
with a fast structural comparison algorithm

http://pdbfun.uniroma2.it/

Ramensky et al. [115] Comparison of a query protein binding site (target) against

the 3D structure of another protein (analog) in complex with

a ligand enables ligand fragments from the analog complex
to be transferred to positions in the target site, so that the

complete protein environments of the fragment and its

image are similar. The revealed environments are similarity
regions and the fragments transferred to the target site

are considered as binding patterns

SiteAlign [116] The method measures distances between protein cavities.

Starting from user-defined ligand-binding sites, eight

topological and physico-chemical properties are projected
from cavity-lining protein residues to an 80 triangle-

discretized sphere placed at the centre of the binding

site, thus defining a cavity fingerprint

http://bioinfo-pharma.u-strasbg.fr/template/

jd/pages/download/download.php

660 www.drugdiscoverytoday.com

R
eview

s
�P

O
S
T
S
C
R
E
E
N

http://dx.doi.org/10.1016/j.drudis.2010.05.015
http://relibase.rutgers.edu/
http://relibase.rutgers.edu/
http://bionmr-c1.unl.edu/CPASS_OV/CPASS.htm
http://bionmr-c1.unl.edu/CPASS_OV/CPASS.htm
http://ef-site.hgc.jp/eF-seek/top.do
http://cssb.biology.gatech.edu/skolnick/files/FINDSITE/
http://cssb.biology.gatech.edu/skolnick/files/FINDSITE/
http://bioinfo3d.cs.tau.ac.il/MultiBind/
http://www.tsurumi.yokohama-cu.ac.jp/fold/database.html
http://www.tsurumi.yokohama-cu.ac.jp/fold/database.html
http://pdbfun.uniroma2.it/
http://bioinfo-pharma.u-strasbg.fr/template/jd/pages/download/download.php
http://bioinfo-pharma.u-strasbg.fr/template/jd/pages/download/download.php


Drug Discovery Today � Volume 15, Numbers 15/16 �August 2010 REVIEWS

TABLE 2 (Continued )

Name Refs. Method URL

SiteBase [117] Comparison of binding sites using geometric matching

to detect similar three-dimensional structure using a
maximum clique-detection method

http://www.modelling.leeds.ac.uk/sb

SiteEngine [118] Efficient hashing and matching of triangles of centers of

physico-chemical properties (hydrogen-bond donor,

acceptor, mixed donor and acceptor, hydrophobic aliphatic
and aromatic) and fast hierarchical scoring of all solutions

http://bioinfo3d.cs.tau.ac.il/SiteEngine/

SMID-BLAST (Small Molecule
Interaction Database BLAST)

[119] Identification of putative small molecule binding sites in

proteins for which a crystal-structure has not yet been

determined by finding structural domains from the
CDD (Conserved Domain Database) that are in complex

with small compounds

SuMo [120] Chemical groups of atoms are used to build triangles of

chemical groups, the comparison of two molecules
starts from the graphs of triangles representing the input

molecules, pairs of similar triangles that are geometrically

consistent are made and form patches that are refined

by using a selection procedure

http://sumo-pbil.ibcp.fr

VA (Vincinity Analysis) [121] Identifies similarities between protein binding sites based
on their three-dimensional structure and the chemical

similarity of matching residues

Weskamp et al. [122] A two-step method that allows detection of common

substructures in proteins. The tool combines the advantages
from both clique-detection and geometric hashing approaches

Can be obtained from the authors

@TOME-2 [123] Pipeline for comparative modeling of protein–ligand

complexes

http://abcis.cbs.cnrs.fr/AT2/

R
ev
ie
w
s
�
P
O
S
T
S
C
R
E
E
N

binding site prediction and analysis, we comment below on three

different topics: recent advances in handling pocket flexibility, the

possibility of tuning a scoring function for a given cavity type

instead of a target or family type and the design of pocket-focused

compound collections.

Pocket flexibility
As mentioned above, receptor and pocket flexibility can make

binding site predictions and comparisons difficult because it can

affect the properties of the pockets. Although some protein–ligand

complexes apparently still fit the ‘lock and key’ hypothesis, two

additional mechanisms have been proposed and probably repre-

sent the vast majority of the protein–ligand partnerships: induced

fit and conformational selection theory [57]. In the latter theory,

the unbound protein explores the energy landscape, spending

most of the time in the lowest energy conformations, but also

occupies higher-energy states, some of which, potentially, are

structurally similar to the bound conformation. In the course of

binding, because of favorable interactions with a ligand, these

protein conformers get preferentially selected and the population

of protein microstates shifts in the direction of the bound con-

formation. As such, in the case of induced fit, optimal binding is

achieved by specific structural changes, whereas in the conforma-

tional selection theory, binding takes place through selection from

the already present unbound ensemble. Another observation

about binding sites and more specifically catalytic sites was

reported some years ago. Using structure-based thermodynamic

stability analysis of non-structurally homologous proteins for

which high-resolution structures of their complexes with specific

ligands were available, it was shown that for all 16 proteins
considered, the binding sites had a dual character with very low

structural stability and high-stability regions [58]. Small molecular

motions can be handled by pocket comparison methods such as

SiteAlign because of the fuzzy representation of the protein sites.

Pockets have still to be formed and visible in the receptor struc-

tures, however, and they have to be somewhat similar to a bound

conformation. Obviously, if several experimental structures are

available, they could be used for pocket analysis and prediction,

assuming they are structurally related to the bound conformation.

In many cases, these data are missing and simulation tools such as

molecular dynamics, Monte Carlo methods, normal mode analy-

sis, Gaussian network models or essential dynamics can be applied

[59,60]. It seems that the unliganded protein pockets open fre-

quently, as shown by standard molecular dynamics simulation

runs [61]. Moreover, either for docking purposes or to explore

alternative pocket conformations, some specific methods have

been developed recently, including SCARE (e.g. flexible side chains

in the binding pocket should be temporarily deleted rather than

wrongly positioned), active site fumigation, or active site resin

pressurization [15,62,63]. One key problem remains, however: the

selection of the relevant protein conformations among ‘wrong’

structures (i.e. which pocket structures could represent a bound

conformation or could be acceptable for virtual screening or

binding site prediction and comparison). If inappropriate, this

multi-receptor state can turn out to be counterproductive com-

pared with just using a single rigid receptor structure. Some pro-

tocols attempting to address this issue have been proposed

recently: they usually make use of molecular dynamics runs and

involve the pruning of receptor ensembles to generate a small

number of possibly relevant conformations [64–67]. However,
www.drugdiscoverytoday.com 661
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important work is still required in this field to understand, predict,

characterize and fully exploit biophoric patterns in drug discovery

and chemical biology projects.

Scoring
Scoring functions for the purpose of ranking molecules during the

course of structure-based virtual screening projects have several

weaknesses. In fact, most packages incorporate a generalized scor-

ing function that has been derived through the use of several

different receptor and ligand structures. Some binding pockets are

polar, however, whereas others are essentially hydrophobic. Such

scoring functions still succeed in prioritizing molecules in some

cases but generate many false positive and negative hits. Con-

sensus scoring can be used and so can target-specific scoring

functions [68–70]. Although consensus scoring generally improves

enrichment by compensating for the deficiencies of each scoring

function, the strategy of how individual scoring functions are

selected remains a challenging task when only a few known active

compounds are available. With regard to target-specific optimiza-

tion of scoring functions, the limitations include the fact that the

function has to be tuned for a single protein or for a family

(assuming that sufficient experimental data are available). The

process is also time consuming and cannot be applied to a new

unknown target. It is now known that tuned scoring functions

toward a protein family can effectively increase virtual screening

enrichment rates [71] such that it would seem possible to develop

and tune master scoring functions dedicated to a pocket class and,

thus, be able to simultaneously hit multiple targets not belonging

to the same family with the same scoring engine.

Compound collections
Target-specific compound libraries (e.g. serine proteases or

kinases) are known to efficiently improve hit rates while reducing

the overall cost of experimental screening [72]. Yet by analyzing

protein structures, it has been suggested that only about 1000

different folds exist [73]; thus, the number of binding pockets

might also be limited. In fact, the size, shape and distribution of

functional groups within the pockets could dictate the design of a

limited number of compound collections instead of designing a

collection for each target or each family. A generic compound

collection-filtering scheme functioning along this line could initi-

ally follow the guidelines proposed by Djuric’s group [74]. The

working hypothesis in their study was that the shapes of the

ligands that could bind a regular target cavity (e.g. a catalytic site)

were likely to be similar to the shape of known bioactive ligands.

Yet the shape of bioactive ligands is, in part, dependent on the

shape and nature of the binding pockets. Using a shape descriptor
FIGURE 1

Analysis of pocket and ligand properties. (A) To define pockets, we used the protom
radius of 4 Å from any protomol probe. The histograms of pocket properties [(a)–(e
Means and standard deviations are given in parentheses. The considered descripto

roughness [81], shape [30] and polarity ratio [61]. Ligand properties were volume
implemented in FAF-Drugs2 [85]. (B) The principal component analysis (PCA) of p

linear projection of the data points from the high-dimensional space to a low dimens

that the Astex subset (magenta, left) samples well the pocket and ligand space repre

of the variables (red for pocket and blue for ligand) close to the correlation circle, all
on the two first axes. It can be observed that pocket roughness and shape are o

correlated, as well as pocket and ligand volume. Rotatable bonds, molecular weig
[75], the authors noted that most drugs congregate in a region of

the chemical space found to be between the ‘rod’ and ‘pancake’ but

not spherical shapes, suggesting that most active-site proteins can

only bind drugs that do not adopt a spherical shape. The analysis

revealed that approximately 5–10% of the Abbott compound

collection could not energetically achieve the rod or pancake

shape. Detailed investigations of this kind of behavior could

enable a first level of filtering and reduce the size of the initial

collection. Furthermore, because it is known that proteins with

different folds and low sequence identity can bind similar ligands,

it is likely that the pocket space could be used to design pocket-

focused compound collections and avoid the generation of a

collection for each target family. A recent study managed to

classify 623 binding sites into only 23 independent clusters with

specific topological properties [18]. Works around the pocketome

[32,76,77] have been essentially devoted to investigation of cross-

reactivities (same ligand binding to different proteins that have a

similar pocket), hit design, optimization and de-orphanization but

not fully to the design of compound collections, whereas it has

been shown recently that the cavity space has higher relevance

than the sequence space [76]. The concept of ‘binding site centric

chemical space’ has been coined recently [9,78] and supports the

above discussion. In these two studies, the authors pursued the

idea that binding sites with similar geometrical and/or chemical

properties would recognize similar functional groups. Insights into

the features of selective binding mode of carboxylic, sulfonic,

phosphonic, amine and amidine moieties have been gained and

suggest, for instance, that highly polar and large binding sites

endowed with broad conformational flexibility have the propen-

sity to bind guanidine and primary amine groups. The authors

noted that the guanidine and primary amine binding sites have

respectively triple and double the number of hydrogen bond

acceptors on median values than the secondary, tertiary and

quaternary amine binding sites. Such studies clearly support the

notion of charting the chemical space based not only on known

activities and/or target family but also on ligand-binding cavities.

Case study: revisiting pocket–ligand complexes
through computational means
We decided to revisit pocket–ligand pairs with a recent and high-

resolution set of protein pockets in complexes with drug-like

ligands (typically, compounds with a molecular mass between

150 and 600 Da), keeping in mind some of the concepts reviewed

above. We analyzed 56 high-resolution structures (kinases, nuclear

receptors, serine proteases, members of the phosphodiesterase

family, and so on) extracted from the Astex set [26]. This dataset

was selected because it has been carefully generated and manually
ol utility of Surflex [83]; pockets atoms were defined as accessible atoms at a
)] and ligand properties [(f)–(j)] were computed on the Astex set (magenta).

rs are volume (MSMS package implemented in Chimera [84]), compacity [31],

, polarity ratio [61], molecular weight, A log P and rotatable bonds as
ocket and ligand properties was computed on the two sets. PCA performs a

ional spacewhile accounting for amaximumof total variability. This illustrates

sented by the larger PDBbind subset (gray, right). As indicated by the position

descriptors contribute to the variability of the data capturing more than 65%
pposed to volume and compacity, whereas pocket and ligand polarity are

ht and log P also tend to be correlated.
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curated, through – for instance – the generation of the electronic

density maps around the ligands. The test set originally contained

85 complexes, but we removed 29 proteins with ion in the binding

pocket or having a cofactor next to the ligand. To ensure that our

analysis could be extended to other proteins, we also investigated

564 protein–ligand complexes extracted from PDBbind [79] (see

Supplementary Data online). Hydrogen bonds, cation–pi, and

aromatic stacking between the ligands and the proteins were

analyzed (Figs 1 and 2; see figure legends for details about com-

putations). Seventy-nine percent of these selected pockets have no

cation–pi interactions, 68% have no aromatic stacking and 29%

have no salt bridge. Interestingly, in more than 44% of these

pockets, we found no hydrogen bonds with the protein backbone.

By contrast, in 91% of the pockets, we noted hydrogen bonds with

the protein side chains. Although incomplete, this analysis sheds

light on pocket properties, ligand properties and the correlations

between the two spaces. We observed that pockets in our dataset

tend to have a low or medium polarity ratio (0.36 � 0.07) and are

thus essentially hydrophobic or of mixed nature (polar and lipo-

philic), in agreement with previously reported data [31,49,80].

Through the use of principal component analysis, we saw that our

selected Astex subset was representative of the larger PDBbind

subset (i.e. pockets and ligands essentially belong to the same

chemical space as the larger set). Smallest pockets, which are also

the least compact ones, tend to be rougher (as shown previously)

[81]; more spherical, in agreement with a recent study [30]; and

more polar. These particular pockets seem to bind smaller ligands,

with a lower log P value and fewer rotatable bonds. These trends

are confirmed by the use of classification methods (data not

shown). This kind of analysis also suggests that scoring functions

could be developed for a pocket type, instead of – or complement-

ing – generic scoring and/or target-family-tuned scoring functions:

we note, for example, that three proteins from three different

families (kinase 2BR1, phosphatase 1XOQ and serine protease

1OYT) bind ligands with related volume and polarity ratio

(327 Å3 and 0.24, 309 Å3 and 0.23, and 345 Å3 and 0.21, respec-

tively). In fact, the binding seems to be guided by the pocket itself

because these three proteins share similar pocket properties in

terms of volume (1222 Å3, 1480 Å3 and 1333 Å3), roughness (3.30,

3.18 and 2.89) and shape (0.70, 0.67 and 0.69). We also observe

that two proteins from the same family (nuclease 1Z95 and 1S19)

bind two different types of ligand in terms of volume (315 Å3

and 417 Å3, respectively) and polarity ratio (0.28 versus 0.10). The
FIGURE 2

Ligand and pocket properties of some selected targets (see also the legend of Fig.
abbreviation of volume, pol of polarity, hba of hydrogen-bond acceptors and hbd of

to the number of hydrogen bonds between the ligand and either the protein backb

The three other interactions evaluated correspond to the presence (1) or absence (0)

(sb) between the protein and the ligand. The protein families in brackets come from t
S in yellow. For the protein, carbon atoms are in green, and they are cyan for ligan

pictures were generated with PyMOL. Gray surface corresponds to the volume o
related pockets are also different in volume (699 Å3 and 1034 Å3)

and in polarity ratio (0.32 versus 0.23). A recent study along this

line of reasoning further highlights that even when sequence

identity is high, low binding site similarities can be found [82].

Although we have not yet investigated whether the concept of

designing a scoring function for a binding pocket type rather than

for a single protein or a protein family for the targets mentioned

above (2BR1, 1XOQ, 1OYT) could provide interesting results, we

[36] and others [35] have noticed that some docking and/or

scoring engines perform better on some specific binding pocket

classes (e.g. polar or lipophilic).

Concluding remarks
Ligand-binding site prediction is an active field of research, and

several different approaches are being used, from geometric to

energy-based methods. No method is 100% successful, and each

has its own strengths and weaknesses, but functional site location

is extremely important for predicting function, for drug discovery

and for chemical biology projects. Prediction of druggability and

binding site comparisons can also be performed. Statistical ana-

lysis of binding pockets can provide important information to a

design strategy, from evaluating the likelihood of a docking pose

to the right selection of a medicinal chemistry protocol.

Enhanced understanding of the cavity space will obviously help

to understand binding to anti-targets and off-targets and, there-

fore, should contribute notably to drug discovery. A difficulty in

this field comes from flexibility of the pockets and receptors, a

well-known limitation of present SBDD tools. Generation or

selection of the relevant target conformers among a large set of

3D structures will require extensive research efforts. Finally, it

seems that charting the chemical space of the pocketome could be

valuable to prepare a compound collection and to design tuned

scoring functions dedicated to pocket classes, in contrast to

receptor classes.
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