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ABSTRACT: Many gene defects are relatively easy to
identify experimentally, but obtaining information about
the effects of sequence variations and elucidation of the
detailed molecular mechanisms of genetic diseases will be
among the next major efforts in mutation research.
Amino acid substitutions may have diverse effects on
protein structure and function; thus, a detailed analysis
of the mutations is essential. Experimental study of the
molecular effects of mutations is laborious, whereas
useful and reliable information about the effects of amino
acid substitutions can readily be obtained by theoretical
methods. Experimentally defined structures and molecu-
lar modeling can be used as a basis for interpretation of
the mutations. The effects of missense mutations can be
analyzed even when the 3D structure of the protein has
not been determined, although structure-based analyses
are more reliable. Structural analyses include studies of
the contacts between residues, their implication for the
stability of the protein, and the effects of the introduced
residues. Investigations of steric and stereochemical
consequences of substitutions provide insights on the
molecular fit of the introduced residue. Mutations that
change the electrostatic surface potential of a protein
have wide-ranging effects. Analyses of the effects of
mutations on interactions with ligands and partners have
been performed for elucidation of functional mutations.
We have employed numerous methods for predicting the
effects of amino acid substitutions. We discuss the
applicability of these methods in the analysis of genes,
proteins, and diseases to reveal protein structure–func-
tion relationships, which is essential to gain insights into
disease genotype–phenotype correlations.
Hum Mutat 30:703–714, 2009. & 2009 Wiley-Liss, Inc.
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Introduction

The knowledge of the complete human genome sequence
and the rapid accumulation of variation data allow a more
mechanism-based approach to the understanding of the
relationship between genotype and disease. With powerful
strategies for elucidating genetic defects such as whole genome
association studies and high-throughput, low-cost sequencing,
genotyping ceases to be the bottleneck for the understanding
of genetic disease. Gene defects are being identified at an
increasing pace, and obtaining information about the effects of
sequence variation and elucidation of the detailed molecular
mechanisms of genetic disease will be the next major efforts in
mutation research. The effects of large changes, such as gross
deletions or insertions, are relatively easy to explain, but the
consequences of missense mutations require more detailed study
at the protein level.

There are about 10 million single nucleotide polymorphisms
(SNPs) in the human genome that have an appreciable frequency
(i.e., 41%) [The International HapMap Consortium, 2003], of
which 67,000–200,000 have been estimated to be nonsynonymous
coding SNPs (nsSNPs) [Cargill et al., 1999; Halushka et al., 1999;
Livingston et al., 2004]. A nonsynonymous, missense variant is a
single base change in a coding region that causes an amino acid
change in the corresponding protein. Missense mutations, in
contrast to SNPs, are rather rare events. However, numerous single
gene diseases have been attributed to missense mutations. Testing
of the possible association of all the nonsynonymous genetic
variants with disease or experimental characterization of their
effects on protein function would be extremely expensive, time
consuming, and difficult—especially in diseases that are caused by
a large and varying number of mutations, such as cancer. The
computational study of their putative effects would be beneficial
in prioritizing the most probable disease-causing variations for
association with diseases. On the other hand, those missense
mutations already known to be associated with disease can be
studied computationally in order to identify pharmaceutical
targets for relevant treatments and to gain insight into the
molecular disease mechanisms. Predicting the effects of amino
acid substitutions is also essential for the rational design of novel
proteins by site-directed mutagenesis.

A disease phenotype may arise when an amino acid substitution

affects a residue critical in protein function, for example, a residue

in the catalytic site of an enzyme or a residue involved in crucial

interactions with partner molecules. Alongside with the diseases

caused by mutations leading to loss of function, gain of function

may result from irregular or tighter binding of ligands or loss of
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specificity of a protein. In addition to the direct functional effects
a substitution may have, a missense mutation may also lead to
alterations in the protein structural properties, causing abnormal
folding, structural instability, or aggregation of the protein. Even
minor changes in the size or chemical nature of an amino acid side
chain can alter or prevent the function of the protein. On the
other hand, protein molecules are rather robust, and allow
insertions to numerous sites without any effect on protein
function [Pajunen et al., 2007; Poussu et al., 2004]. Furthermore,
missense mutations may affect protein posttranslational modifica-
tions, for example, by inserting or deleting phosphorylation or
glycosylation sites or protease cleavage sites, or altering signals
guiding cellular localization. It should be noted that in addition to
the direct effects on the protein molecules discussed in this paper,
genetic variations may also cause disease phenotypes by affecting
pretranslational processes, such as altering transcriptional regula-
tion, mRNA stability, mRNA splicing, or translation rates.
According to the data for monogenic diseases in HGMD, all the
pretranslational effects account for less than 10% of cases [Stenson
et al., 2003]. However, although alterations in the structure,
function, or expression of the protein often cause a disease, this is
not always the case, given the multiple redundancies of cellular
pathways.

Bioinformatics methods can be helpful at several steps of the
analysis (Fig. 1). Mutation databases serve as a starting point,
providing the data for the analysis. Databases often contain
curated information about the phenotypic effects of the muta-
tions, together with information about the gene and protein in
question. Sequence analysis provides information about the sites
that are conserved in evolution that often have a crucial role in
protein structure or function. There are numerous sequence-based
predictors available for the prediction of the effect of a mutation
on various biochemical properties of a protein, such as
aggregation propensity, disorder, or stability. When there is an
experimentally determined structure available for the protein of
interest, the mutation analysis can be taken to the structural level,

making the analysis more reliable and complete. Alternatively, a
modeled structure can be used. The mutations can be modeled
into the structure, and after optimizing the side chain angles the
role of the new residue can be studied in the context of its
surroundings. It can be seen whether the new side chain fits into
the structure at all, and the effects of the amino acid substitution
on side-chain interactions can be studied in detail. Many
programs predicting the effects of mutations also require the 3D
coordinates of the wild-type protein as input. Bioinformatics
methods, despite being useful in providing information about the
nature of mutations as such, may also be helpful in guiding the
design of further experimental research.

Several recent studies have applied computational methods to
predict potentially deleterious effects of nonsynonymous SNPs in
humans [Chasman and Adams, 2001; Hyytinen et al., 2002; Lau
and Chasman, 2004; Miller and Kumar, 2001; Ng and Henikoff,
2001; Sunyaev et al., 2001a, b; Terp et al., 2002; Torkamani and
Schork, 2007; Wang and Moult, 2001; Wood et al., 2007; Worth
et al., 2007]. Until now, the research has mainly concentrated on
using just one or a few methods in one study, but the emerging
trend in mutation analysis is to utilize a more extensive set of
prediction methods in order to attain more reliable results
[Burke et al., 2007; Lappalainen et al., 2008; Tavtigian et al.,
2008a, b; Thusberg and Vihinen, 2006, 2007; Worth et al., 2007].
In this paper we present the current methodology and services
available for mutation analysis and discuss their applicability in the
analysis of genes, proteins, and diseases to reveal protein
structure–function relationships, which is essential to gain insights
into disease genotype–phenotype correlations. The missense
mutation analysis approach is based on our experience during the
last 15 years in studying and interpreting mutations and their effects
in numerous diseases, especially including immunodeficiencies and
cancers [Lappalainen et al., 2000, 2008; Lappalainen and Vihinen,
2002; Rong et al., 2000; Rong and Vihinen, 2000; Thusberg and
Vihinen, 2006, 2007; Vihinen et al., 1994a, b, 1995, 1999].

Methods for the Analysis of Mutations

Databases

Mutation databases serve as the basis for bioinformatics
research on the effects of mutations and the structural basis of
diseases. Central mutation databases (CMDBs), the most
prominent being the Human Gene Mutation Database (HGMD)
[Stenson et al., 2008] and Online Mendelian Inheritance in Man
(OMIM) [Hamosh et al., 2005], collect variants in all genes,
mainly from the literature. The UniProtKB/Swissprot database
contains manually annotated protein entries that feature partial
lists for known sequence variants [Yip et al., 2008]. There are also
databases available that aim at annotating human variation data
with phenotype variations and protein structural and functional
information, such as MS2PH-db (http://ms2phdb-pbil.ibcp.fr/
cgi-bin/home), MutDB [Dantzer et al., 2005], SAAPdb [Cavallo
and Martin, 2005], and KMDB/MutationView [Minoshima et al.,
2001]. Locus-specific databases (LSDBs) list variants in specific
genes and are typically manually annotated. General recommen-
dations for the generation and curation of such databases have
been proposed [Cotton et al., 2008], and rules for nomenclature of
mutations are discussed in [den Dunnen and Antonarakis, 2000].
The Human Genome Variation Society maintains a list of available
LSDBs (around 700) and CMDBs (19) on their Website (http://
www.hgvs.org/dblist/dblist.html). Genome browsers, such as the

Figure 1. A schematic figure of the groups of methods for
analyzing the effects of missense mutations. Our approach can be
divided into sequence- and structure-based sections (dark gray and
light gray backgrounds, respectively), which in part overlap.
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University of California, Santa Cruz (UCSC) Genome Browser
[Kent et al., 2002], the National Center for Biotechnology
Information (NCBI) Map Viewer [Wheeler et al., 2003], and the
Ensembl Genome Browser [Stalker et al., 2004], can also be used
to obtain information about genes, their products, and sequence
variants. PhenCode [Giardine et al., 2007] is a service that
connects human phenotype and clinical data in LSDBs with data
from the UCSC Genome Browser.

Sequence Conservation

Disease-causing mutations have been shown to be over-
abundant at evolutionarily conserved positions, because these
positions are usually essential for the structure or function of the
protein [Miller and Kumar, 2001; Mooney and Klein, 2002; Ng
and Henikoff, 2003; Shen and Vihinen, 2004; Sunyaev et al.,
2001b; Vitkup et al., 2003] (example in Fig. 2C), whereas there is a
general underabundance of disease-associated mutations in
positions that show any potential to change in evolution [Briscoe
et al., 2004; Miller and Kumar, 2001]. Furthermore, the amino
acid changes caused by disease-causing mutations are more radical
in terms of the differences in their physicochemical properties
from the wild-type amino acids, compared to the differences
observed between species [Briscoe et al., 2004; Miller and Kumar,
2001; Tang et al., 2004]. For studying the pathogenicity of a
missense mutation, knowledge of the level and type of
evolutionary conservation of the position is valuable in order to
gain insight into the possible role of that position in the structure
or function of the protein (Fig. 2C), and what types of amino
acids can be exchanged freely without negatively impacting
protein function [Miller and Kumar, 2001] (Fig. 2B). In addition
to the conservation of a particular amino acid in a sequence
position, the physicochemical properties of the amino acids (e.g.,
hydropathy, charge, size) can be conserved for structural integrity
or function (Fig. 2B). Another mechanism of conservation is
covariation, where a compensating mutation occurs at another
position in the protein. Networks of covariant amino acids may
reveal positions important for protein structure or function when
the role of these positions is not obvious when looking at the
protein structure, because the positions may be linked either
functionally, energetically or by forming a physical interaction in
some important conformation of the protein [Gloor et al., 2005;
Lockless and Ranganathan, 1999; Suel et al., 2003]. The coupling
of two sites in a protein should cause these two positions to
coevolve [Lichtarge et al., 1996; Marcotte et al., 1999; Pellegrini
et al., 1999].

There are numerous methods available for multiple sequence
alignment (MSA) and subsequent analysis of sequence conserva-
tion. Classic methods such as ClustalW [Thompson et al., 1994]
can give reasonably accurate results for similar sequences, but fail
to produce accurate alignments for divergent sequences
[Thompson et al., 1999]. Many efforts have been made to
characterize the accuracy of the various MSA methods
[Ahola et al., 2006; Golubchik et al., 2007; Nuin et al., 2006;
Raghava et al., 2003], but the overall outcome of these studies is
that a perfect MSA method does not exist and that individual
methods have their specific strengths and weaknesses. This
makes the choice of the most suitable alignment method
difficult. There are services available for running several
MSA methods and combining their output into a single model,
for example, the M-Coffee Web server [Moretti et al., 2007]. The
most widely used and state-of-the-art sequence alignment
methods are listed in Table 1. Alternatively, a ready-made

sequence alignment can be obtained from the Pfam database
[Finn et al., 2008].

There are several alternative methods for the detection of
positional sequence conservation and identification of individual
conserved residues within a position [Ahola et al., 2004]. The
visualization of MSAs makes it convenient to interpret the
information contained in them, for example, the visualization
tools (see Table 1) calculate conservation indices for each position
in the alignment, and add color codes into the alignment for
different levels of sequence conservation. Some methods, for
example, ConSurf [Glaser et al., 2003; Landau et al., 2005], apply
the color-coding scheme to protein structures, so that the user can
visualize the structure color coded by the level of conservation of
individual residues. Physicochemical conservation of amino acids
can be detected by those visualization methods that assign distinct
colors for groups of each type of amino acid (e.g., hydrophobic,
hydrophilic, charged) and display them according to their
prevalence in the alignment. An example of this kind of tool is
MultiDisp (P. Riikonen and M. Vihinen, in preparation) (Fig. 2B).

Calculation of mutual information between pairs of sites in the
multiple sequence alignment and subsequent building of covariant
networks of amino acids can be done by the methods aaMI [Gloor
et al., 2005] or ProCon [Shen and Vihinen, 2004]. MatrixPlot
[Gorodkin et al., 1999] is a method for generating mutual
information plots for sequence alignments.

Protein Localization

To function in its proper context, a protein must be
translocated to the appropriate cellular compartment after
translation. Proteins are typically directed to the right location
by short peptide sequences that act as targeting signals. A missense
mutation in the signal peptide might lead to the disruption or
alteration of the signal. If the protein fails to be transported to the
correct subcellular location, central reactions may be inactivated
or signaling cascades misregulated. On the other hand, the
mislocalized protein may be active in the wrong cellular
compartment, causing harmful effects. Alterations to localization
signals are rare, but the effects of mutations on them should be
studied as part of the analysis of the effects of missense mutations
[Laurila and Vihinen, submitted].

Several methods have also been developed for the prediction of
the protein subcellular localization. These methods are discussed
in detail in the review article by Schneider and Fechner [2004].
Recently, a protocol was introduced to combine several predictors
[Emanuelsson et al., 2007], which was implemented by Laurila
and Vihinen [submitted].

Disorder

Many globular proteins contain segments that lack an ordered
secondary structure, and some proteins even have global disorder,
that is, do not fold in an ordered way. Instead of folding into fixed
3D structures, disordered proteins or protein segments exist as
ensembles of interchanging structures (example in Fig. 2F).
Intrinsically disordered proteins function in molecular recogni-
tion, molecular assembly/disassembly, protein modification, and
entropic chains [Dunker et al., 2002], and they also have scavenger
[Tompa, 2002] and chaperone [Tompa and Csermely, 2004]
functions. Mutations may introduce disorder into usually ordered
parts of a protein, thereby causing alterations in the protein fold,
leading to possible changes in protein function. Increased
flexibility of the protein may lead to differences in specificity, or
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Figure 2. A: Screenshot of the Pathogenic-or-Not Pipeline (PON-P). B: A part of a MultiDisp visualization of the sequence alignment for
CD40L and its homologs. The height of the characters indicates the frequency of the amino acids in the alignment positions, and the color of the
objects reflects the chemical nature of the amino acids. Arrowheads below the alignment indicate positions of missense mutations in CD40L,
together with mutant forms. Mutations are found in invariant positions and a charged residue (glutamic acid) is introduced in a position where
hydrophobicity is the conserved amino acid property. C: The SH2D1A protein in complex with a phosphopeptide ligand (PDB ID 1D4W). The level
of sequence conservation can give clues on the function of the protein. In the SH2 domains, the most conserved regions are involved in ligand
binding. The color coding refers to sequence conservation in SH2 domains [Lappalainen et al., 2008]. The most conserved positions are colored
red, followed by light pink, magenta, cyan, and the most variable regions are colored blue. The phosphopeptide ligand is colored gray. The figure
is created by PyMOL [DeLano, 2002]. D: The substitution of G227 by V in CD40L causes serious clashes with the neighboring side chains. Left:
wild-type protein. Right: mutated protein. Yellow—negligible overlap; red—significant overlap Z0.25 Å; hot pink—serious clash overlap Z0.4 Å.
The figure is created by KiNG [Lovell et al., 2003]. E: Schematic representation of amino acid side chain w angle rotation. The arrows indicate the
bonds that can be rotated over the full range of angles by the Bondrot function in Probe [Word et al., 1999, 2000]. F: Homodimeric structure of
type IIb phosphatidylinositol phosphate kinase (PDB ID 1BO1) coloured according to the B-values of individual residues (red—highest B-values,
followed by orange, yellow, green, light blue, and dark blue—lowest B-values). The disordered regions in the protein are seen as missing
electron densities (indicated by white arrows), surrounded by regions with high B-values. The C-terminal domains in each monomer have high
thermal factors as well, because they are more flexible than the rest of the enzyme (black arrows) [Rao et al., 1998].

706 HUMAN MUTATION, Vol. 30, No. 5, 703–714, 2009



Table 1. Methods for the Analysis of Missense Mutations and Their Effects

Service name URL Description Reference

Pathogenic or not predictors

nsSNPAnalyzer http://snpanalyzer.utmem.edu/ Pathogenic or not (Bao et al., 2005)

Panther http://www.pantherdb.org/tools/csnpScoreForm.jsp Conservation analysis, pathogenic or not (Thomas et al., 2003)

PhD-SNP http://gpcr.biocomp.unibo.it/cgi/predictors/PhD-

SNP/PhD-SNP.cgi

Pathogenic or not (Capriotti et al., 2006)

PMut http://mmb2.pcb.ub.es:8080/PMut/ Pathogenic or not (Ferrer-Costa et al., 2005)

PolyPhen http://coot.embl.de/PolyPhen/ Pathogenic or not (Ramensky et al., 2002)

SIFT http://blocks.fhcrc.org/sift/SIFT.html Pathogenic or not (Ng and Henikoff, 2001)

SNAP http://cubic.bioc.columbia.edu/services/SNAP/ Pathogenic or not (Bromberg and Rost, 2007)

SNPs3D http://www.snps3d.org/ Pathogenic or not (Yue et al., 2006)

Sequence alignment methods

M-Coffee http://www.tcoffee.org/ Multiple sequence alignment (Wallace et al., 2006)

MAFFT http://align.bmr.kyushu-u.ac.jp/mafft/online/server/ Multiple sequence alignment (Katoh et al., 2002, 2005)

PROBCONS http://probcons.stanford.edu/ Multiple sequence alignment (Do et al., 2005)

PROMALS http://prodata.swmed.edu/promals/ Multiple sequence alignment (Pei et al., 2007)

ClustalW2 http://www.ebi.ac.uk/Tools/clustalw2/index.html Multiple sequence alignment (Larkin et al., 2007)

MUSCLE http://www.ebi.ac.uk/Tools/muscle/index.html Multiple sequence alignment (Edgar, 2004)

Conservation analysis

ClustalX http://www.ebi.ac.uk/Tools/clustalw2/index.html Conservation analysis and visualization (Larkin et al., 2007)

ConSeq http://conseq.tau.ac.il/ Conservation analysis and visualization (Berezin et al., 2004)

ConSSeq http://sms.cbi.cnptia.embrapa.br/SMS/STINGm/

consseq/

Conservation analysis and visualization (Higa et al., 2004)

ConSurf http://consurf.tau.ac.il/ Conservation analysis and visualization (Glaser et al., 2003; Landau et al., 2005)

Jalview http://www.jalview.org/ MSA visualization (Clamp et al., 2004)

MatrixPlot http://www.cbs.dtu.dk/services/MatrixPlot/ Conservation analysis and visualization (Gorodkin et al., 1999)

MultiDisp http://bioinf.uta.fi/cgi-bin/MultiDisp.cgi Conservation analysis and visualization (Riikonen and Vihinen, in preparation)

ProCon Conservation analysis and visualization (Shen and Vihinen, 2004)

Stability changes prediction

Auto-Mute http://proteins.gmu.edu/automute/AUTO-

MUTE.html

Stability changes prediction (Masso and Vaisman, 2008)

CUPSAT http://cupsat.tu-bs.de/ Stability changes prediction (Parthiban et al., 2006)

Dmutant http://sparks.informatics.iupui.edu/hzhou/

mutation.html

Stability changes prediction (Zhou and Zhou, 2002)

Eris http://troll.med.unc.edu/eris/login.php Stability changes prediction (Yin et al., 2007)

FoldX http://foldx.crg.es/ Folding and stability changes prediction (Guerois et al., 2002)

I-Mutant 2.0 http://gpcr2.biocomp.unibo.it/cgi/predictors/I-

Mutant2.0/I-Mutant2.0.cgi

Stability changes prediction (Capriotti, et al., 2005a, b)

MuPRO http://www.ics.uci.edu/%7Ebaldig/mutation.html Stability changes prediction (Cheng et al., 2006)

PoPMuSiC http://babylone.ulb.ac.be/popmusic/ Stability changes prediction (Gilis and Rooman, 2000)

SCide http://www.enzim.hu/scide/ide2.html Stability changes prediction (Dosztányi et al., 2003)

SCpred http://www.enzim.hu/scpred/pred.html Stability changes prediction (Dosztányi et al., 1997)

SRide http://sride.enzim.hu/ Stability changes prediction (Magyar et al., 2005)

Disorder prediction

CAST Disorder prediction (Promponas et al., 2000)

DisEMBL http://dis.embl.de/ Disorder prediction (Linding et al., 2003a)

Disopred http://bioinf.cs.ucl.ac.uk/disopred/disopred.html Disorder prediction (Ward et al., 2004)

DISpro http://scratch.proteomics.ics.uci.edu/ Disorder prediction (Cheng et al., 2005)

Disprot http://www.ist.temple.edu/disprot/predictor.php Disorder prediction (Obradović et al., 2003; Peng et al., 2005;

Vucetic et al., 2003)

DRIPPRED http://www.sbc.su.se/�maccallr/disorder/ Disorder prediction

FoldIndex http://bip.weizmann.ac.il/fldbin/findex Prediction of folding (Prilusky et al., 2005)

FoldUnfold http://skuld.protres.ru/�mlobanov/ogu/ogu.cgi Disorder prediction (Galzitskaya et al., 2006)

GlobPlot http://globplot.embl.de/ Disorder prediction (Linding et al., 2003b)

iPDA http://biominer.bime.ntu.edu.tw/ipda/ Disorder prediction (Su et al., 2007)

IUPred http://iupred.enzim.hu/ Disorder prediction (Dosztányi et al., 2005)

NORSp http://cubic.bioc.columbia.edu/services/NORSp/ Disorder prediction (Liu and Rost, 2003)

PONDR http://www.pondr.com/ Disorder prediction (Obradović et al., 2005; Romero et al.,

2001)

POODLE http://mbs.cbrc.jp/poodle/poodle.html Disorder prediction (Hirose et al., 2007; Shimizu et al., 2007a,

b)

PrDOS http://prdos.hgc.jp Disorder prediction (Ishida and Kinoshita, 2007)

PreLink http://genomics.eu.org/spip/PreLink Disorder prediction (Coeytaux and Poupon, 2005)

RONN http://www.strubi.ox.ac.uk/RONN Disorder prediction (Yang et al., 2005)

SEG http://mendel.imp.ac.at/METHODS/seg.server.html Disorder prediction (Wootton, 1994)

Spritz http://protein.cribi.unipd.it/spritz/ Disorder prediction (Vullo et al., 2006)

Analysis of interatomic contacts

CMA http://ligin.weizmann.ac.il/cma/ Analysis of interatomic contacts (Sobolev et al., 2005)

CSU http://bip.weizmann.ac.il/oca-bin/lpccsu Analysis of interatomic contacts (Sobolev et al., 1999)

KiNG http://kinemage.biochem.duke.edu/software/

king.php

Molecular graphics (Lovell et al., 2003)

MolProbity http://molprobity.biochem.duke.edu/ Analysis of interatomic contacts and packing, structure

validation

(Davis et al., 2004)

HUMAN MUTATION, Vol. 30, No. 5, 703–714, 2009 707



the protein may become vulnerable to protease digestion.
Disorder is further discussed in the reviews by Bourhis et al.
[2007], Dosztányi et al. [2007], and Ferron et al. [2006].

The methods predicting protein structural disorder are based on
protein amino acid composition as well as energy profiles and
physicochemical properties of the amino acids, specific sequence
patterns, missing X-ray coordinates, and B-factors. A number of
disorder prediction methods are based on machine learning methods,
such as support vector machines (SVM) and self-organizing maps
(SOM). As no clear definition of the concept of disorder exists, the
different methods predict disorder by varying means. It should be
noted that the methods discussed here have not been developed for
the study of the effects of missense mutations but, according to our
experience, they can be used for that purpose with certain
reservations. Given that several of these methods would predict a
mutation to increase or decrease the disordered structure content of a
protein, one could conclude that the mutation probably has
damaging effects on the structure and thereby function of the protein.

Several attempts have been made to build disorder predictors
that would operate solely on sequence data. These methods, for
example, SEG [Wootton, 1994] and CAST [Promponas et al.,
2000], divide sequences into regions of low or high complexity.
Low-complexity regions are compositionally biased regions that
are rarely defined in protein 3D structures [Saqi and Sternberg,
1994]. SEG and CAST mainly detect repetitive segments in
sequences, which often exhibit structural disorder. However, not
all regions with low sequence complexity are disordered, and vice
versa [Romero et al., 2001]. Other prediction methods operating
on sequence information, PONDR [Obradović et al., 2005;
Romero et al., 2001], iPDA [Su et al., 2007], and POODLE-L
[Hirose et al., 2007], analyze disorder propensities based on amino
acid properties and neural networks (NNs) (PONDR), radial basis
function networks (iPDA), or SVMs (POODLE-L, Spritz) [Vullo
et al., 2006], that have been trained on a set of disordered and
ordered sequences. PreLink assigns probabilities for amino acid
residues to occur in disordered regions combined with the
distance of each amino acid from the nearest hydrophobic cluster
[Coeytaux and Poupon, 2005]. Globplot is a tool for recognizing
globular and disordered regions within amino acid sequences
based on Russell/Linding secondary structure-forming propensi-
ties [Linding et al., 2003b]. Another method using secondary
structure-forming capacity as a parameter is NORSp, which
estimates the secondary structure content of the amino acid
sequence, and assigns those sequence segments with no predicted

2D structure as disordered [Liu and Rost, 2003]. IUPred
[Dosztányi et al., 2005a] estimates the capacity of polypeptides
to form stabilizing interresidue contacts based on amino acid
chemical types and their sequence environment. The sequence
regions with less contact-forming capacity are defined as
disordered [Dosztányi et al., 2005b]. FoldUnfold utilizes expected
packing densities for amino acid sequences [Galzitskaya et al.,
2006a], such that weak expected packing densities point to
disordered regions [Galzitskaya et al., 2006b].

RONN predicts disorder by comparing the input sequence to
other sequences of known folding state, and the alignment scores
against these sequences are used to classify the input sequence as
ordered or disordered using a neural network [Yang et al., 2005]. The
PrDOS method [Ishida and Kinoshita, 2007] utilizes template
proteins (assuming that disorder is conserved in protein families)
complementing the amino acid sequence profile generated by a SVM.

In the DRIP-PRED method [MacCallum, 2004], self-organizing
maps have been trained on protein sequences with known
structure. The target sequence windows are mapped onto the
SOM, and when sequence windows map onto regions not well
represented in the PDB, those sequences are predicted to be
disordered. This approach may be problematic because the PDB is
biased and does not contain all types of structures.

The methods POODLE-S [Shimizu et al., 2007a], DisPRO [Cheng
et al., 2005], DISOPRED2 [Ward et al., 2004], and DisEMBL
[Linding et al., 2003a], are NN-based methods that define disorder
as missing coordinates in high-resolution X-ray crystal structure
electron density maps. The DisEMBL method requires that the
disordered regions must reside within loops or coils, and both
POODLE-S and DisEMBL also take B-factors into account so that
highly dynamic loops are considered to be disordered.

The regions lacking coordinates in crystal structures are
commonly classified as disordered both in the prediction methods
and in experiments assessing the reliability of the methods, such as
in the Critical Assessment of Techiques for Protein Structure
Prediction (CASP) [Bordoli et al., 2007; Jin and Dunbrack, 2005].
However, missing electron density is not a perfect definition of
disorder, because crystallization may impose order on regions that
would be disordered in solution, and conversely, missing electron
density may not necessarily prove the lack of ordered structure.
Some regions may be disordered with respect to the rest of the
structure in a crystal, although they may be internally ordered [Jin
and Dunbrack, 2005]. The disadvantage in using B-factors in
disorder prediction is that they can vary greatly within a single

PROBE http://kinemage.biochem.duke.edu/software/

probe.php

Analysis of interatomic contacts and packing (Word et al., 2000; Word et al., 1999)

PyMOL http://pymol.sourceforge.net/ Molecular graphics (DeLano, 2002)

RankViaContact http://bioinf.uta.fi/RankViaContact.html Analysis and visualization of interatomic contacts (Shen and Vihinen, 2003)

Aggregation prediction

Aggrescan http://bioinf.uab.es/aggrescan/ Aggregation prediction (Conchillo-Sole et al., 2007)

PASTA http://protein.cribi.unipd.it/pasta/ Aggregation prediction (Trovato et al., 2007)

TANGO http://tango.embl.de/ Aggregation prediction (Fernandez-Escamilla et al., 2004)

Waltz http://switpc7.vub.ac.be/cgi-bin/submit.cgi Aggregation prediction (Maurer-Stroh et al., submitted for

publication)

Other

ExPASy

Proteomics tools

http://ca.expasy.org/tools/#ptm Posttranslational modification prediction tools

SABLE http://sable.cchmc.org/ Prediction of solvent accessibilities, 2D structures and

transmembrane domains

(Adamczak et al., 2004, 2005; Wagner et al.,

2005)

SNPeffect http://snpeffect.vib.be Prediction platform (metaserver) and database (Reumers et al., 2006)

Table 1. Continued

Service name URL Description Reference
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structure as a result of the effects of local packing [Smith et al.,
2003] and, for example, a residue side chain may have alternative
conformations leading into an elevated B-factor that does not
indicate disorder (Fig. 2F).

Aggregation

An increased level of b-structure is characteristic of different types
of protein aggregates, such as amyloid fibrils and amorphous
aggregates [Jiménez et al., 1999; Ohnishi and Takano, 2004; Rousseau
et al., 2006]. In addition to those proteins involved in amyloid
diseases (which include Alzheimer Disease, Parkinson Disease, and
type II diabetes, as well as the spongiform encephalopathies), it has
been shown that diverse proteins not related to amyloid disease can
aggregate under destabilizing conditions [Chiti et al., 1999; Fandrich
et al., 2001; Guijarro et al., 1998], and that normal proteins can
become toxic upon fibrillation [Bucciantini et al., 2004].

Missense mutations can change the properties of a protein so
that its tendency to aggregate increases. It has been suggested that
the composition and the primary structure of a protein determine
to a large extent its propensity to aggregate, and even small
alterations may have a considerable effect in the solubility of the
protein. Aggregation has been shown to be modulated by very
short stretches of specific amino acids that can act as facilitators or
inhibitors of amyloid fibril formation [Ivanova et al., 2004;
Ventura et al., 2004].

A number of algorithms have been developed for the prediction
of aggregation propensities of proteins [Chiti et al., 2003; DuBay
et al., 2004; Tartaglia et al., 2005; Thompson et al., 2006; Yoon and
Welsh, 2004]. The following methods are also available as Web
services: The AGGRESCAN [Conchillo-Solé et al., 2007] method
is based on aggregation propensity values assigned to each amino
acid residue determined by experimental studies [de Groot et al.,
2006]. TANGO [Fernandez-Escamilla et al., 2004] is a method
based on secondary structure propensities and estimation of
desolvation energy. PASTA [Trovato et al., 2007] is based on
sequence-specific interaction energies between pairs of protein
fragments calculated from statistical analysis of the native folds of
globular proteins [Trovato et al., 2006].

The methods for the prediction of b-aggregation are mostly
based on physicochemical properties of the input sequences. They
are relatively straightforward because of the regular structural
arrangement and the important role of side chains in b-sheet
aggregates [Azriel and Gazit, 2001; Gazit, 2002; Gsponer et al.,
2003; López de la Paz and Serrano, 2004; Williams et al., 2006].

Structural Considerations

When a residue is replaced by another residue in a missense
mutation, many of its chemical and physical properties may be altered
(Fig. 1). The substitution may cause major structural arrangements,
especially when the wild-type residue is smaller than the substituting
one. Whether the new side chain can be fitted into the structure
without major structural rearrangements, and how this can be
achieved, can be studied by rotamer analysis. The new side chain is
modeled into the structure by, for example, PyMOL [DeLano, 2002],
KiNG [Lovell et al., 2003], Discovery Studio (Accelrys, San Diego,
CA), or Swiss-PDB-Viewer [Guex and Peitsch, 1997], and hydrogens
are added to the structure by, for example, Reduce [Word et al., 1999].
Overpacking can be measured by rotating each of the mutated side
chains over full range of side chain w angles (Fig. 2E). Only the
substituted side chain is allowed to move during the analyses. The
rotatable side chain is created and an automated sampling of torsional

angles is done with, for example, the Autobondrot procedure under
PROBE [Word et al., 1999, 2000). The acceptable conformations for a
mutated side chain have a total score of above �1.0, allowing for
small local perturbations to take place in the structure [Lovell et al.,
2000]. A lower score indicates that the side chain does not fit into the
structure in any conformation without deleterious changes in the
protein scaffolding. The highest scoring rotamers are then selected
and modeled into the structure for further analysis (Fig. 2D). The
created structures can be verified by MolProbity [Davis et al., 2007], a
Web server providing all-atom contact analysis as well as Ramachan-
dran and rotamer distributions. The quality of the structure can be
studied by the protein structure verification tools PROCHECK
[Morris et al., 1992] or WHAT_CHECK [Hooft et al., 1996]. When
available, experimentally solved structures are used as templates in the
analysis of structural effects caused by mutations. Protein structure
prediction and molecular modeling can provide valuable information
when the 3D structure of the protein of interest has not been
determined [Baker and Sali, 2001]. Structural and biological/medical
interpretations can also be quite accurate when based on modeled
protein structures [Khan and Vihinen, submitted].

Residue Contacts and Stability

Compromised folding and decreased stability of the protein
product are the major molecular pathogenic consequences of a
missense mutation [Bross et al., 1999; Wang and Moult, 2001; Yue
et al., 2005]. Protein folding and stability are closely coupled and, for
disease mutants, folding can be slowed so much that most molecules
are targeted for recycling by the quality control machinery in the
endoplasmic reticulum [Plemper and Wolf, 1999]. Alternatively, the
protein fails to fold correctly as a result of a mutation, which may
have a detrimental impact on protein function.

Missense mutations may have an effect on the stability of the
protein via overpacking (Fig. 2D), altered contacts between amino
acid side chains, reduction in hydrophobic area, altered structural
strain in the protein backbone introduced by proline residues, or
changes in electrostatics. These alterations may have an effect on
the free energy difference between the folded and unfolded states
of the protein by causing changes in interaction energy between
amino acids, or affecting the entropy of the system or local rigidity
of the structure [Yue et al., 2005].

Chemical bonds and interactions between amino acid side
chains determine the two- and three-dimensional fold and
detailed shape of a protein. Hydrophobic interactions in the
protein core are crucial in maintaining the overall structural
stability of the protein, and introducing a charged residue into the
core generally destabilizes the protein [Chasman and Adams,
2001]. The net effect of a number of hydrophobic interactions
determines the stability of the protein core, and even the more
subtle alterations in these interactions could have a detrimental
effect on the structural integrity of a protein [Matthews 1995;
Sandberg et al., 1995; Serrano et al., 1992; Shortle et al., 1990]. The
vulnerability of the hydrophobic core is illustrated by the fact that
the probability of a mutation to be pathogenic increases with a
decrease in the solvent accessibility of the site [Vitkup et al., 2003].
The interactions between side chains on the surface of a protein
define and maintain local structure, the details of which may be
crucial for ligand or substrate binding or for interactions with
partner proteins or DNA.

After modeling the mutated side chain into the structure, its
effect on the chemical bonds with neighboring residues and changes
in the solvent accessible surface of the residue atoms can be studied
by the CSU service [Sobolev et al., 1999], or visually by the MAGE/
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PROBE system [Word et al., 2000], KiNG [Lovell et al., 2003], or
molecular modeling software packages. RankViaContact is a service
for calculation of residue–residue contact energies [Shen and
Vihinen, 2003]. Strong contacts are favorable for stability, while
weaker contacts between residues may point to functional regions
[Beadle and Shoichet, 2002]. The effects of mutations on contact
energies can provide insight into the structure–function relation-
ships of the mutated positions at the protein level.

There are several services available for the prediction of the
effects of mutations on protein stability. Cupsat [Parthiban et al.,
2006], Eris [Yin et al., 2007], FoldX [Schymkowitz et al., 2005],
DMUTANT [Zhou and Zhou, 2002], and PoPMuSic [Gilis and
Rooman, 2000] calculate mutational free energy changes of the
protein based on its 3D structure. I-Mutant 2.0 [Capriotti et al.,
2005a, b], MuPro [Cheng et al., 2006], and the method developed
by Shen et al. [2008] utilize support vector machines or neural
networks to predict the effect of the substitution on protein
stability. Auto-Mute [Masso and Vaisman, 2008] is a method that
combines a knowledge-based statistical potential with machine
learning techniques in the prediction. SRide [Magyar et al., 2005]
and SCide [Dosztányi et al., 2003a] predict stabilizing
residues based on long-range interactions in protein structures.
SRide includes hydrophobicity and conservation of residues as
additional parameters. SCPred is a method based on differences in
sequential neighborhood [Dosztányi et al., 2003b].

Electrostatics

Patches of electrostatic potential are often indicators of a
binding surface, usually to a molecule with a potential of opposite
sign [Honig and Nicholls, 1995]. However, this is not always the
case. Some interfaces exploit electrostatic interactions to drive
binding, while in others hydrophobic residues appear to be the
dominant surface feature [Sheinerman and Honig, 2002]. Surface
charge–charge relationships are also important in maintaining the
stability of the protein [Strickler et al., 2006]. Changes in
electrostatic potential affect the properties of proteins in many
ways. Mutations that induce local changes in electrostatic surface
potential may have a crucial effect on ligand binding or specificity,
and electrostatic alterations may affect protein folding and
stability. Qualitative measures of electrostatic surface potentials
can be calculated, for example, with PyMOL [DeLano, 2002] or
Delphi [Rocchia et al., 2002].

Pathogenic-or-Not Predictors

Several prediction methods that aim at sorting mutations
according to their pathogenicity, such as SIFT [Ng and Henikoff,
2001] and MAPP [Stone and Sidow, 2005], are based on
phylogenetic information, mainly assuming that the majority of
substitutions observed between humans and closely related species
are functionally neutral. The PhD-SNP method [Capriotti et al.,
2006] utilizes SVM classifiers based on sequence environment and
conservation. It has been shown that combining information
obtained from the multiple sequence alignment with structural
information can increase the prediction accuracy [Saunders and
Baker, 2002]. Some methods, for example, nsSNPAnalyzer [Bao
et al., 2005], PolyPhen [Ramensky et al., 2002], and SNPs3D [Yue
et al., 2006], combine available structural information with the
multiple sequence alignments to reach more accurate results. Align-
GVGD [Mathe et al., 2006] and SNAP [Bromberg and Rost, 2007]
combine information about the biochemical properties of the wild-
type and the substituting residue with evolutionary information.

Some methods use structural and functional annotation from
the Swiss-Prot database in addition to structure and sequence
modelling [Ferrer-Costa et al., 2002, 2004; Sunyaev et al., 2000,
2001b; Wang and Moult, 2001]. The functional annotation is used
to identify the residues that are part of a binding site, active site, or
disulfide bond. It is presumed that changes at these positions
would have a major effect on protein function.

These prediction methods can be useful, in addition to their
obvious function of predicting whether a mutation is pathogenic,
in deducing the mechanism by which a mutation causes a disease.
Indeed, some of these methods may predict a known pathogenic
mutation to be benign, but this information can be valuable in
ruling out some possible disease mechanisms.

PON-P: Pathogenic-or-Not Pipeline

We are currently developing a service providing simultaneous
access to the numerous prediction methods described in this
paper. When studying the effects of mutations by bioinformatics
methods, submitting sequence and mutation data to the various
predictors requires a considerable amount of work and time,
especially when the number of mutations in a given sequence is
large. A service that simultaneously submits the input data
provided by the user to selected prediction methods, as well as
parses the outputs of individual methods into a single output,
will simplify the process and provide results faster and
more conveniently. PON-P—the Pathogenic-or-Not Pipeline
(Fig. 2A)—will initially feature all the pathogenic-or-not pre-
dictors described in the previous chapters, as well as links and
descriptions for all prediction methods described in this article. In
the near future there will be a user-friendly submission form for
analyses of different kinds of mutations. PON-P is currently being
developed to contain all the available predictors for disorder,
aggregation, tolerance, and stability. The Pipeline will be freely
available at http://bioinf.uta.fi/PON-P.

Conclusion

As the number of known variants in the human genome
increases, the determination of positions likely to be disease-
associated has become an important and challenging problem.
There are numerous bioinformatics methods available for the
analysis of the molecular consequences of missense mutations.
Several of the methods are very specific, and dedicated to the
analysis of a single feature. However, they may analyze the same
property from different points of view. For example, structural
changes may originate from changes in side-chain size, hydro-
pathy, altered contact-forming properties, aggregation, or intro-
duced disorder. To make sophisticated choices of the most suitable
prediction methods and to be able to interpret the results
correctly, it is of utmost importance to be familiar with the theory
and limitations of the various methods. The Pathogenic-or-Not
Pipeline (PON-P) is a service providing access to various
mutation analysis methods, facilitating their use.
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Jiménez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR. 1999.

Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the

molecular packing. EMBO J 18:815–821.

Jin Y, Dunbrack Jr RL. 2005. Assessment of disorder predictions in CASP6. Proteins

61(Suppl 7):167–175.

Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in

accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid

multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res

30:3059–3066.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D.

2002. The human genome browser at UCSC. Genome Res 12:996–1006.

Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. 2005.

ConSurf 2005: the projection of evolutionary conservation scores of residues on

protein structures. Nucleic Acids Res 33:W299–W302.

Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD,

Vihinen M. 2000. Structural basis for SH2D1A mutations in X-linked

lymphoproliferative disease. Biochem Biophys Res Commun 269:124–130.

Lappalainen I, Thusberg J, Shen B, Vihinen M. 2008. Genome wide analysis of

pathogenic SH2 domain mutations. Proteins 72:779–792.

Lappalainen I, Vihinen M. 2002. Structural basis of ICF-causing mutations in the

methyltransferase domain of DNMT3B. Protein Eng 15:1005–1014.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H,

Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins

DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948.

Lau AY, Chasman DI. 2004. Functional classification of proteins and protein variants.

Proc Natl Acad Sci USA 101:6576–6581.

Lichtarge O, Bourne HR, Cohen FE. 1996. An evolutionary trace method defines

binding surfaces common to protein families. J Mol Biol 257:342–358.

Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. 2003a. Protein

disorder prediction: implications for structural proteomics. Structure

11:1453–1459.

Linding R, Russell RB, Neduva V, Gibson TJ. 2003b. GlobPlot: exploring protein

sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708.

Liu J, Rost B. 2003. NORSp: predictions of long regions without regular secondary

structure. Nucleic Acids Res 31:3833–3835.

Livingston RJ, von Niederhausern A, Jegga AG, Crawford DC, Carlson CS, Rieder MJ,

Gowrisankar S, Aronow BJ, Weiss RB, Nickerson DA. 2004. Pattern of sequence

variation across 213 environmental response genes. Genome Res 14:1821–1831.

Lockless SW, Ranganathan R. 1999. Evolutionarily conserved pathways of energetic

connectivity in protein families. Science 286:295–299.

Lopez de la Paz M, Serrano L. 2004. Sequence determinants of amyloid fibril

formation. Proc Natl Acad Sci USA 101:87–92.

Lovell SC, Davis IW, Arendall III WB, de Bakker PI, Word JM, Prisant MG,

Richardson JS, Richardson DC. 2003. Structure validation by Ca geometry: j, c
and Cb deviation. Proteins 50:437–450.

Lovell SC, Word JM, Richardson JS, Richardson DC. 2000. The penultimate rotamer

library. Proteins 40:389–408.

MacCallum R. 2004. Order/disorder prediction with self organizing maps. CASP6

Online Paper. http://www.forcasp.org/paper2127.html

Magyar C, Gromiha MM, Pujadas G, Tusnády GE, Simon I. 2005. SRide: a server
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