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ABSTRACT: Stability is a fundamental property affecting
function, activity, and regulation of biomolecules. Stabi-
lity changes are often found for mutated proteins
involved in diseases. Stability predictors computationally
predict protein–stability changes caused by mutations.
We performed a systematic analysis of 11 online stability
predictors’ performances. These predictors are CUPSAT,
Dmutant, FoldX, I-Mutant2.0, two versions of I-
Mutant3.0 (sequence and structure versions), MultiMu-
tate, MUpro, SCide, Scpred, and SRide. As input, 1,784
single mutations found in 80 proteins were used, and these
mutations did not include those used for training. The
programs’ performances were also assessed according to
where the mutations were found in the proteins, that is, in
secondary structures and on the surface or in the core of a
protein, and according to protein structure type. The
extents to which the mutations altered the occupied
volumes at the residue sites and the charge interactions
were also characterized. The predictions of all programs
were in line with the experimental data. I-Mutant3.0
(utilizing structural information), Dmutant, and FoldX
were the most reliable predictors. The stability-center
predictors performed with similar accuracy. However, at
best, the predictions were only moderately accurate
(�60%) and significantly better tools would be needed
for routine analysis of mutation effects.
Hum Mutat 31:675–684, 2010. & 2010 Wiley-Liss, Inc.
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Introduction

Stability is a fundamental property affecting function, activity,
and regulation of biomolecules. Conformational changes are
required for many proteins’ function [Hsu et al., 2008; Mohamed
et al., 2009; Muller et al., 1996]; therefore, conformational
flexibility and rigidity must be finely balanced [Vihinen, 1987].

Incorrect folding and decreased stability are the major
consequences of pathogenic missense mutations [Bross et al.,
1999; Ferrer-Costa et al., 2002; Wang and Moult, 2001; Yue et al.,
2005]. Single residue mutations can cause, for example, reduction
in hydrophobic area, over packing, backbone strain, and loss of

electrostatic interaction, and thus lead to changes in protein
stability [Steward et al., 2003]. Alterations in atom–atom
interactions affect the free energy difference (DG) between the
folded and unfolded states of proteins. Changes in the interaction
among residues within a protein or between a protein and its
surroundings affect the entropy of the system with consequent
effects in local flexibility/rigidity of the structure [Yue et al., 2005].
In addition to covalent disulphide bonds, proteins are stabilized
by the noncovalent hydrophobic, electrostatic, and van der Waals
interactions, and hydrogen bonds [Pace, 1990; Ponnuswamy and
Gromiha, 1994]. Cooperative, noncovalent, long-range interac-
tions provide stability that counteracts local tendencies to unfold
[Abkevich et al., 1995; Gromiha and Selvaraj, 2004]. The
importance of the interactions for stability has been revealed by
site-directed mutagenesis experiments [Akasako et al., 1997;
Petsko, 2001; Sawano et al., 2008; Villegas et al., 1996].
Intramolecular interactions define the overall structure and
stability of a protein, as well as regions that can undergo
conformational rearrangements. Additionally, functions, such as
catalysis, allosteric regulation, and ligand binding, depend mostly
on the same interactions that define stability.

Understanding the mechanisms by which mutations affect
protein stability is an important subject. Accurate prediction of
protein stability changes that arise upon mutagenesis is necessary
if the structure–function relationship of a protein is to be
understood or if a new protein is to be designed. Understanding
the structure–function relationship is also essential when char-
acterizing disease mechanisms [Sunyaev et al., 2001; Thusberg and
Vihinen, 2009] and evolutionary dynamics [Bloom et al., 2005b,
2007; Camps et al., 2007; DePristo et al., 2005; Pal et al., 2006;
Poelwijk et al., 2007], and when designing or engineering proteins
[Baltzer and Nilsson, 2001; Bloom et al., 2005a; Bolon et al., 2002;
Butterfoss and Kuhlman, 2006; Lehmann and Wyss, 2001; van den
Burg and Eijsink, 2002].

Many computational methods have been developed to predict
the difference in the free energy of unfolding (DDG) between a
wild-type protein and its mutant. Some of these methods rely on
energy functions to compute the DDG, whereas others apply
machine-learning approaches. The methods that use energy
functions can be subdivided to: physical potential approaches,
statistical potential approaches, and empirical potential ap-
proaches [Capriotti et al., 2004]. The physical potential
approaches [Bash et al., 1987; Pitera and Kollman, 2000; Prevost
et al., 1991] simulate the atomic force fields of a structure and
therefore cannot be applied to large datasets because they are
computationally intense. Statistical potential approaches [Deutsch
and Krishnamoorthy, 2007; Gilis and Rooman, 1997, 2000;
Magyar et al., 2005; Zhou and Zhou, 2002, 2004] use potential
functions derived from statistical analyses of environmental
propensities, substitution frequencies, and correlations of adjacent
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residues found experimentally in protein structures. For the
empirical-potential approach [Cheng et al., 2006; Guerois et al.,
2002; Parthiban et al., 2006], the energy function is a combination
of the weighted physical and statistical energy terms and structural
descriptors. Machine-learning methods [Capriotti et al., 2005,
2008; Cheng et al., 2006; Dosztanyi et al., 1997, 2003; Shen et al.,
2008] are first trained using examples of proteins and their
mutants for which the DDGs have been experimentally measured.
Recently a combination of these approaches has been developed
[Masso and Vaisman, 2008].

Experimental studies on the molecular effects of mutations are
often laborious, time-consuming, and costly. Computational and
statistical methods may be used instead to predict many of the
effects caused by mutations and to elucidate the underlying
biological mechanisms [Thusberg and Vihinen, 2009]. We
performed a systematic analysis of the performances of 11 stability
predictors available on the Internet. The developers of these
methods have used different datasets to test the accuracies of their
programs; therefore; a comprehensive, comparative assessment of
their performances has yet to be made. Our analysis revealed that
the predictive performances of the methods clearly differ and there
is a need for more reliable tools.

Materials and Methods

The novel methods that produce vast biological datasets
demand bioinformatics tools and methods to analyze and
interpret the observations. For certain tasks several tools may be
available, but without reliable knowledge about the performance
and quality of predictions choosing the correct tool to use is not
possible. We therefore performed a comprehensive evaluation of
eleven bioinformatics tools designed to predict protein stability
changes.

Test Cases

We built a dataset containing missense mutations for which the
corresponding proteins had experimentally determined DDG
values from ProTherm database (ProTherm update Dec. 19,
2008) [Kumar et al., 2006]. ProTherm is the most comprehensive
database for experimentally determined protein stability free
energy changes caused by mutations, although the measurements
have not always been made in physiological conditions. Mutations
with associated DDG values between 0.5 and �0.5 kcal/mol were
classified as neutral cases, not affecting stability, because the
experimental error for measurement of DDG has been estimated
as 70.48 kcal/mol [Khatun et al., 2004]. We defined positive cases
as having DDG values Z0.5 or r�0.5 kcal/mol. We did not
consider proteins containing double mutations and used only one
representative case when several DDG values from different studies
were available for a given mutation. The final dataset contained
1784 mutations from 80 proteins, with 1,154 positive cases
of which 931 were destabilizing (DDGZ0.5 kcal/mol), 222 were
stabilizing (DDGr�0.5 kcal/mol), and 631 were neutral
(0.5 kcal/molZDDGZ�0.5 kcal/mol). (Note that the signs for
the DDG values are the opposite those given in the ProTherm
database.)

The sizes of the datasets used to test the stability predictors
varied, because the majority of the predictors had been trained
using data obtained from earlier versions of ProTherm; therefore,
only those cases that had been added to the database after training
had occurred were used. The datasets for I-Mutant2.0, CUPSAT,
FoldX, Dmutant, and MultiMutate included 174, 536, 1,541,

1,714, and 1,757 mutations, respectively. The smallest datasets
used that contained enough cases for statistical analysis was for
MUpro (166 mutations) and both versions of I-Mutant3.0
(115 cases each). For the programs SCide, SRide, and Scpred,
which predict the existence of stability centers, the datasets
contained 1,646, 1,589, and 1,784 mutations, respectively. For
AUTO-MUTE, the dataset contained only 28 cases.

Prediction Methods

The effects of mutations on protein stabilities were predicted
using the default parameters of the programs. We ran the
programs at the Pathogenic-or-Not Pipeline [Thusberg and
Vihinen, 2009]. This service submits the input data, that is, the
wild-type protein structure and/or sequence, and the amino acid
substitution, to the selected predictors and parses the results of the
individual methods into a single output.

AUTO-MUTE [Masso and Vaisman, 2008] (http://proteins.
gmu.edu/automute/AUTO-MUTE.html) uses a four-body,
knowledge-based, statistical contact potential. The program
calculates an empirical, normalized measure of the environmental
perturbation for substitutions. A feature vector is used to estimate
the effect of the mutation by considering the spatial perturbation
inflicted by the mutation upon its nearest neighbors in the 3D
structure. We used the random forest option.

CUPSAT [Parthiban et al., 2006] (http://cupsat.uni-koeln.de)
predicts DDG using structural, environment-specific, atomic
potentials and torsion-angle potentials derived from nonredun-
dant protein structures [Wang and Dunbrack, 2003]. The torsion-
angle potentials are derived from the distribution of protein
backbone j and c angles in the dataset.

Dmutant [Zhou and Zhou, 2002] (http://sparks.informatics.
iupui.edu/hzhou/mutation.html) uses a statistical potential ap-
proach with a distance-dependent, residue-specific, all-atom, and
knowledge-based potential for protein structure-based predic-
tions.

FoldX version 3.0 [Guerois et al., 2002] (http://foldx.crg.es/) is
an empirical potential approach that uses an energy function
derived from a weighted combination of physical-energy terms,
statistical-energy terms, and structural descriptors calibrated to fit
experimental DDG values. FoldX and Dmutant are the only
programs discussed herein that return negative DDG values for
stabilizing mutations and positive values for destabilizing
mutants.

I-Mutant2.0 [Capriotti et al., 2005] (http://gpcr2.biocomp.
unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi) and I-Mu-
tant3.0 [Capriotti et al., 2008] (http://gpcr2.biocomp.unibo.it/
cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi) are support vector
machine (SVM)-based tools. The services use either a protein
structure or a sequence as input. We used the sequence-based
version of both the versions as well as the structure based version
of I-Mutant3.0. I-Mutant2.0 programs can be used to predict the
sign of the stability change upon mutation or as a regression
estimator to predict DDG values. Unlike other stability predictors
analyzed here, the I-Mutant3.0 classifies the prediction in three
classes: neutral mutation (�0.5rDDGr0.5), large Decrease
(r�0.5) and large Increase (40.5).

MultiMutate [Deutsch and Krishnamoorthy, 2007] (http://
www.math.wsu.edu/math/faculty/bkrishna/DT/Mutate/) uses a
four-body scoring function based on Delaunay tessellation of
proteins. The method calculates the change in how well packed the
residues are in the wild-type protein and in the mutant. Score
values between 0.5% and �0.5% are classified as negative.
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MUpro version 2.0.4 [Cheng et al., 2006] (http://www.igb.
uci.edu/servers/servers.html) contains two machine-learning pro-
grams, SVM and Neural Networks. We used the sequence-based
version of the program. The SVM method was run using the
default parameters. The output of the program is the sign of the
energy change (1 or �).

The programs SCide [Dosztanyi et al., 2003], Scpred [Dosztanyi
et al., 1997], and SRide [Magyar et al., 2005] identify stability
centers from sequence data. Mutations found at stability centers
were considered by us to be destabilizing and thus deleterious.
SCide (http://www.enzim.hu/scide) attempts to identify stability
centers within experimentally determined protein structures.
Stabilizing, cooperative, long-range contacts identified by SCide
are formed between regions that are sequentially well separated or
that are part of different subunits within a complex. Scpred
(http://www.enzim.hu/scpred/pred.html) locates stability-center
elements that impart stability via cooperative, long-range inter-
actions. Scpred uses a neural network to predict stabilizing
residues in conjunction with sequence information for the protein
under study and its homologues. SRide (http://sride.enzim.hu/)
combines several methods to identify residues expected to play key
roles in stabilization. It analyzes tertiary structures, rather than
primary structures, and the evolutionary conserved residues
contained within. A residue is predicted to be stabilizing if it is
surrounded by hydrophobic residues, exhibits long-range order,
has a high conservation score, and, if it is part of a stability center.

Determination of Protein Structural Classes for the
Test Cases

CATH (class, architecture, topology, homology; http://
www.cathdb.info/), a hierarchical protein-domain classification
system [Orengo et al., 1997], was used to group the proteins
according to secondary structure type and tertiary organization
(protein structure type).

Determination of Secondary Structural Elements and
Accessible Surface Areas

Secondary structural information for each mutation site was
obtained from ProTherm where the data is taken from PDB file
annotations. Accessible surface area (ASA) values were obtained
from ProTherm, originally computed using the program,
Analytical Surface Calculation. We classified residues with
o10% ASAs as buried and with 425% ASAs as exposed.

Determination of Volume and Charge Changes

To calculate the residue-site charge and volume changes that
would occur upon mutation, we obtained from the literature
amino acid isoelectric point values [Greenstein and Winitz, 1961]
and volumes [Pontius et al., 1996].

Statistical Analyses

In the analysis the net effect i.e. the sign of the predictions was
used. The DDG values were used only to separate neutral cases
from positive ones. The quality of the predictions is described by
four parameters. In the following equations, tp, fp, tn, and fn refer
to the number of true positives, false positives, true negatives, and

false negatives, respectively.

Accuracy ¼
tp1tn

tp1tn1fp1fn

Specificity ¼
tn

tn1fp

Sensitivity ¼
tp

tp1fn

MCC ¼
tp� tn� fn� fpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtp1fnÞðtp1fpÞðtn1fnÞðtn1fpÞ
p

Matthew’s correlation coefficients (MCC) range from �1 to 1.
A value of MCC 5 1 defines the best possible prediction, whereas
MCC 5�1 indicates the worst possible prediction (or antic-
orrelation). For MCC 5 0, the prediction is the result of chance.
To be able to correlate the quality parameters for different
programs with different sizes of test sets containing different
amounts of positive and negative cases, the numbers of negative
cases were normalized to be equal to the number of positive cases
for each program. We used receiver operating characteristics
(ROC) curves to plot the balance between sensitivity and
specificity. ROC analysis was run at http://www.jrocfit.org.

Mutation statistics were analyzed by comparing the frequencies
of the mutations with the expected values that were calculated
using the distribution of all amino acids in the analyzed dataset.
For the mutated residues, the expected values were calculated with
regard to their codon diversity thereby taking into account all
possible amino acid substitutions.

The w2 test was used to determine the significance of the results
and chi-square was calculated as:

w2 ¼
X ðfo � feÞ

2

fe

where fo is the observed frequency and fe is the expected frequency
for an amino acid. p-Values were estimated in a one-tailed fashion.

Correlations between the program outputs were calculated by
counting all of the common cases and those predicted correctly.

Results

The performances of the 11 stability predictors differed when
tested with our ProTherm dataset. SCide [Dosztanyi et al., 2003]
and Scpred [Dosztanyi et al., 1997], which predict stability centers,
as well as SRide [Gromiha and Selvaraj, 2004], which predicts
stabilizing residues, can predict only destabilizing effects caused by
mutations. The other programs evaluate both stabilizing and
destabilizing changes.

Figure 1A diagrams the distributions of the predicted and the
experimental DDG values follow normal distribution curves. The
values predicted by I-Mutant2.0 and CUPSAT are somewhat
biased toward negative values, whereas those for Dmutant trend
toward positive values, although the highest peak in the curve for
the Dmutant data is at DDG 5 0. The distribution for the FoldX
results does not show a clear peak; however, there is a peak at the
negative end, and many of the DDG values predicted by FoldX are
smaller than �4 kcal/mol.

To evaluate the performances of the programs, we used four
measures: accuracy, specificity, sensitivity, and MCC. Table 1
displays the values of these measures for all of the mutations and
individually for the stability-increasing and -decreasing muta-
tions. The overall performances are best for I-Mutant3.0
(structure version), Dmutant and FoldX, which all have accuracies
varying from 0.54 to 0.64. MUpro returned the best sensitivity
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value (0.74); whereas for I-Mutant2.0 and CUPSAT, the values are
only slightly smaller (0.71 and 0.69, respectively). The specificity
(0.95) is best for SRide. However, the MCC values are poor for all

the predictors, the best being I-Mutant3.0 (structure version) that
has MCC of 0.27. The worst overall MCC value (�0.39) was
obtained for MUpro.

Figure 1. A: Distributions of predicted and experimental DDG values. The predictors used were I-Mutant2.0 (red), Dmutant (green), CUPSAT
(blue), FoldX (gray), and the experimental DDG values are shown in black. B: Receiver operating characteristics curves diagramming the
performances of FoldX, I-Mutant2.0, Dmutant, and CUPSAT with the values for AUC7SE derived from the areas under the curves. Color coding
for the individual predictors is shown in the figure.

Table 1. Performance of Stability Predictors

All cases

Parameters CUPSAT Dmutant FoldX I-Mutant2.0

I-Mutant 3.0

(sequence)

I-Mutant 3.0

(structure) MUpro MultiMutate SCide SRide Scpred

tp 249 576 629 72 35 34 71 620 197 33 402

fp 123 238 321 53 38 23 70 414 122 28 238

tn 53 365 244 19 24 39 0 206 465 548 393

fn 111 535 347 30 18 19 25 517 862 980 751

Totala 536 1,714 1,541 174 115 115 166 1,757 1,646 1,589 1,784

Accuracyb 0.50 0.56 0.54 0.48 0.52 0.64 0.37 0.44 0.49 0.49 0.49

Specificityb 0.30 0.61 0.43 0.26 0.39 0.63 0.00 0.33 0.79 0.95 0,62

Sensitivity 0.69 0.52 0.64 0.71 0.66 0.64 0.74 0.55 0.19 0.03 0.35

MCCb
�0.01 0.12 0.08 �0.03 0.05 0.27 �0.39 �0.13 �0.03 �0.04 -0.03

Stability increasing cases

Parameters CUPSAT Dmutant FoldX I-Mutant2.0 MUpro MultiMutate

tp 25 91 86 8 8 91

fp 45 131 134 7 15 193

tn 131 472 431 65 55 427

fn 33 123 125 15 17 128

Totala 234 817 776 95 95 839

Accuracyb 0.74 0.60 0.59 0.63 0.55 0.55

Specificityb 0.88 0.78 0.76 0.90 0.79 0.69

Sensitivity 0.43 0.43 0.41 0.35 0.32 0.42

MCCb 0.35 0.22 0.18 0.30 0.12 0.11

Stability decreasing cases

Parameters CUPSAT Dmutant FoldX I-Mutant2.0

I-Mutant3.0

(sequence)

I-Mutant3.0

(structure) MUpro MultiMutate

tp 224 485 543 64 35 34 63 529

fp 78 107 187 46 36 20 55 221

tn 98 496 378 26 26 42 15 399

fn 78 412 222 15 13 14 8 389

Totala 478 1,500 1,330 151 110 110 141 1,538

Accuracyb 0.65 0.68 0.69 0.59 0.57 0.69 0.55 0.61

Specificityb 0.56 0.82 0.67 0.36 0.42 0.68 0.21 0.64

Sensitivity 0.74 0.54 0.71 0.81 0.73 0.71 0.89 0.58

MCCb 0.30 0.38 0.38 0.19 0.16 0.39 0.14 0.22

aTotal number of cases used by the given program.
bAccuracy, specificity, sensitivity, and MCC are calculated from normalized numbers.
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All the programs succeed better when considering their ability to
predict stability increasing or decreasing mutations individually. In
these analyses only two classes were considered: stabilizing or
destabilizing, and neutral cases. The neutral cases thus also contained
destabilizing or stabilizing cases as well, depending on the analysis.
CUPSAT has the highest accuracy, sensitivity, and MCC for stabilizing
mutation predictions, 0.74, 0.43, and 0.35, respectively. All the
programs have specificity over 0.60. Due to low number of stabilizing
cases (5) among I-Mutant3.0 datasets, they were excluded. I-
Mutant3.0 (structure version), FoldX and Dmutant are the best
methods for the prediction of destabilizing mutations all having MCC
around 0.38. Sensitivity measures the proportion of true positive cases
that are correctly identified. MUpro and I-Mutant2.0 have the best
sensitivity values. The specificity of all programs varies from 0.21
(MUpro) to 0.82 (Dmutant). Of the stability-center predictors, which
only predict destabilizing mutations were equally accurate, but when
considering the specificity SRide is the most reliable and Scpred most
sensitive. The results for these programs are somewhat poorer than
for the best general predictors. The ROC curves for the performances
of FoldX, I-Mutant2.0, Dmutant, and CUPSAT are shown in Figure
1B. The steep increase in the curves indicates that these programs
were all capable of predicting the stability effects caused by the
mutations. However, the curves bend strongly already at tp �0.6. The
AUCs for these programs are between 0.79 and 0.83.

Analysis of Structural Properties

The effects that the type of mutation had on prediction
performance were tested by determining the number of times a

mutation replaced or substituted for a given amino acid, occurred
within a secondary structural element or within a protein
folding type, and caused a change in residue size or charge.
The distributions of the original (mutated) and substituted (mutant)
residues are given in Supp. Table S1. Among the mutated residues that
are replaced by stabilizing mutations, D and H are significantly
overrepresented, and P and K are significantly underrepresented.
Among the mutated residues that were replaced by ones causing
destabilization, C, I, and V are significantly overrepresented, whereas
E, G, K, Q, and S are significantly underrepresented. For residues
replaced by mutations that changed |DDG| by 0.5 kcal/mol or less
(neutral mutations), the distributions are also biased but involve
different residues. Mutations to P, G, and L are much rarer than
expected, whereas E, D, and V are overrepresented. Among the
mutant residues, the distributions are even more biased. For all
categories, but particularly those involving destabilizing or neutral
mutations, alanine substitutions are greatly overrepresented. This
observation contradicts the basic assumption behind alanine-scanning
mutagenesis [Cunningham and Wells, 1989], that is, alanine
substitutions are assumed to affect only the function of the substituted
residue (and not the stability of the protein). Destabilizing alanine
substitutions were found mainly in coils, turns, and b-strands (33�
greater than expected for coils, 26.3� greater for b-strands, and
15.5� greater for turns, when compared with the wild-type alanine
distribution). The mutation profiles are clearly different for stabilizing
and destabilizing mutations. The distribution for stabilizing mutant
residues is nearly random.

The results for the mutations in the secondary structural
elements are given in Figure 2A. The dataset for I-Mutant3.0 was

Figure 2. The values of the four quality parameters, accuracy, specificity, sensitivity, and Matthew’s correlation coefficient for the secondary
structures, the CATH classifications, and the accessible surface areas. A: Secondary structures: a-helices (red), b-strands (blue), coils (yellow),
and turns (green). B: Protein structure types: mainly a-helical (red), mainly b-stranded (blue), a/b structures (green), and few secondary
structures (yellow). C: Accessible surface areas: exposed residues (blue, ASAZ25%) and buried residues (red, ASAr10%). Color coding for the
classifications is shown in the figure.
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too small. For MUpro the specificity values were not possible to
count. Overall, the majority of the programs predict different
secondary structural elements with almost equal accuracy.
CUPSAT predicted, with somewhat better accuracy than did the
other programs, the effects of mutations that occurred in coils and
turns. For all structural categories, I-Mutant2.0, FoldX, MUpro,
MultiMutate, and CUPSAT gave the best results for sensitivity.
When accuracy and sensitivity were considered, Dmutant
performed better for mutations found in a-helices and coils and
performed poorly for mutations in strands or turns. Among
different secondary structural elements SRide was less sensitive of
all programs but it gave the most specific results among strands
and coils. The majority of the programs predict turns and coils
with better specificity than helices and strands. Proteins are
classified by CATH as mainly a-helical, as mainly b-stranded, as
mixed a and b structures, or as having few secondary structures.
The predictions obtained from the nine programs differed with
respect to performance depending on which protein class type
a mutation was found in (Fig. 2B). CUPSAT, Dmutant, FoldX,
I-Mutant2.0, and MultiMutate made the most accurate and
sensitive and CUPSAT, Dmutant, FoldX, SCide, and Scpred the
most specific predictions for mutations that are in domains or
proteins composed of few secondary structures. SCide, Scpred,
and SRide predicted the effects of a-helical and a and b proteins
with almost equal specificity, whereas other programs showed
variability in specificity when different protein structure types
were compared. Additionally, the MCCs for the programs deviate
widely. Five out of eight programs (MUpro lacks the respective
value) have highest MCC for proteins composed of few secondary
structures.

Often, a mutation, associated with a disease state, drastically
changes the chemical and/or physical properties at the mutated
site. One such change is a change in the accessible surface area
(ASA). We considered residues with ASA values of at least 25%
those of fully exposed amino acids to be surface residues and those
having ASA values of r10% to be buried. All programs, except
MultiMutate, predict exposed mutations more accurately than
buried mutations (Fig. 2C). There are major categorical
differences in prediction sensitivity for CUPSAT, Dmutant, FoldX,
Multimutate, and MUpro. Predictions for mutations among
exposed residues are more specific than for amino acids in core.
The MCCs are higher for amino acids on surface than for buried
mutations except for MultiMutate. The performances of the
predictors as a function of volume change upon mutation are
shown in Supp. Fig. S1. When the original residue is replaced with
a residue of smaller volume, a cavity may form in the protein
interior. Large volume changes were predicted better than were
small changes by all the programs. In comparison with the
experimental data, the distributions of correct predictions are
similar for CUPSAT and MultiMutate. The distributions of the
false positives for the stabilizing mutations are all quite similar
except that the peak positions do not coincide. The distributions
of destabilizing mutations predicted by the programs follow the
experimental distribution very closely. For the false positive
distributions, that produced by Scpred differs substantially
from the others. The performances of the predictors were
unbiased with regard to the type of mutation and the accuracy
of the prediction.

The distributions caused by changes in charge are presented in
Supp. Fig. S2. For destabilizing mutations there are no significant
performance deviations in the methods for different charge
changes. The results obtained using I-Mutant2.0 and MUpro are
not reliable because only eight mutations within their datasets

changed charge. The distributions obtained for the neutral cases
are similar to those found for the experimental data, except for
those of the Scpred and MultiMutate. In summary, the predictors
performed similarly despite differences in the extent to which the
volume or charge varied as functions of the original residue and
the mutation.

To further assess the performances of the programs we
compared the predictions obtained for the same mutations
used by the programs in a pairwise fashion (Table 2). The
programs were tested with different datasets, which avoided
using the training cases. The most similar test sets were for
Scpred and MultiMutate, which shared 98.5% of the cases.
Conversely, the dataset used for the CUPSAT and I-Mutant2.0
comparison had only 18 mutations (1% of the original dataset).
The largest percentage of correctly predicted cases was 38% (for
the Dmutant and I-Mutant2.0 comparison). On average, the
number of correctly predicted cases was less than one-third of the
total data in each set. The correlation between two programs was
best for MUpro and SRide, relatively good for SCide and SRide
and for CUPSAT and MUpro, and the worst for SRide and I-
Mutant2.0. In general, however, the overall performances varied
greatly because the correlations between programs were found to
be small.

Figure 3 shows the agreement among the programs with the
experimental data. For the vast majority of cases when only the six
general methods were considered, the predictions of just one to
three of the methods are in agreement, and when all 11 predictors
were considered, only one to four of the predictions agree. There
was not a single case for which all of the programs correctly
predicted the experimental result, and when only the general
predictors were considered together, in 16% none of their results
agree with the experimental data.

Discussion

We evaluated how reliably the stability effects of missense
mutations could be predicted. Stability changes can be studied
experimentally, but such studies are laborious, time-consuming,
and often costly. Therefore, reliable computational methods that
can predict stability changes are valuable tools. Mutations that
decrease the stability of proteins are generally considered to be
harmful. In some circumstances, mutations that increase protein
stability can also be deleterious. Proteins are dynamic molecules,
and mechanical flexibility is necessary for their function [Daniel
et al., 2003; Fields, 2001; Vihinen, 1987]. Increased stability can
reduce flexibility [Somero, 1995; Wolf-Watz et al., 2004]. The
active-site residues of enzymes are generally polar or charged, and
are usually located in hydrophobic clefts [Fersht, 1999]. Stabilizing
mutations in active site residues can reduce enzymatic activities
[Beadle and Shoichet, 2002; Counago et al., 2008; Garcia et al.,
2000; Kidokoro et al., 1995; Meiering et al., 1992; Mukaiyama
et al., 2006; Nagatani et al., 2007; Schreiber et al., 1994,
Shoichet et al., 1995; Zhi et al., 1991]. Additionally, a stabilizing
mutation increased the resistance of ribonuclease A to proteolysis
[Markert et al., 2001], which, for example, would be an
undesirable effect if it occurred in enzymes involved in cell
signaling [Fink, 2005].

We tested the performances of 11 protein stability predictors.
For this study, we used only sequence data as input for
I-Mutant2.0, MUpro, and Scpred, even though the first two
programs can also use structural information. CUPSAT, Dmutant,
MultiMutate, SCide, and SRide require structural information as
input data. Bioinformatic studies concerning protein stability
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predictions have often used tertiary structure information,
because such information has improved the quality of the
predictions and, indeed, we found that I-Mutant3.0 (structure

version), Dmutant, and FoldX were the best of the predictors.
However, even though Scpred uses only sequence data as input,
it returned the most sensitive predictions among the stability-
center predictors. Although there are two versions of Mupro—one
that uses structural and sequence data and one that uses only
sequence data—the two versions of the program are quite similar
[Cheng et al., 2006], and therefore, we used the sequence-based
version.

Certain aspects of the performance of stability predictors have
been tested in three previous studies. Potapov and colleagues
[2009] compared the performances of six programs, CC/PBSA,
EGAD, FoldX, I-Mutant2.0, Rosetta, and Hunter. I-Mutant2.0 and
FoldX are the only predictors also used in our study. Their dataset
was composed of 2,156 single mutations obtained from
ProTherm. As with our study, mutations that were used to train
the programs were not used in their trials. None of the programs
they assessed performed as well as reported by their developers,
which is what we also found. Of the tested programs, EGAD
[Pokala and Handel, 2005] cannot predict effects for all types of
mutations, and a description of Hunter has not been published
and the program is not available. We identified Web services that
could be used in conjunction with only sequence data, mutation
positions, and, in some cases, coordinates of the wild-type protein
as input, and then used those services without subsequent user
intervention. CC/PBSA [Benedix et al., 2009] did not meet these
criteria, as it requires the use of two programs and extensive

Figure 3. Number of stability predictors that returned predictions
that agreed with the experimental values. Black bars do not include
the results of the stability-center programs (SCide, SRide, and
Scpred). The gray bars include the results of all of the programs.

Table 2. Pairwise Prediction Correlations

CUPSAT Dmutant FoldX I-Mutant2.0 I-Mutant3.0 structure I-Mutant3.0 sequence MultiMutate MUpro SCide Scpred SRide

CUPSAT 29.4 21.4 1.0 0.1 0.1 29.5 2.0 26.1 30.0 23.0

Dmutant 8.1 82.5 9.6 6.3 6.3 94.6 9.1 90.4 96.1 87.7

FoldX 8.1 31.5 9.8 6.4 6.4 84.9 9.3 78.7 86.2 75.3

I-Mutant2.0 0.2 3.6 3.5 6.4 6.4 9.5 7.5 9.0 9.8 9.0

I-Mutant3.0 structure 0.0 3.2 3.0 2.1 6.4 6.4 5.9 6.4 6.4 6.4

I-Mutant3.0 sequence 0.0 2.6 2.4 2.4 2.7 6.4 5.9 6.4 6.4 6.4

MultiMutate 7.8 30.7 27.2 3.3 2.2 2.0 9.2 90.8 98.5 87.7

MUpro 0.7 2.9 2.9 2.0 1.5 1.7 2.6 8.5 9.3 8.5

Scide 4.5 22.5 17.6 1.4 2.6 1.8 16.2 1.2 92.3 87.8

Scpred 7.5 26.5 22.9 2.3 2.9 2.3 21.6 2.6 24.6 89.1

Sride 2.6 19.9 13.5 1.2 2.4 1.6 11.5 0.4 26.2 19.8

CUPSAT 524 381 18 1 1 527 35 465 536 411

Dmutant 27 1,471 171 113 113 1,688 162 1,613 1,714 1,565

FoldX 38 38 174 115 115 1,514 166 1,404 1,538 1,344

I-Mutant2.0 22 38 36 114 114 169 134 160 174 161

I-Mutant3.0 structure 0 50 46 33 115 114 106 115 115 115

I-Mutant3.0 sequence 0 42 37 37 43 114 106 115 115 115

MultiMutate 26 32 32 35 34 31 164 1,620 1757 1,564

MUpro 34 32 31 27 25 28 28 152 166 152

Scide 17 25 22 16 40 28 18 14 1,646 1,566

Scpred 25 28 27 24 45 36 22 28 27 1,589

Sride 11 23 18 14 37 25 13 5 30 22

CUPSAT

Dmutant 0.04

FoldX 0.28 0.28

I-Mutant2.0 0.16 0.18 0.24

I-Mutant3.0 structure — 0.38 0.38 0.17

I-Mutant3.0 sequence — 0.33 0.27 0.53 0.42

MultiMutate 0.15 0.25 0.20 0.26 0.04 0.16

MUpro 0.54 0.09 0.29 0.37 0.02 0.33 0.23

Scide �0.14 0.10 �0.03 �0.26 0.24 0.01 �0.05 �0.30

Scpred �0.07 0.12 0.06 0.07 0.44 0.30 0.04 0.22 0.35

Sride �0.28 0.10 �0.15 �0.37 0.07 �0.12 �0.18 �0.65 0.64 0.22

Upper table: The number of cases shared by two programs, reported as a percentage (upper right triangle). The number of cases predicted correctly, reported as a percentage
(lower left triangle). Middle table: The absolute number of cases shared by two programs (upper right triangle). The percentage of correctly predicted cases (lower left triangle).
Bottom table: Pairwise correlation.
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computing power. Rosetta software is used for protein modeling
and design. The intent of Potapov et al. [2009] was to correlate
experimental and predicted DDG values, while we were interested
in determining whether the stabilizing or destabilizing effect
caused by a mutation could be correctly predicted, because, for
mutations associated with disease states, the sign of the stability
change is what is needed.

Lonquety and colleagues [2008] evaluated predictors that detect
folding nuclei affected by mutations. The programs tested
included Dmutant, the two versions of I-Mutant2.0, MUpro,
and PoPMuSiC. Their dataset contained 1,409 mutations from the
ProTherm. However, they tested I-Mutant2.0 and MUpro with
same dataset that had been used for training. Thus, their results
indicated only how well the methods learned the training set. The
correlation coefficients for PoPMuSiC and Dmutant were �0.5.
We did not test PoPMuSiC because the server for the version
available at the time was very unstable. A new, more stable version
[Dehouck et al., 2009] was released after we finished our study. We
could not test the newer version because its neural network was
trained using a more current set of ProTherm data, and thus, there
were not enough test cases available.

Tastan and colleagues [2007] used three structure-based
programs, Dmutant, FoldX, and I-Mutant2.0, to investigate
stability predictions for mutations in two types of membrane
proteins, mammalian rhodopsins (279 mutations) and bacter-
iorhodopsins (54 mutations). The best prediction accuracy for the
rhodopsin dataset was o0.60, whereas it was somewhat greater
for the bacteriorhodopsin dataset. Only 20% of the rhodopsin
dataset and 35% of the bacteriorhodopsin dataset were accurately
predicted by all three programs.

There are other stability predictors, in addition to those
mentioned above, that we did not test. Eris (http://eris.dokhlab.
org) uses a physical force field in combination with atomic
modeling and fast side-chain packing [Yin et al., 2007]. The
program is also designed to predict changes in backbone
conformations caused by mutations by modeling backbone
flexibility. Because the Eris Website does not allow for batch
submissions, we could not study its performance. iPTREE-STAB
(http://210.60.98.17/IPTREEr/iptree.htm) uses a decision-tree
method. The sequence-based method determines stabilizing and
destabilizing mutations but uses only a seven-residue window,
with the mutation position in the middle. The service could not be
accessed. Finally, although we attempted to assess the prediction
accuracy of AUTO-MUTE, only 28 cases that had not been used to
train the program could be retrieved from ProTherm, which was
too small a number for a statistical analysis. Of the 28 cases,
AUTO-MUTE correctly predicted 6 (21%).

Mutations can introduce or relieve strain into the protein
backbone. To properly estimate DDG stability values, stru-
ctural rearrangements that induce or release strain should
be considered. Calculations of the DDG values associated with
strain are computationally possible using either molecular
dynamics or Monte Carlo simulations but are also computation-
ally very intense. The simpler methods, such as those that we used,
allow a large number of mutations to be surveyed and their effects
on stabilities determined quickly but cannot model protein
dynamics.

Our analyses showed that the predicted DDG values are
distributed in a fashion similar to those of the experimental data.
However, the mutant and mutated residue distributions are
strongly biased in the stabilizing, destabilizing, and neutral
categories. These biases may have arisen because the designs of
the original experiments that produced the mutations were biased,

for example, consider the excessive number of alanine mutations
retrieved from ProTherm.

Our ROC curves are quite similar to those found for a
function–stability correlation study that used missense mutations
[Bromberg and Rost, 2009]. The curves in Figure 2 increase
sharply until a tp value of 0.6 is reached, but then bend sharply,
and continue to rise more slowly.

We found that the structural context of a residue strongly
affected predictor performance. Disease-causing mutations have
biased distributions in secondary structural elements [Khan and
Vihinen, 2007]. Both the secondary structure type and the protein
folding type had significant effects. There was also a clear
difference between the prediction accuracies for buried and
accessible residues. The structural context effect depended on the
method used and influenced the values of the quality parameters
differently. Conversely, the extent of volume or charge change
upon mutation did not influence the prediction performances
significantly.

In conclusion, at best, the methods predicted the changes in
stability caused by mutations with only moderate accuracies.
However, the number of false positives and false negatives
returned by the programs was substantial. As so many
factors affect protein stability, even small differences in the DDG
values between a wild type and its mutant can be significant.
Molecular dynamics and Monte Carlo simulations provide more
accurate results in general; however, characterization of muta-
tional effects is still problematic even when these methods are
used. Additionally, the computational power demands of these
two methods are prohibitively great for the analysis of large
datasets.

For mutation effect investigations the tested methods have only
limited applicability, and should thus be used preferably together
with other prediction approaches. One way to improve the
performance of predictors might be to use additional features.
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