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Abstract: The majority of biological processes involve the association of proteins or binding of other ligands to proteins. 
The accurate prediction of putative binding sites on the protein surface can be very helpful for rational drug design on tar-
get proteins of medical relevance, for predicting the geometry of protein-protein as well as protein-ligand complexes and 
for evaluating the tendency of proteins to aggregate or oligomerize. A variety of computational methods to rapidly predict 
protein-protein binding interfaces or binding sites for small drug-like molecules have been developed in recent years. The 
principles of methods available for protein interface and pocket detection are summarized, including approaches based on 
sequence conservation, as well as geometric and physicochemical surface properties. The performance of several Web-
accessible methods for ligand binding site prediction has been compared using protein structures in bound and unbound 
conformation and homology modeled proteins. All methods tested gave very promising predictions even on unbound and 
homology modeled protein structures, thus indicating that current methods are robust in relation to modest conformational 
changes associated with the ligand binding process.  

INTRODUCTION 

Biomolecules and many other organic ligands can bind to 
proteins with high affinity at specific sites on the protein 
surface. The question of what distinguishes such recognition 
sites from other surface regions of proteins has been the sub-
ject of intense experimental and theoretical research [1, 2]. In 
recent years, the possibility to predict putative binding re-
gions on the surface of protein molecules has become in-
creasingly important. Together with the rapidly growing 
structural knowledge of proteins of biological and medical 
importance, such prediction methods become more applica-
ble and can be helpful for rational drug design and to eluci-
date the function of a protein molecule. Both these applica-
tions, function prediction as well as rational drug design, 
require a reliable method for identifying and characterizing 
the ligand-binding sites of a protein. 

Knowing the location of the functional sites (e.g., sub-
strate or ligand-binding sites of enzymes or receptor pro-
teins) on the protein surfaces prior to experiment, makes it 
possible to design inhibitors or antagonists and to introduce 
targeted mutations aimed at improving the protein function. 
It is also possible to apply these methods to assist in model-
ing the three-dimensional (3D)-structure of protein-ligand 
complexes [3-5]. 

The availability of 3D structures of many proteins in 
complex with proteins or other types of ligands (lipids, nu-
cleic acids or drug-like molecules) allows the systematic 
comparison of protein surfaces involved in interactions [2, 6-
19]. Comparative studies of the amino acid distribution and 
physicochemical features of protein-protein interfaces [6-13] 
and proteins in complex with small organic drug-like ligands 
[14-19] made it possible to characterize recognition sites. 
Furthermore, often interface residues around binding sites 
are evolutionary more conserved than other surface regions. 
A variety of computational methods have been developed 
that try to integrate this information for predicting putative 
binding sites in proteins.  
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The realistic prediction of putative ligand or protein bind-
ing sites has not only important implications for rational 
drug design but could also have an impact on a better under-
standing of protein-protein interaction networks. The possi-
bility to identify and to characterize putative protein binding 
sites on proteins can help to elucidate the number and kind of 
protein interaction partners. In silico methods to predict pro-
tein-protein interaction sites can also be used to predict the 
propensity of proteins to aggregate [20, 21] or to bind non-
specifically to many different partners [22]. Recent ap-
proaches to predict not only binding sites on proteins but 
also which partner protein may bind could potentially be 
useful to predict protein interaction networks [23]. 

In this review we first give an overview of the geometric 
and physicochemical properties of protein-protein interfaces 
and of protein binding sites for small drug-like ligands (in 
the following: protein-ligand complexes) based on the analy-
sis of known 3D structures. Recent approaches for predicting 
putative protein-protein interfaces and binding sites for drug-
like ligands will be discussed in the second part, followed by 
an analysis of the robustness of ligand binding site predic-
tion, with respect to conformational changes or inaccuracies 
in the protein structure. Finally, challenging future issues 
will be discussed. 

COMPARISON OF PROTEIN-PROTEIN AND 
PROTEIN-LIGAND INTERACTION REGIONS 

Complexes of proteins are non-covalent protein assem-
blies that fold separately and associate under certain physio-
logical conditions. Examples of protein-protein complexes 
are antigen-antibody, enzyme-inhibitor, and many signal 
transduction and cell cycle protein complexes [24]. The ma-
jority of known protein-protein complex structures have been 
determined by X-ray crystallography which requires stable 
complex structures that can form well ordered crystals. 
Based on known complex structures the geometric and phys-
icochemical properties of protein-protein interfaces have 
been characterized in detail [2, 6-12, 24]. In the following an 
overview of the main results will be given. It is important to 
indicate that the analysis of interface properties of protein-
protein binding sites is restricted to sufficiently stable pro-
tein-protein complexes (that can form well ordered crystals). 
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Rules derived for these complexes may differ from interfaces 
formed during transient interactions with a short lifetime. 
Most protein-protein complexes bury a surface area in the 
range of 1200-2000 Å2 which is much larger than the buried 
surface area upon binding small drug-like molecules of a few 
hundred Å2 depending on the size of the ligand [14]. The 
comparison of known protein-protein complex structures 
indicates that protein-protein interfaces are in many cases 
overall flat in shape with the exception of several enzyme-
inhibitor complexes [10-13] where the inhibitor site often 
forms a convex surface fitting to the concave shape of the 
enzyme active site. This contrasts to binding sites for en-
zyme substrates or other small organic ligands that are usu-
ally very non-planar allowing contacts to the ligand from 
many different sides of the binding pocket [14-20]. 

Protein interface regions clearly differ on average from 
the rest of the protein surface in terms of physicochemical 
properties and geometric characteristics [9-13]. However, the 
interactions between proteins are very diverse. It is therefore 
not possible to distinguish a binding site from the rest of the 
protein surface based on a single surface attribute [13]. Inter-
face residues in protein-protein complexes can be divided 
into two distinct regions, the ‘core’ and the ‘rim’ region, 
based on the solvent accessibility in the complex [11, 12]. 
The ‘core’ region contains residues that have at least one 
fully buried interface atom (i.e. zero accessibility after com-
plex formation) and usually contain mostly non-polar resi-
dues surrounded by the more polar ‘rim’ region, which con-
tains residues that are at least partially solvent exposed even 
in the complex. The composition of amino acid residues at 
specific protein-protein interfaces differs from the rest of the 
protein surface. Interface regions are enriched in aliphatic 
(Leu, Val, Ile, Met) and aromatic (His, Phe, Tyr, Trp) resi-
dues, and depleted in charged residues (Asp, Glu, Lys) with 
the exception of arginine [7-13]. The higher abundance of 
Arg at interfaces compared to Lys has been attributed to 
formation of cation- -interactions [10] and the greater capac-
ity of the guanidinium group in Arg to form hydrogen bonds 
(compared to Lys) [12, 24]. The role of arginine-arginine 
pairing and its contribution to protein-protein interactions 
was recently investigated by Vondrá ek and coworkers em-
ploying computational approaches [25].  

One way to characterize the relative contributions of in-
terface residues to the binding free energy, is to determine 
the change in affinity upon mutation of interface residues to 
alanine. Substitution of residues by alanine (alanine-scanning 
mutagenesis) corresponds (except for glycine) to the removal 
of side chain atoms from the interface and its effect on bind-
ing strength [26-30]. Interestingly, for most protein-protein 
complexes analysed by alanine scanning mutagenesis only a 
fraction of substitutions showed a substantial effect on bind-
ing affinity [26, 27]. This finding has led to the concept of 
“hot spots” on protein surfaces that are responsible for most 
of the interaction between proteins [27, 30] and methods for 
in silico alanine-scanning have been developed [28,31-33]. 
Several methods to predict protein-protein interaction sites 
aim at identifying such “hot spots” on protein surfaces [re-
viewed in 30]. 

It is important however to keep in mind that the binding 
affinity between two proteins is determined by interacting 

pairs of residues or even higher order motifs and not only by 
individual amino acids on just one partner. Hence, a given 
contacting pair (e.g. of two polar or charged residues) at an 
interface may overall contribute little to binding, for exam-
ple, because the desolvation of the two polar residues upon 
binding offsets the interaction energy between the residues. 
Nevertheless, substitution of one of the polar or charged 
residues by alanine may result in a significant drop of bind-
ing affinity (because alanine cannot form polar contacts), 
which may lead to the erroneous conclusion that the region is 
a hot spot. The substitution of a residue with zero contribu-
tion to binding energy can still result in a large drop of bind-
ing affinity if it creates an unfavorable contact with another 
residue. 

Similar to protein-protein interaction sites, high affinity 
binding cavities for small drug-like ligands are often less 
polar (low desolvation penalty) or more hydrophobic com-
pared to the rest of the protein surface [14-20]. However, due 
to the smaller size of organic drug-like molecules compared 
to proteins, the buried surface-area upon small molecule pro-
tein-ligand interaction is generally smaller than in the case of 
protein-protein interactions. In order to achieve strong inter-
actions through a sufficiently large number of favorable pro-
tein-ligand contacts, high-affinity binding sites are usually 
strongly concave pockets or cavities on the surface of pro-
teins or sometimes partially buried [14].  

Algorithms for predicting protein-protein interfaces are, 
in many aspects, similar to methods for predicting binding 
regions for small drug-like molecules. However, there are 
also some important differences due to the distinct general 
architecture of these types of binding sites [18, 34]. 

APPROACHES TO PREDICT PROTEIN-PROTEIN 
INTERFACES 

Protein-protein interaction sites or interfaces can be de-
fined as those protein surface residues or atoms that become 
buried upon complex formation. It is possible to identify 
interface residues (atoms) by calculating solvent accessibility 
in the presence and absence of the binding partner and define 
a threshold for counting a change in accessibility as being 
part of the interface. Alternatively (and more common), a 
distance criterion for intermolecular contacts in the complex 
is used to define all residues that are at the interface of the 
complex. The purpose of protein-protein interface prediction 
methods is to predict residues or atoms that belong to a puta-
tive protein binding interface.  

In order to recognize putative protein-protein interaction 
regions one can distinguish between methods that are based 
on the physicochemical properties of protein surfaces and 
approaches that are based on the evolutionary conservation 
of exposed surface residues [reviewed in 35-39]. It is possi-
ble to define a third category not considered here based on 
sequence homology of a protein-protein complex to a com-
plex of known structure. Under the assumption that the bind-
ing geometry in the unknown complex is similar to the 
known complex, it is possible to define a possible binding 
region. Although the majority of interface prediction meth-
ods require the 3D structure of the protein as input, there are 
also attempts that aim at predicting interfaces solely on the 
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basis of the protein sequence [40-43]. In addition, recent 
approaches aim at predicting not only putative interaction 
regions of a protein, but also what kind of protein might be 
the binding partner [23]. 

METHODS BASED ON SURFACE RESIDUE 
CONSERVATION 

An amino acid residue in a family of proteins can be evo-
lutionary conserved because the residue is important for the 
folding of the protein. This concerns mostly residues located 
in the interior of the folded protein (buried residues) respon-
sible for the hydrophobic core or tight packing of the protein. 
In addition, residues not involved in the correct folding of 
the protein can be conserved for functional reasons [35]. 
Possible conserved functions include the binding of a protein 
or other ligands at a distinct site. Conservation of residues in 
a set of related proteins can be derived from a multiple 
alignment of corresponding sequences [44-46]. Several pro-
tein interface prediction methods are based on residue con-
servation as the main input information. Examples are the 
ConSurf [46, 47], Rate4Site [48], SiteFinder3D [49] and the 
evolutionary trace (ET)-Viewer [45]. The evolutionary trace 
method defines an evolutionary tree that partitions the pro-
tein family into an increasing number of subgroups and ends 
with a subgroup for each protein. Based on the branches of 
the tree, it can define evolutionary conserved residues (trace 
residues) of functional importance [35, 44, 45]. From the 
clustering of trace residues at the protein surface, it is possi-
ble to identify putative interface residues (or residues of 
other functional importance). 

It has, however, been demonstrated that conserved 
patches of surface residues alone may not be sufficient to 
clearly discriminate between protein binding interfaces and 
the rest of the protein surface [50]. Therefore, most predic-
tion algorithms based on residue conservation combine the 
conservation information with geometric or physicochemical 
data on the protein surface. Examples of this class are the 
WHISCY [51] and the JET (Joint evolutionary tree) method 
[52]. 

PHYSICOCHEMICAL BASED METHODS AND COM-
BINED METHODS 

Based on the analysis of known protein-protein com-
plexes several surface properties have been used to identify 
putative binding interfaces. These properties include the 
chemical composition or type of amino acid, the shape of the 
surface, the overall hydrophobicity, the electrostatic field and 
the solvation characteristics of surface regions. In addition, 
crystallographic B-factors and detection of putative binding 
hot-spots have been used to predict protein-protein interac-
tion sites [reviewed in 37, 38]. It has also been noted that the 
secondary structure at protein-protein interfaces has a prefer-
ence for -strands (over -helices) and may contain loops 
that are longer than the typical loop length in proteins [53]. 
Residues that are part of interfaces tend to have a solvent 
accessibility that is larger than the average accessibility of 
the amino acid type on protein surfaces [54-56]. It also ap-
pears that interface residues may adopt a more limited set of 
side chain rotamer conformations in order to minimize the 
entropic cost of freezing the side chain in one conformation 

upon complex formation. This property has also been in-
cluded in identifying putative protein binding sites [57].  

However, no single physicochemical or geometric sur-
face property has so far been identified in known protein-
protein complexes, that unambiguously distinguishes pro-
tein-protein interface regions from other surface regions 
[36]. Therefore, most approaches use a combination of sur-
face properties and also often include conservation of surface 
residues to predict protein interface regions. The predictive 
power of different surface properties to detect putative inter-
action sites has been investigated by Burgoyne and Jackson 
[34]. It was found that desolvation properties and residue 
conservation have the strongest predictive power. Typically, 
the desolvation properties of a putative protein binding re-
gion are calculated from the loss of solvent accessible sur-
face that becomes buried upon complex formation. The 
desolvation penalty is calculated by assigning each surface 
element with an atom-type specific surface tension. Fernan-
dez-Recio et al. [58] have used such an approach to success-
fully identify putative protein interfaces on a set of protein 
structures. Although the surface area based approach pro-
vides a rapid estimate, the calculation neglects the influence 
of the neighbourhood on the solvation of a residue. In polar 
solvents like water, solute-solvent and solvent-solvent, elec-
trostatic interactions are predominant. The perturbation of 
the electrostatic field in the vicinity of an amino acid upon 
removal of water molecules is crucial for the desolvation 
process. Local effects that reduce solvation penalties for ex-
ample due to the “neutralisation” of a charged residue due to 
a nearby opposite charge or due to long range electrostatic 
interactions are omitted by surface-area-based solvation cal-
culations. A conceptually different approach to estimate the 
penalty to desolvate a protein surface region has recently 
been introduced, which is based on the desolvation proper-
ties of a probe placed at the protein surface and calculating 
the change in electrostatic energy by solving the finite-
difference Poisson-Boltzmann equation [59]. This approach 
showed promising results on many different types of inter-
acting proteins. 

An overview of Web-accessible methods for protein-
protein interface prediction is given in Table 1 together with 
a brief explanation of the underlying principle of the ap-
proach. Various available protein-protein interface prediction 
approaches have recently been reviewed and the perform-
ance on several benchmark sets were collected and compared 
[37, 38]. Several of the most recent methods perform on av-
erage similarly although the performance is case dependent 
and may also depend on the type of protein-protein complex. 
In most cases antigen-antibody complexes have been ex-
cluded from the analysis due to the larger variance of anti-
body-antigen interfaces compared to other types of com-
plexes. According to a recent comparison by deVries and 
Bonvin [37] the best available methods can achieve 35-40 % 
specificity at a sensitivity of 30% or 25-30% at a sensitivity 
of 50%. Specificity is defined as the ratio of correctly pre-
dicted interface residues (true positives) relative to the sum 
of true positives and false positives. Sensitivity is the ratio 
between true positives and the sum of true positives and false 
negative predicted residues.  

Although some methods are available which are only 
based on the protein sequence to predict interface residues 
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[40-43] the majority of methods requires the 3D-structure of 
the protein. An important issue, that has not yet been sys-
tematically investigated, is how much the predicted interface 
depends on the exact structure of the protein. Some surface 
properties are sensitive with respect to the backbone and side 
chain conformations of surface residues and the prediction 
accuracy may depend on whether a bound, unbound or ho-
mology modeled structure has been employed for the appli-
cation. It is expected that methods based on sequence con-
servation are not sensitive to the protein conformation but 
several physicochemical properties will depend significantly 
on the conformation of the protein. Protein-protein interac-
tion site prediction methods have been extensively investi-
gated and compared by de Vries and Bonvin [37]. In the fol-
lowing we, therefore, focus on the methods that are available 
for predicting small drug-like ligand binding sites on pro-
teins. 

METHODS FOR PREDICTION OF PUTATIVE 
SMALL MOLECULE BINDING SITES 

Similar surface properties and sequence conservation as 
used to predict protein-protein interfaces can also be used to 
identify putative interaction sites for small drug-like ligands. 
However, the predictive power of each property may differ 
from predictions of protein-protein interfaces due to the dif-
ference in architecture of high affinity binding sites for or-
ganic ligands compared to protein-protein interfaces (see 
previous paragraphs). Burgoyne and Jackson [34] compared 
the predictive power of different surface properties and 
found that it is in general easier to identify putative protein-
ligand interfaces compared to protein-protein interfaces. 
Binding cleft detection and desolvation properties, as well as 
sequence conservation and to some degree electrostatic po-
tential, have been identified as the strongest signals for pre-
dicting protein-ligand interfaces [34].  

Table 1. In Silico Methods for Predicting Putative Protein-Protein Interfaces 
 

PPI-Server & Web-site Method  

HotPatch [60] 

http://hotpatch.mbi.ucla.edu/ 

Identification of patches of residues on protein surface corresponding to functional sites  

ISIS [40] 

NN  

Prediction of interface residues based on sequence alone (from multiple alignments) 

PIER [61] 

NN 

Identification based on physicochemical and statistical surface properties of atomic 
groups at protein surface 

PINUP [57] 

http://sparks.informatics.iupui.edu/PINUP/ 

Based on physicochemical properties and conservation including residue-energy score 
and accessible-surface-area of surface residues  

consPPISP [55] 

http://pipe.scs.fsu.edu/ppisp.html 

Sequence conservation (position-specific sequence profiles), solvent accessibilities of 
residues and neighbors 

metaPPISP [36] 

http://pipe.scs.fsu.edu/meta-ppisp.html 

Combined server input from cons-PPISP, ProMate, PINUP, trained by linear regression  

ProMate [53] 

http://bioinfo.weizmann.ac.il/promate/promate.html 

Physicochemical properties & sequence conservation averaged over circular region on 
protein surface  

ProteMot [62] 

http://protemot.csie.ntu.edu.tw/step1.cgi 

Based on matching surface structures with template motifs extracted from known com-
plexes  

InterProSurf [63] 

http://curie.utmb.edu/ 

Clustering of putative interface residues based on solvent accessible surface area in the 
isolated subunits and propensity scale for interface residues 

SHARP2 [64] 

http://www.bioinformatics.sussex.ac.uk/SHARP2/sharp2.html 

Patch analysis of surface residues with high probability to be part of interface (obtained 
from known complexes) 

ET-Viewer [65] 

http://mammoth.bcm.tmc.edu/traceview/ 

Evolutionary trace server to identify putative functional regions based on sequence con-
servation 

SPPIDER [56] 

http://sppider.cchmc.org/ 

Physicochemical properties integrating enhanced relative solvent accessibility (RSA) 
based on actual vs. predicted solvent accessibility of surface residues 

PPI-PRED [66] 

http://bioinformatics.leeds.ac.uk/ppi-pred 

Protein interface prediction based on surface shape and electrostatics 

WHISCY [51] 

http://www.nmr.chem.uu.nl/Software/whiscy/startpage.htm 

Uses surface sequence conservation supplemented with physicochemical surface features 

JET [52] 

http://www.ihes.fr/~carbone/data.htm 

Combination of evolutionary tree analysis and physicochemical surface properties 



1554    Current Medicinal Chemistry,  2010 Vol. 17, No. 15 Leis et al. 

Since ligand binding sites involve in most cases the pres-
ence of a concave binding cleft on the protein surface (in 
contrast to the more flat protein-protein interfaces) the detec-
tion of binding pockets or protein cavities deserves special 
attention. Presumably, the better performance of binding site 
prediction for small drug-like ligands compared to protein 
binding site prediction is due to the importance of a concave 
binding site in the latter case. Apparently, such concave re-
gions are less frequently found on protein surfaces than flat 
or slightly curved surfaces typical for protein-protein inter-
faces. Several algorithms based on different detection princi-
ples have been designed in recent years. Only the principles 
of the most common methods will be explained here, since 

pocket detection methods and explanations of algorithmic 
design have been reviewed in detail in [67]. In the following, 
we summarize the basic algorithmic ideas of pocket detec-
tion of the most common available methods. An overview on 
available (mostly Web-accessible) ligand binding site predic-
tion methods including the respective web-links is given in 
Table 2.  

PRINCIPLES OF POCKET DETECTION 

Various algorithms to identify surface clefts in proteins 
have been reviewed and explained in detail by Laurie & 

Table 2. Protein-Ligand Binding Site Prediction Methods  
 

Method Description 

GRIDC [70] Protein-probe energies computed by Lennard-Jones, electrostatic and hydrogen bonding potentials are mapped onto a grid 
around the protein 

PocketC [71] A 3Å probe scans the protein along a Cartesian grid for line segments not overlapping with protein but surrounded by  
overlapping segments. 

Delaney [72] Expansion and contraction of spherical surface spherical probes is used to detect pockets where probe particles concentrate 

Del Carpio [73] Closest distances between the protein’s centre of gravity and protein surface points are used to identify pockets. 

VOIDOOC [74] Cavities are detected by stepwise increase of Van-der-Waals radii of all protein atoms. After a floodfill algorithm, sealed off 
localizations can be identified as cavities 

SurfNetC [75] Spheres between two atoms containing no other atoms are created and scanned for the cluster of spheres with the largest volume 

APROPOSC [76] Protein pockets are determined employing an alpha-shape algorithm that allows for a complete global envelope of the protein  

LIGSITEC [77] On a regular grid around the protein, lines are drawn from each grid point along the x/y/z-axis as well as the cubic diagonals. 
Segments of lines that are enclosed by protein from both sides are considered as cavities. 

Superstar [78] Creates propensity maps of basic molecular probes along the protein surface. 

PASSC [68] The algorithm repeats filtering and expanding a set of initial probe spheres on the protein surface to eventually find “active site 
points” 

ConSurfW [79] Identifying functional sites on proteins by determining the conservation of sequence homologues. 

CASTpW [80] Uses alpha shape theory and triangulation methods to predict pockets. 

LigandFitC [81] Identifies possible binding sites using a flood-filling-algorithm and docks ligands using a Monte Carlo conformational search 

Q-SiteFinderW [82] Energetically based method: clusters of protein surface regions that show favorable Van-der-Waals interactions with a  
methyl-group are collected and ranked  

DrugSite [83] Predicts binding sites on the basis of Van-der-Waals potential grid point maps 

MEDockW [84] Evolutionary algorithm utilizing the maximum entropy (ME) property of the Gaussian probability distribution  

LIGSITEcscW [85] In extension to the traditional LigSite method, the Connolly surface area is calculated and grid points are scanned for  
surface-solvent-surface events. Additionally, the top three predicted pockets are re-ranked according to sequence conservation. 

Screen/Mark-UsW [86] Cavities are geometrically determined via the difference between the molecular surface and the probe-specified molecular  
envelope and statistically analysis. 

Pocket-PickerC [87] A rectangular grid is used to segregate relevant points along the protein surface which are then clustered and ranked according 
to shape descriptors. 

Fuzzy-Oil-Drop-
ModelW [88] 

Analyzes the protein for regions with high hydrophobic deficiency, i.e. the difference between observed and idealized  
hydrophobicity distribution declared by the ‘Fuzzy Oil Drop Model’ 

SiteMap [89] Sets of relevant points are identified by geometric and energetic means and analyzed for hydrophobicity and other  
physicochemical properties 

FINDSITE [90] The method uses protein threading to identify ligand bound templates which are then superimposed and analyzed for  
similarities in the ligand binding sites 

Wweb server available. 
Csource code/program available. 
Webserver: Consurf: http://consurf.tau.ac.il/ - CASTp: http://sts-fw.bioengr.uic.edu/castp/calculation.php - Q-SiteFinder: http://www.modelling.leeds.ac.uk/qsitefinder/ - MEDock: 
http://medock.csie.ntu.edu.tw/ - Protemot: http://protemot.csbb.ntu.edu.tw/ - LIGSITEcsc: http://gopubmed2.biotec.tu-dresden.de/cgi-bin/index.php - SCREEN/Mark-Us: 
http://interface.bioc.columbia.edu/screen/ - Fuzzy-Oil-Drop-Model: http://www.bioinformatics.cm-uj.krakow.pl/activesite/ 
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Jackson [67]. One can distinguish between geometry-based 
and energy-based detection methods. The latter methods 
define favorable cleft regions based on energetic evaluations, 
the former based on sterical considerations. Many methods 
employ a regular 3D grid and move probes along grid lines 
to define accessible and inaccessible or energetically favor-
able and unfavorable positions. Alternatively, probes placed 
on the solvent accessible surface of the protein can be used 
in combination with a variety of algorithms to define pocket 
regions. For example, the PASS program [68] filters out 
highly accessible surface probes and creates additional layers 
of surface probes on top of surface probes located in clefts. 
The procedure is repeated until all clefts are filled with 
probes. In addition, structural motifs typical for binding 
pockets have also been used to define binding sites [69]. The 
principles of the most common ligand binding site prediction 
methods are briefly explained in Table 2. For a more detailed 
explanation the reader is referred to the original literature 
and for a comparison of the pocket detection methods to the 
review by Laurie & Jackson [67]. In the following, five of 
the most common Web-accessible programs are considered 
and subsequently used to compare the performance on sev-
eral proteins in bound, unbound and in the form of modeled 
structures. The LigSite method is based on a regular 3D grid 
placed around the protein [77]. A probe is moved along the 
x, y and z directions and the cube diagonals of the grid. A 
grid point that is counted as part of a pocket is assigned if the 
grid line contains points before and after the point that over-
lapped with the protein. A Web-accessible extension of the 
method (LIGSITEcsc) includes the degree of surface conser-
vation and has been shown to improve the performance [85]. 
The Q-SiteFinder [82] is an energy-based binding site pre-
dictor that clusters grid points of favorable (van der Waals) 
interactions with the protein to define a putative binding site. 
The CASTp algorithm uses an entirely different principle to 
detect binding pockets [80]. In the CASTp method a Delau-
nay triangulation of the protein is performed (means the en-
tire protein shape is approximated by triangles). A pocket 
can be detected, based on the direction of norm vectors asso-
ciated with triangles for a set of neighboring triangles. A 
Web-accessible server for this method is available (Table 2). 
The Mark-Us method is another binding site prediction tool 
based on the SCREEN algorithm [86], which is based on a 
large set of physicochemical, structural, and geometric de-
scriptors extracted from known complexes. Finally, the Web-
accessible Fuzzy-Oil-Drop (FOD) method [88] identifies 
primarily hydrophobic patches on protein surfaces to assign 
putative binding regions.  

ROBUSTNESS OF LIGAND BINDING SITE 
PREDICTION WITH RESPECT TO PROTEIN 
CONFORMATIONAL CHANGES 

Proteins can undergo conformational changes upon 
ligand binding that may influence the steric accessibility of a 
binding cleft and can interfere with the ability of an algo-
rithm to identify a potential binding site. In an effort to de-
tect binding pockets for inhibitors of protein-protein interac-
tions, Eyrisch and Helms [91, 92] recently applied the PASS 
program [68] for pocket detection to three unbound and 
bound protein conformations. The inhibitors target the inter-

action of the proteins interleukin-2 (IL-2) and IL-2Ra, the 
interaction of MDM2 and p53 and the pair BCL-XL and 
BH3, respectively. The native inhibitor pockets on BCL-XL 
and IL-2 proteins in the unbound form could not be identi-
fied using PASS. However, open pockets among them also 
the native pockets were found transiently during molecular 
dynamics simulations starting from the unbound proteins 
[91]. This result emphasizes the possible influence of protein 
dynamics on formation of binding pockets. However, the 
same proteins were later analysed using the Q-SiteFinder and 
it was able to predict for IL2-2 and for BCL-XL binding 
pockets in the unbound conformation near the native pocket 
[93].  

For many proteins of biological and pharmaceutical im-
portance, no 3D structure is available but very frequently a 
structure of a protein with similar sequence can be used to 
generate a homology model of the target protein. Depending 
on the degree of target-template similarity such homology 
modeled structures frequently include structural inaccuracies 
that may interfere with the prediction of putative ligand bind-
ing sites. It is of importance to check the performance of 
prediction methods under realistic conditions where only the 
unbound structure or a model structure of the target protein 
is available. This corresponds to an often realistic scenario of 
a rational drug design project where for a given protein tar-
get of interest only a sequence but no 3D structure is avail-
able.  

In order to obtain an impression on the performance of 
several of the most recent Web-accessible binding site pre-
diction methods we have compared the application to several 
protein structures in bound and unbound conformation or 
even generated homology modeled variants for some of the 
proteins. The pairs of bound and unbound structures show 
varying degrees of structural similarity and are listed in Ta-
ble 3. The proteins correspond to typical targets for rational 
drug design. Most ligand binding site prediction methods 
have been tested on bound and unbound protein structures 
described in the original publications but the test set and 
conditions may vary for each case. A direct comparison of 
available methods applied to the same targets can be useful 
to obtain a hint of the performance of each method and may 
indicate overall trends. It should be emphasized that it is not 
the purpose of the review to provide a comprehensive 
benchmark test or to provide a quantitative evaluation of the 
prediction results. The selected target structures do not repre-
sent unsolved problems of drug-design but well-known ex-
amples to give interested researchers an overview of the 
available methods and their performances by comparing the 
predictions with the known binding sites.  

The ConSurf-method provides a map of the sequence 
conservation of residues extracted from a multiple alignment 
of proteins homologous to the target protein [79]. Although 
the predicted regions of high sequence conservation fre-
quently overlapped with the binding sites for ligands on the 
target proteins (Fig. 1), the conserved surface regions in the 
example cases extend often beyond the ligand binding site or 
include parts of the protein surface that are far off the bind-
ing site. Hence, the specificity of sequence conservation 
alone may in general not be sufficient to exactly locate the 
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Table 3. Protein Test Structures 
 

pdb entry molecule state ligand  Rmsd (Å)b 

2ANO E.coli dihydrofolate reductase bound Inh. MS-SH08-17 0  

5DFR E.coli dihydrofolate reductase apo ---  0.7  

5DFR_2KGK DHFR based on 2KGK structure homology --- 1.6  

5DFR_3IA5 DHFR based on 3IA5 structure homology --- 1.3  

3BNZ Thymidylate synthase bound 8A inhibitor 0  

1NJB Thymidylate synthase apo --- 0.8  

1EB2 Trypsin inhibitor complex bound BPO 0  

1BTY Trypsin inhibitor complex apo benzamidine 0.3  

1BTY_1GVL Trypsin based on 1GVL structure homology --- 0.8  

1BTY_1L2E Trypsin based on 1L2E structure homology --- 0.9  

1FKS FK506 binding protein apo --- 1.3  

1FKS_2VCD 1FKS based on 2VCD structure homology --- 2.3  

1FKS_2KE0 1FKS based on 2KE0 structure homology --- 2.6  

1D6O FK506 binding protein apo --- 0.3  

1D7H FK506 binding protein bound DMSO 0  

1APB Arabinose binding protein bound arabinose 0  

1ANF maltose-binding protein (MPB) bound maltose 0  

1OMP maltose-binding protein (MPB) apo --- 3.8  

1OMP_2FNC MPB based on 2FNC structure homology --- 2.4  

1OMP_2GHA MPB based on 2GHA structure homology --- 2.7  

1R2D/1Y2D BCL-XL bound vs. unbound --- --- 3.7  

1M47/1PY2 IL-2 bound vs. unbound --- --- 2.9  

1T4E/1Z1M MDM2 bound vs. unbound --- --- 2.2  

aHomology models were generated using the Modeller program with default settings [95] based on a template structure (indicated as second pdb-code in the name given in the first 
column) with a sequence identity of 30% to 50%.  
bmain chain Rmsd relative to bound structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Result of ConSurf-Server [79] application to six ligand binding protein structures (labeled with pdb-code). The sequence conserva-
tion of protein surface residues is color-coded with increasing conservation from blue to red. Bound ligands are indicated as stick models 
(green). 
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Fig. (2). Results of five ligand binding site prediction servers on four target proteins in bound and unbound conformations. The predicted 
binding regions are either shown as colored molecular surfaces (CASTp, SCREEN and FOD) with increasing probability from blue to red for 
a ligand binding site or as colored probes (Q-SiteFinder, LIGSITEcsc). Up to three predicted binding sites are shown (red highest score fol-
lowed by grey and blue). The location of the binding site is encircled black at the most left column. Ligand molecules in the bound structures 
are shown as stick models (green). 
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putative ligand binding site (compare ligand position and red 
colored protein surfaces in Fig. 1). It should be emphasized 
that conserved regions not overlapping with the known 
ligand binding site can be of other functional importance (for 
example a binding site for another protein). In addition to 
ConSurf, the programs CASTp [80], Q-SiteFinder [82], 
LIGSITEcsc [85], Mark-Us [86] and Fuzzy-Oil-Drop FOD, 
[88] were applied on the test proteins (see above and Table 
2). The Web-accessible methods were employed using de-
fault parameters. The results were evaluated qualitatively by 
visual inspection and distance calculations between predicted 
site and ligand atoms in the native complex. 

In the case of using bound structures and for the four pro-
tein cases illustrated in Fig. (2), all tested methods performed 
very well in identifying the native binding pocket as the top 
ranking or one of the top ranking solutions. The most likely 
site predicted by LIGSITEcsc or Q-SiteFinder was close or 
overlapped with atoms of the ligand in all cases. Only in the 
case of Thymidylate synthase (Thy_Syn), Q-SiteFinder 
scored a position close to the binding site at rank 3. For the 
CASTp, Mark-Us, and FOD methods that encode likely 
binding sites as B-factors in the pdb-file, the predicted bind-
ing regions overlapped or completely included the known 
binding region in all cases. However, sometimes the pre-
dicted top ranked regions significantly extended beyond the 
known binding region lowering the specificity.  

Despite the success of the tested approaches to predict 
binding regions that overlap with the known binding site, it 
is important to consider differences in the prediction results 
that depend on the topology of the binding region. The LIG-
SITEcsc server located the binding region well in all cases. 
However, it uses a one-sphere prediction which in case of 
elongated ligands does not give information about a possible 
orientation of a bound ligand. The Q-SiteFinder returns a 
large set of spheres which gives a better representation of the 
complete binding site. In contrast to the sphere-based LIG-
SITEcsc prediction, the Fuzz-Oil-Drop-Model assigns a hy-
drophobicity distribution to the protein surface. It achieves a 
high sensitivity (overlap with binding site) but the large size 
of the predicted surface patch may lower the specificity of 
the prediction and makes it more difficult to define the exact 
binding site. Examples 1FKS, 1D6O, and 2ANO in Fig. (2) 
illustrate this problem where protein regions quite distant 
from the known ligand binding site are included in the pre-
diction. 

Interestingly, the overall performance was only slightly 
worse in the case of employing unbound structures as target 
proteins. This was even the case for DHFR and Thy_Syn for 
which the conformational difference between bound and 
unbound structures near the binding site is more significant 
compared to Trypsin or FKBP. For example, LIGSITEcsc 
predicted in every unbound structure a pocket that formed at 
least part of the binding site for the full ligand (Fig. 2).  

For the homology modeling we selected templates with a 
sequence identity between 30-50% with respect to the target 
protein (Table 3). This degree of sequence similarity is typi-
cally considered as yielding reliable models with an overall 
realistic structure [95]. Homology modeling was performed 
with the Modeller program ([94, 95]; see legend of Table 3). 
Two models were generated for four proteins based in each 

case on two different template proteins. No information on 
the known structure of the target proteins was included dur-
ing the comparative modeling step. The Rmsd (main chain) 
between modeled structures and the corresponding native 
structures was case depended (1-3 Å, Table 3). Remarkably, 
for several of the homology modeled protein structures (e.g. 
one Trypsin model, one DHFR model, both FKBP models 
and both MBP -maltose-binding protein- models), the pre-
diction methods performed qualitatively almost as well as for 
the native protein cases (shown for Q-Site-Finder and LIG-
SITEcsc in Fig. 3). In case of the FKBP protein models, the 
Rmsd with respect to the bound native conformation was > 2 
Å (Table 3) but still preserved a detectable pocket. Similar 
for MBP, the Rmsd of the models exceeded 2 Å but this 
concerned mostly the global arrangement of the two domains 
that encompass the binding site. The modeled MBP struc-
tures contained an even more open binding cleft (similar to 
the unbound conformation) that is detected by the prediction 
programs. Interestingly, for one trypsin model and one 
DHFR model the prediction of a binding cleft was less pre-
cise (Fig. 3) although the conformational difference of the 
models from the corresponding bound structure was < 2 Å. 
This indicates that overall deviation of a model from the na-
tive structure is not necessarily a good measure for the use-
fulness of a model to identify putative binding sites. The 
degree of change and the type of conformational change near 
the binding cleft is decisive. Even large changes near the 
binding cleft (in case of MBP) may result in a detectable 
pocket (for example a more open pocket) but even small 
changes that result in closure of the pocket can interfere with 
the ability to detect the pocket.  

Finally, we also tested the prediction methods on the 
three protein-protein inhibitor cases mentioned above that 
have been studied previously [91-93]. In these cases the de-
viation between proteins in unbound and inhibitor bound 
conformation exceeded the Rmsd for the above discussed 
cases (Table 3). For the bound forms, Q-SiteFinder and 
LIGSITEcsc detected pockets that are at least part of the na-
tive pockets in all cases (Fig. 4). For the unbound BCL-XL, 
LIGSITEcsc was able to predict two pockets very close to the 
native binding pocket (rank 2 and 3) and one (rank 3) pocket 
close to the native inhibitor in the case of IL-2. Q-SiteFinder 
was successful in the case of IL-2 with a detected pocket 
close to the prediction in the bound form as top ranking pre-
diction and one other predicted pocket close to a second 
binding regime of the inhibitor as also described by Fuller et 
al. [93]. None of the three top ranked predicted pockets over-
lapped with the native binding sites in the other two cases 
(using standard parameters). It was, however, possible to hit 
regions close to the native binding site if predicted binding 
sites of lower rank were included (not shown). Fuller et al. 
[93] also indicated recognisable ligand binding pockets using 
Q-SiteFinder applied to the unbound state of BCL-XL con-
sidering, however, a larger number of predicted putative 
pocket sites.  

The three examples indicate the limits of current pocket 
detection if the Rmsd (main chain) between bound and un-
bound structures reaches 2.5 Å or may even exceed 3 Å 
(BCL-XL case, Table 3) and if binding pockets are largely 
closed in the unbound state. Here, methods that allow for 
conformational changes, like molecular dynamics simula-
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Fig. (3). Performance of Q-SiteFinder and LIGSITEcsc on homology modeled protein structures. The name of target protein and the pdb-entry 
of the template used for homology modeling are indicated. Coloring and labeling scheme is the same as in Fig. (2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Application of Q-SiteFinder and LIGSITEcsc to detect inhibitor binding sites near protein-protein interaction sites for three proteins 
in bound and unbound conformations. Coloring and labeling scheme is the same as in Figs. (2 and 3). 

tions, could become useful to identify transient pockets [91] 
albeit at much larger computational costs compared to cur-
rent prediction methods that require seconds or minutes to 
perform a prediction. 

CONCLUSIONS AND OUTLOOK 

The availability of an increasing number of protein-
protein and protein-ligand complexes has resulted in an im-
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proved understanding of the properties of binding sites. In 
recent years, this knowledge has been used to design many 
computational prediction tools to identify putative ligand and 
protein binding sites on proteins. There are significant differ-
ences in the architecture of protein-protein interfaces and 
high affinity sites for binding small drug-like ligands. The 
latter require, in the majority of cases, a strongly concave 
binding pocket to maximize the number of close contacts in 
order to achieve strong interaction. In the case of proteins, 
the much larger buried interface area allows a wider distribu-
tion of interactions and the exclusion of water from a larger 
interface area may also contribute to the enhanced interac-
tion at hot spot residues located at the interface. It might be 
especially useful to focus the design of drugs to interfere 
with protein-protein interactions to those proteins with de-
fined clefts at the protein-protein interface. Further develop-
ments in the area of binding site prediction could also aim at 
predicting not only where a ligand could potentially bind but 
also which type of ligand might be suitable for a given bind-
ing pocket.  

It is expected that conformational differences between 
bound and unbound proteins affect the ability of prediction 
methods to locate potential protein or ligand binding sites. 
Our test on a limited set of proteins in unbound and bound 
conformations indicates that several of the available Web-
accessible methods tolerate a certain degree of conforma-
tional difference. Encouragingly, for deviations of proteins in 
bound vs. unbound structure of up to 1.3 Å of the backbone 
(~2 Å for heavy atoms) most tested programs identified the 
native ligand binding site as top ranking or among the top 
ranking predicted pockets. Even for larger deviations or for 
some of the homology modeled structures with main chain 
Rmsd up to ~2.5 Å a pocket close to the known site could be 
identified as a potential ligand binding position. It needs to 
be emphasized that the number of evaluated cases in the pre-
sent review does not represent a comprehensive test set. 
However, it may form a starting point for more systematic 
and exhaustive studies including more methods and employ-
ing larger sets of proteins including homology modeled 
structures with varying degrees of structural accuracy. The 
results also indicate that if ligand binding involves structural 
changes for pocket opening beyond an Rmsd of ~2 Å, new 
methods may be required that allow for conformational ad-
justment during the pocket detection phase.  
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