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Prediction of protein binding sites
and hot spots

Juan Fernandez-Recio*

Protein—protein interactions are involved in the majority of cell processes, and
their detailed structural and functional characterization has become one of the
most important challenges in current structural biology. The first ideal goal is to
determine the structure of the specific complex formed upon interaction of two
or more given proteins. However, since this is not always technically possible,
the practical approach is often to locate and characterize the protein residues that
are involved in the interaction. This can be achieved by experimental means at
expense of time and cost, so a growing number of computer tools are becoming
available to complement experimental efforts. Reported methods for interface
prediction are based on sequence information or on structural data, and make
use of a variety of evolutionary, geometrical, and physicochemical parameters.
As we show here, computer predictions can achieve a high degree of success, and
they are of practical use to guide mutational experiments as well as to explain
functional and mechanistic aspects of the interaction. Interestingly, it has been
found that typically only a few of the interacting residues contribute significantly
to the binding energy. The identification of such hot-spot residues is important
for understanding basic aspects of protein association. In addition, these residues
have received recent attention as possible targets for drug design, so several
computer methods have been developed to predict them. We will review here
existing computer approaches for the prediction of protein binding sites and hot-
spot residues, with a discussion on their applicability and limitations. © 2011 John

Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 680-698 DOI: 10.1002/wcms.45

INTRODUCTION

Proteins function through interaction networks
that are ubiquitously found in all essential cell
processes, such as cellular communication, immuno-
logical response, and gene expression control, among
others. Understanding the structure, function and
mechanism of these interaction networks at molecu-
lar level is one of the current challenges in structural
biology. In this regard, experimental techniques
such as X-ray crystallography and nuclear magnetic
resonance (NMR) can achieve the most detailed
structural knowledge of protein—protein interactions
at atomic resolution. During the last decades, a
significant number of complex structures have been
deposited in the Protein Data Bank (PDB), which
has boosted our understanding of protein—protein
association. However, in crystallography structures
it is often difficult to distinguish true biological

*Correspondence to: juanf@bsc.es

Life Sciences Department, Barcelona Supercomputing Center,
Barcelona, Spain

DOI: 10.1002/wcms.45

680 © 2011 John Wiley & Sons, Ltd.

interactions from crystal packing contacts (which
usually have no biological sense).!=> Therefore, some
computer tools have been developed based on residue
conservation,* interface size,’ or other interface
descriptors to distinguish crystal packing from obli-
gate and nonobligate interactions.® Some available
databases aim to compile true biological units, such
as Protein Quaternary Structure (PQS) (www.ebi.
ac.uk/pdbe/pqgs)” or ProtBuD,® while others are
specialized in storing and curating structural data on
protein—protein interactions: 3DCOMPLEX (http://
www.3dcomplex.org/), PiBase (http://alto.compbio.
ucsf.edu/pibase/), Protein3D (http://protein3d.ncifcrf.
gov/~tsai/), Structural Classification of Protein-
Protein Interfaces (SCOPPI) (http://www.scoppi.
org/), DOCKGROUND (http://dockground.
bioinformatics.ku.edu), or Surface Properties of
INterfaces - Protein-Protein interfaces (SPIN-PP)
(http://trantor.bioc.columbia.edu/cgi-bin/SPIN/).
The main challenge regarding the structural
comprehension of protein interactions is that the
number of available three-dimensional (3D) com-
plex structures is still very low with respect to the
total number of protein—protein interactions that
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FIGURE 1| Scheme of a typical drug discovery process. Computer prediction of protein binding sites and hot-spot residues are essential for

steps 2 and 4, respectively.

occur in living organisms. Thus, when the structure
of a given protein—protein complex is not easily avail-
able for technical reasons, the practical approach is to
characterize the interface, i.e., to identify the surface
residues of the interacting proteins that are involved
in the interaction. Some experimental approaches aim
to characterize protein interfaces using methods that
are faster than atomic-level structure determination,
such as cross-linking, site-directed mutagenesis, ala-
nine scanning, or NMR chemical shift, which in prin-
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ciple could also be amenable to high-throughput ap-
plication. However, given the difficulties and costs
of the experimental techniques, many computer tools
have been developed to complement the experimen-
tal efforts by characterizing, classifying, and predict-
ing protein interfaces.” Thus, computer prediction of
interface residues is becoming an essential tool for tar-
get characterization in the first step of a drug discov-
ery program targeting protein—protein interactions
(Figure 1). The predictions can guide mutation
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experiments, give biological and functional insights,
reduce the complexity of computer docking simu-
lations for binding mode modeling,” (Box 1) and
provide further information for drug design target-
ing specific protein interactions. In addition, further
characterization of the protein interfaces is required
to identify hot-spot residues, i.e., the largest contrib-
utors to the binding affinity. This is typically achieved
through mutational studies, but recently, different
computational approaches have been developed to
predict putative protein—protein hot spots. The identi-
fication of such hot spots is important not only from
a functional and biological point of view, but also
for drug design targeting protein—protein interactions
(Figure 1). In this article, we will review the main
computer methods that have been reported for the
prediction of protein—protein interfaces and the iden-
tification of hot-spot residues.

Dissection of Protein—Protein Binding Sites
Protein—protein interfaces are usually flat and large
in comparison to small-molecule binding sites, al-
though their residue composition and physicochemi-
cal character is quite varied. Pioneer analyses of avail-
able protein—protein complex structures attempted to
find specific features that differentiated protein bind-
ing sites from other areas of the protein surface.?>-3!
However, further studies showed that shape and com-
position of interfaces were largely dependent on the
type of interaction (Box 2). Thus, while homodimer,
obligate interfaces had clearly different physico-
chemical composition with respect to the solvent-
exposed surface, protein—protein interfaces in hete-
rocomplexes did not seem to be easily differentiated
from the rest of the surface.’>3* This seems to be in
contradiction with the fact that chemical and physi-
cal complementarity between the interacting surfaces
is essential for the formation of heterocomplexes, fre-
quently involving nonobligate and transient interac-
tions. Indeed, some studies based on continuum elec-
trostatic calculations suggested that protein—protein
interfaces are naturally designed to exploit electro-
static and hydrophobic forces in very different ways.3
A recent work>® has revisited the definition of
protein—protein interface, typically divided into core
and rim regions in many studies,>” by including a
third region called ‘support’. The results showed that
core residues contribute over two-thirds of the con-
tact surface. Interestingly, the support region compo-
sition is similar to the interior of proteins, while the
rim region composition is similar to the exposed sur-
face. The authors hypothesized that part of a protein—
protein interface (support and rim) could pre-exist in
a noninteracting protein surface, and thus evolving to
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BOX 1: PROTEIN-PROTEIN DOCKING

Protein—protein docking aims to predict the structure of a
protein—protein complex starting from the coordinates of
the unbound subunits. A number of protein—protein dock-
ing methods have been reported, with reasonable pre-
dictive success (good reviews on protein—protein dock-
ing have been recently published).’%'* The majority of
docking methods rely on the rigid-body approach, which
seems valid for cases with only small side-chain movement
upon binding. Many sampling methods perform exhaustive
search using fast Fourier transform (FFT), spherical polar
Fourier, or geometric hashing algorithm. Some of the most
well-known FFT-based docking programs are FTDock,'®
Zdock,” MolFit,'® and Global RAnge Molecular Match-
ing (GRAMM-X).'® Other successful shape-based methods
are Hex'” and PatchDock.'® Another group of rigid-body
docking methods use energy based-sampling by molec-
ular dynamics (MD), energy minimization or Monte Carlo
methodology combined with different energy-based scoring
schemes such as ICM-DISCO,'® Haddock,2® RosettaDock,?!
or ATTRACT.?" After the initial docking step, many meth-
ods rely on the scoring and refinement of the generated
docking poses. One example is pyDock,?2 which uses an
energy function composed of van der Waals (truncated to
1.0 kcal/mol to avoid interatomic clashes from the rigid-
body approach), Coulombic electrostatics with distance-
dependent dielectric constant, and atomic solvation param-
eter based desolvation energy. Another successful scoring
method is ClusPro/SmoothDock,?3:24 which uses an energy-
based minimization function, plus an additional clustering
stage. A good blind assessment of protein docking methods
can be found in Critical Assessment of PRedicted Interac-
tions (CAPRI; http://www.ebi.ac.uk/msd-srv/capri/).

a protein interface would only need a few mutations
in order to achieve the typical core composition.
Given that most of the analyses of protein bind-
ing sites are based on available X-ray data, flexibil-
ity aspects have been typically overlooked in spite
of its enormous importance. Molecular dynamics
(MD) simulations have shown the existence of an-
chor residues for molecular recognition,®® which are
more rigid than the rest of the interface and corre-
late well with conserved hot-spot residues (see the
following sections).>> Moreover, a recent system-
atic analysis of the dynamic properties of interface
residues has shown correlation with the interface
type, size, and nature of the complex.*? Allosteric ef-
fects are also important in order to understand (and
predict) protein binding sites, although many ques-
tions still remain before we are able to fully describe
their mechanisms.*! Other aspects that are usually
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BOX 2: TYPES OF PROTEIN-PROTEIN IN-
TERFACES

In the analysis of protein interaction sites and hot
spots, it is important to distinguish between differ-
ent types of protein—protein interfaces. An early work
classified protein—protein interactions into permanent
complexes (components are not structurally stable as
monomers) and nonobligatory or transient complexes
(components are stable as monomers).*” A more re-
cent study has classified protein—protein interfaces in
four different types: homo-obligomers, homocomplexes,
hetero-obligomers, and heterocomplexes.®® The meaning
of obligomers and complexes was similar to permanent
and nonobligatory, respectively.’ They also defined two
extra types of interfaces: intradomain (interactions within
the same domain) and domain—domain (interactions within
the same chain), but although they might be evolutionary
close to protein—protein interactions, they are not directly
relevant for protein association. Of course, one could argue
that domain—domain interactions are not much different
from obligomers in the sense that the separated subunits
are not stable, but the difference is that obligomers are
formed by two separated entities (even though they do not
need to be structurally stable when separated) while do-
main interactions have additional physical constraints, such
as the peptide/s linker, which brings other considerations
into the equation. Perhaps, the most reasonable choice is to
classify protein interactions according to several criteria, re-
garding (1) the similarity of the subunits (homo-oligomeric
and hetero-oligomeric complexes), (2) the thermodynamics
of the association (nonobligate and obligate complexes),
or (3) the kinetics of the interaction (transient and per-
manent complexes).*> More recent interface classifications
have been based on geometrical and evolutionary criteria
aiming to the automated high-throughput annotation of
new interfaces.”

difficult to address from analyses purely based on
crystallographic data are those related to transient
interactions,*” some of which are mediated by lin-
ear motifs,* or to hub proteins in protein interaction
networks,** which show shared binding sites for dif-
ferent interaction partners.*>-4

Computer Prediction of Protein

Binding Sites

Based on the above considerations, different strate-
gies have been developed for the specific prediction
of protein—protein binding sites (which is technically
quite different from the prediction of ligand-binding
sites).’! Table 1 shows a compilation of available web
servers for protein—protein interface prediction, but
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there are more exhaustive reviews on the subject.’ =54
From a practical point of view, we have divided the
methods into those that make their predictions based
on the sequence of the protein, and those that use the
protein structure. Within each broad category, there
is a variety of methodological approaches that we will
review in detail.

Binding Site Prediction Based on the

Protein Sequence
Very few methods for interface prediction are based
solely on sequence information. Among them, cor-
related mutations, identified from multiple sequence
alignments, have been used to detect putative protein—
protein interfaces from sequences,’’ based on the hy-
pothesis that residues involved in intermolecular con-
tacts tend to mutate simultaneously during evolution.
In a different approach, receptor-binding domains
were predicted by analyzing hydrophobicity distri-
bution on protein sequences.”® The predictions had
between 59 and 80% coverage (sensitivity), depend-
ing on the set of protein interactions used. This shows
how dependent the predictive results are on the data
set used and warns against the use of reported success
rates for comparing methods. A method using sup-
port vector machines (SVMs) for interface prediction
entirely based on the protein sequence showed similar
sensitivity with rather low positive predictive value.””
More recently, a machine learning-based
method called Interaction Sites Identified from Se-
quence (ISIS) was developed to identify interacting
residues from protein sequences only (Table 1).%°
They combined predicted structural features with evo-
lutionary information with no reference to the 3D
structure of the protein, and the strongest interface
residue predictions reached a very high positive pre-
dictive value at the expense of a very low sensitivity.
Interestingly, the fact that the method predicted only
a very few residues, but with high accuracy, suggests
that these residues might be truly important for the
binding. We will see, in next section, how these pre-
dictions are related to the so-called hot-spot residues.

Binding Site Prediction Based on the

Protein Structure

The advantage of sequence-based methods for inter-
face prediction is that they can potentially be ap-
plied to a broader set of cases. However, their pre-
dictive results are usually lower than those obtained
from methods based on structural information. Not
surprisingly, there are many more reported prediction
methods based on protein structure. We will classify
all these methods according to the methodology used.

© 2011 John Wiley & Sons, Ltd. 683
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Empirical Scoring Function

Can protein—protein interfaces be predicted from the
structures of their components based on any specific
characteristic of protein—protein interfaces? We saw
in previous sections that it has been difficult to ex-
tract common physicochemical or structural proper-
ties from protein—protein complexes in order to find
simple patterns on protein surfaces that can iden-
tify protein binding sites. However, some specific fea-
tures can be observed in certain types of interactions.
Many groups have developed knowledge-based func-
tions that can be used for binding site predictions,
such as interface propensities derived from complex
structures, or based on conservation scores, etc. In
this line, an early method based on residue interface
propensities and surface patch physicochemical prop-
erties (solvation potential, hydrophobicity, planarity,
protrusion, and accessible surface area) was bench-
marked on a set of 59 complexes, which included ho-
modimers, heterocomplexes, and antibody-antigen
complexes. They showed some correlation with the
real interfaces.?’

Another method using interface residue propen-
sity values derived from datasets of structures is Inter-
ProSurf (Table 1), based on a propensity scale and sol-
vent accessibility of residues plus further clustering.>”
SiteEngines®® (Table 1) used hierarchical scoring
schemes to combine different descriptors, such as
low-resolution surface representation of physico-
chemical properties and surface shape. The Pro-
tein intErface Recognition (PIER) method (Table 1)
has been recently proposed for the identification of
interface residues,® based on the statistical proper-
ties of each surface atom type and subsequent clus-
tering in patches generated as in the optimal dock-
ing area (ODA) method.” Predictions were actually
very similar to those of the ODA method (more de-
tails in next section). Another recent work suggested
the possibility of using intramolecular pairwise con-
tacts to improve the prediction of protein—protein
interfaces with respect to using the individual inter-
face propensities.® The research found some pairwise
preferences, but when the values were corrected to
remove the effect of the individual propensities, the
significance was very marginal to be of practical use.

Sequence Conservation

Many methods include sequence conservation or evo-
lutionary information in addition to other descriptors.
For instance, a 3D cluster analysis of residue conser-
vation scores based on the alignment of homologous
sequences was shown to identify protein—protein in-
terfaces and functional residues, as benchmarked on
a set of 35 protein families.! The Evolutionary Trace
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(ET) method (Table 1) identified functional residues,
potentially involved in protein—protein interactions,
based on analysis of sequence alignments, mapping
of conserved/unconserved residues in the 3D struc-
ture, and clustering.®>-32 ConSurf (Table 1) is an-
other interface prediction method based on sequence
conservation.®™%3 The procedure analyzed multiple
sequence alignments in search of conserved functional
regions that were then mapped on the 3D structure of
the interacting proteins. A recent method, based also
on sequence alignment data, further exploited the in-
formation of spatially conserved residues of similar
structures.®* In this line, the recently reported Joint
Evolutionary Trees (JET) method (Table 1) based on
the ET method focused on improving the sequence
alignments and the functional and structural detection
of conserved residues.®3 Similarly, the TreeDet server
(Table 1) predicts functional sites based on conserva-
tion and evolutionary information,’® and the related
‘specificity determining positions’ (SPDs) can be ap-
plied to identify protein—protein binding sites.®> The
input can be either a sequence or a structure, but it
needs sufficient number of homologues to generate
reliable multiple alignments.

The Promate server (Table 1) uses a combina-
tion of conservation, physical, and empirical parame-
ters to predict protein—protein interfaces with a Naive
Bayesian approach.’” The Crescendo method,%® ini-
tially devised to detect functional sites based on mul-
tiple sequence alignments and environment-specific
substitution tables (ESSTs), was adapted for pro-
tein interface prediction by spatial clustering of
the predicted residues and further filter by Z-score
and Accessible Surface Area (ASA).%” The predic-
tions showed high positive predictive value, and the
predicted residues were used as distance restraints
to rescore docking results within the pyDockRST
method, with excellent results on the tested cases.
Protein INterface residUe Prediction (PINUP) (Ta-
ble 1) used a combination of parameters based on
residue energy, interface propensity, and conserva-
tion scores optimized on a dataset of 57 proteins, in
which the method yielded 44.5% positive predictive
value and 42.2% sensitivity.’® However, these num-
bers dropped to 29.4% positive predicted value (PPV)
and 30.5% sensitivity on an independent test set of 68
proteins, which again shows very clearly how the ac-
curacy numbers reported by any given method should
be taken with caution, since they largely depend on
the test set used, the conditions of the experiment, and
the definition of a hit. PRotein-protein Interaction
prediction by Structural Matching (PRISM) server
(Table 1) is based on geometric complementarity and
residue conservation. The server can also be applied to

© 2011 John Wiley & Sons, Ltd. 685
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the challenging task of identifying whether two given
proteins interact or not.®*:8% The WHat Information
does Surface Conservation Yield? (WHISCY) server
(Table 1) uses surface conservation and structural
information to predict interface residues achieving
more than three times higher accuracy than random
predictions.®* In Ref 64, the authors combined their
predictions with those from ProMate server, with the
goal of defining distance restraints to guide docking
simulations.

Machine Learning Techniques

The method cons-Protein-Protein Interaction Site Pre-
diction (PPISP) (Table 1) is based on a neural net-
work that uses sequence profiles and solvent expo-
sure of neighboring residues.®®-®* The method was
trained on 615 pairs of nonhomologous protein—
protein complexes (homodimers and heterodimers),
and was tested on different sets of bound and un-
bound proteins. In the case of unbound proteins,
70% of the predicted residues were correctly located
at the protein—protein interfaces. Patch Finder Plus
(Table 1) is a neural network method that combines
residue conservation (arginine, positive, and aromatic
residues), frequency and composition (number of ly-
sine and polar residues), surface concavity, accessible
area and H-bond potential, with the goal of find-
ing large electrostatic patches. The method was de-
veloped to find DNA-binding regions, but in some
cases these regions can also overlap to protein bind-
ing sites.”! Another neural network method based on
evolutionary information and chemicophysical sur-
face properties has been reported with a high predic-
tive coverage.’’

The web server Protein-Protein Interface PRE-
Diction (PPI-PRED) (Table 1) uses SVM method to
evaluate different parameters such as surface shape,
solvent accessible surface area, conservation, electro-
static potential, hydrophobicity, and interface residue
propensity. Their reported success rates using leave-
one-out cross-validation are difficult to compare to
other methods because of the nonstandard definition
of a correct prediction (i.e., a patch over 50% positive
predictive value and 20% sensitivity was ranked in the
top three) and the used test set, composed of transient
and obligate interfaces.®” The method solvent acces-
sibility based Protein-Protein Interface iDEntification
and Recognition (SPPIDER) (Table 1) uses machine
learning approaches, such as SVM and Neural Net-
works to evaluate relative solvent accessibility predic-
tions as a fingerprint for interaction sites together with
a number of parameters (up to 19 features in the final
predictor).”” They showed that this method improved
the predictions obtained with other parameters such

686 © 2011 John Wiley & Sons, Ltd.
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as evolutionary conservation, physicochemical char-
acter, and structural features. Another SVM method,
based on evolutionary conservation signals and lo-
cal surface properties and trained on a nonredundant
dataset of 1494 protein—protein interfaces, showed
39% positive predictive value and 57% sensitivity at
residue-level predictions in cross-validation tests on
the bound conformations of a total of 632 dimers
(from which 518 were homodimers).”°

Meta-Servers

A meta-server called meta-PPISP’2 (Table 1) com-
bined the neural network method cons-PPISP®® with
other different web servers such as ProMate’’ and
PINUP.’® The different scores were combined with
weighting factors obtained by a linear regression
method trained on 35 nonredundant proteins. The
cross-validation predictive results improved over
those of the individual servers (PPV increased by
4.8 to 18.2 percentage points). Another meta-server
is PI’PE’® (Table 1), which provides a pipeline to
use cons-PPISP®® and other servers from the same
authors, DNA-Interaction Site Preiction from a List
of Adjacent Residues (DISPLAR) and Weighted En-
semble Solvent Accessibility (WESA).”! The latter is,
in turn, a meta-predictor that uses an ensemble of
five methods for solvent accessibility predictions from
protein sequences. However, no data is available on
whether the predictive results improved the individ-
ual servers or not. In general, meta-servers can be a
convenient way of accessing several different servers,
but caution is advised when interpreting the results to
evaluate the contribution of each individual method.

Energy-Based Methods

Other methods for predicting protein binding sites
have been based on energy considerations. For in-
stance, the Solvation potential, Hydrophobicity, Ac-
cessible surface area, Residue interface propensity,
Planarity and Protrusion (SHARP?) server’* (Table 1)
combines solvation potential and hydrophobicity
calculations with other geometric descriptors and
propensity scores.

The ODA (Table 1) is based on the hypothe-
sis that desolvation must play a central role during
protein—protein binding. It is based on a computer
algorithm that identifies continuous surface patches
of optimal docking desolvation energy (Figure 2).
The size of the patches is not fixed and it is calcu-
lated through an iterative procedure until finding the
circular surface patch with the most favorable desol-
vation energy from each starting point (these start-
ing points can be defined either from the expanded
protein solvent-accessible surface, or from the center

Volume 1, September/October 2011
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FIGURE 2| Scheme of the optimal docking area (ODA) method for interface prediction. (a) Starting points are defined in the center of each
residue side-chain; (b) representation of starting points around a protein; (c) for each point, surface patches of different size are defined and their
desolvation energy calculated until finding the best value. Each starting point gets the optimal desolvation (ODA) value of the optimal patch

generated from it.

of coordinates of each residue side-chain; Figure 2).
This method was reportedly benchmarked on 66 un-
bound nonredundant protein structures involved in
nonobligate protein—protein heterocomplexes, where
the ODA-based predicted regions corresponded with
real interfaces in 80% of the cases (Figure 3).”°
The limitation is that this method can only apply
to cases where desolvation effect is important, and
thus, in approximately half of the cases, in which
electrostatics role is more evident, there is no pre-
dictive signal. The method has been applied to nu-
merous cases of biological and therapeutic interest,
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with excellent predictive results (Figure 4).”>~ Re-
cently, this method has been implemented in the
SEQMOL package (http://biochemlabsolutions.com/
FASTAandPDB.html).

The above described desolvation energy descrip-
tor has been also included as part of a method to
predict protein interaction sites based on clefts in
protein surfaces using Q-SiteFinder.?® This desolva-
tion descriptor was compared to several others and
achieved excellent predictive results in all types of
complexes, being the top predictor in antibody, anti-
gens, and the ‘other’ type of complexes. Interestingly,
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FIGURE 3| Examples of optimal docking area binding site
predictions on a variety of unbound proteins: (a) bovine cyclin A3 (PDB
1VIN); (b) antibody Fab D44.1 (PDB 1MLB); (c) acetylcholinesterase
(PDB 1ACL); (d) barstar (PDB 1A19). The position of the partner
molecule in the complex structure is shown in green ribbon, for
comparison purposes. Figure prepared with ICM software
(www.molsoft.com).

the cleft-based approach used in that work seemed
even more general than the original ODA circular
patches.

Energy-based docking simulations have also
been used to identify protein interfaces. Although the
challenging goal of docking is predicting the bind-
ing mode of two interacting proteins, it has been
observed that the docking solutions sample more fre-
quently the interface regions even when using a low-
resolution protein representation.”’ This is consis-
tent with the fact that conformational changes upon
protein—protein association are often limited to lo-
cal movements, which suggests that in many cases
protein—protein association can be represented by
rigid-body fit.3*98-190 The inclusion of energy-based
descriptors to sample and score rigid-body docking
poses improved the docking energy landscapes and
the tendency towards the real interfaces.”® This led
to the development of a residue-based normalized in-
terface propensity (NIP) parameter (Table 1), com-
puted from the ensemble of the 100 lowest-energy
docking solutions, which was used to identify sur-
face residues potentially involved in protein—protein
interactions (Figure 5).”® A NIP cutoff of 0.4 was re-
ported to predict known protein—protein interfaces on
unbound proteins with PPV of over 80%, although

688 © 2011 John Wiley & Sons, Ltd.
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Mammalian M14A MCPs @ M14B MCPs

Insect M14A MCPs

Bacterial
M14A MCPs

FIGURE 4| An example of the application of the optimal docking
area prediction method to a case of biological interest. Interface
predictions (in red) on different carboxypeptidases show that their
surfaces contribute differently (in shape and intensity) to the
interaction with the corresponding partners (inhibitors and/or
N-terminal pro domains), according to each sub-family. The interest
here is to show that interface predictions can help in protein
classification. In green is shown the contour of the real interface (if
known) for comparison purposes. Positive predictive values of the
predictions are 60, 80, 87, 90, and 90%, from left to right and top to
bottom, respectively.®*

with quite low sensitivity.”® The method was able to
identify only a few residues of the interface, but its
high accuracy suggested that these residues might be
the important ones for the interaction. We will see
in next sections how these residues corresponded to
actual hot-spot residues.

Dissection of Hot-Spot Residues at

Protein Interfaces

Protein—protein interfaces are formed by a high va-
riety of residues, many of which are important for
specificity or for dynamic considerations. But it has
been reported that most of the binding free energy
is usually contributed by a few number of residues,
also called ‘hot-spots’. Pioneer computational stud-
ies on N9 neuraminidase complexes estimated the
contribution of different interface residues to com-
plex formation, and certain residues were experimen-
tally confirmed to cause a marked reduction in the
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FIGURE 5| Scheme of the normalized interface propensity method
for prediction of interface and hot-spot residues. The rigid-body
docking poses are sorted by binding energy and mapped onto the
surface of the interacting proteins, by computing the average relative
buried surface per residue. The residues more often involved in the
docking interfaces are shown in red and indicate hot-spot residues.

experimental binding energy when mutated.!01-103
The term ‘hot-spot” was later used to describe the
key residues in the complex formed by the human
growth hormone and its receptor.'% In Ref 104, the
authors mutated all interface residues to alanine in
order to measure the contribution of each specific
side-chain to the binding free energy. They identi-
fied two tryptophan residues that were responsible
for the majority of the total binding energy (AAG
upon mutation > 4.5 kcal.mol™!). Since then, hot-
spot residues have been thoroughly studied, and they
are usually defined as the residues contributing in
more than 1-2 kcal/mol to the free energy of bind-
ing. The hot-spot residues are highly conserved and
typically surrounded by other moderately conserved
residues, forming highly cooperative interactions.'®
Structurally, they are generally located around the
center of the interface and they are protected from
bulk solvent by energetically less important residues
forming a hydrophobic O-ring. Tryptophan, arginine,
and tyrosine are the ones most frequently found as
hot-spot residues, whereas leucine, serine, threonine,
and valine are the least frequent.'%¢1%7 Hot spots have
been recently shown to correlate with relevant nodes
of residue networks in protein interfaces.!?® Interest-
ingly, in hub proteins at protein—protein networks,
different hot regions can be used to bind to differ-
ent partners.'%” Regarding flexibility, MD simulations
have shown that hot spots are quite rigid as compared
to the surrounding interface residues.3%-3

These hot-spot residues are generating a great
interest because they are expected to be suitable
targets for the challenging task of disrupting protein—
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protein interactions with small molecules.'!?- 111

But identification of hot spots for a given interaction
is not straightforward. Experimental measurement
of the energetic contribution of each residue can
be done by alanine scanning mutagenesis combined
with a variety of biophysical methods.!"'=11* There
are databases of experimentally calculated bind-
ing energies of hot-spot residues, such as ASEdb
(http://nic.ucsf.edu/asedb/),'%  Binding Interface
Database (BID) (http://tsailab/.tamu.eduBID/),!"> or
HotSprint (http://prism.ccbb.ku.edu.tr/hotsprint/).!16
However, the experimental characterization of pro-
tein interfaces in search of hot spots is still costly and
technically cumbersome, so several computational
methods have been developed for the prediction of
hot spots in protein—protein interactions.

Prediction of Hot Spots

Different scoring schemes for computational hot-
spot prediction have been reported, based on residue
conservation, hydrogen bonding, or complete energy
binding (Table 2). Other approaches have tried a com-
bination of all these features with machine learning
techniques. Although a few methods can predict hot
spots based only on protein sequences, most of the
available methods need some structural information
as input.

Hot-Spot Prediction Based on the

Protein Sequence

Very few methods have been reported to make hot-
spot predictions based only on the protein sequences.
A neural network method called ISIS (Table 2), ini-
tially designed to predict interface residues from pro-
tein sequences,” was also applied to predict hot
spots on a dataset of 296 mutations from 30 dif-
ferent complexes.'?* The remarkable reported high
predictive rates obtained only from the protein se-
quence can be explained because of the restricted defi-
nition of positive and negative predictions they used in
their benchmark. They considered hot spots as those
residues with AAG upon mutation >2.5 kcal/mol,
whereas non-hot-spot residues were only those with
AAG = 0 kcal/mol. Therefore, they were leaving out
of the test all the mutants with AAG < 0 (even though
these residues should be considered as non-hot spots)
or 0 < AAG < 2.5, which can be in fact of high
interest in a realistic situation and perhaps the most
difficult residues to be classified as hot spots. Most of
the other methods establish a single cutoff to classify
the predictions as hot spot or non-hot spot, and thus
the success rates reported by the ISIS method cannot
be compared to them.

© 2011 John Wiley & Sons, Ltd. 689
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TABLE 2| Available Servers for Prediction of Hot-spots
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http://cubic.bioc.columbia.edu/services/isis/

89%

15%

Predicted structural features,

Neural network

Sequence

ISIS55

evolutionary information

Alanine scanning
Alanine scanning

http:/ffoldx.crg.es/

61-73%'
60-71%?
53%

45-72%'

Energy based

Complex structure

FOLDEF''7

http://robetta.org/submit.jsp
http://kfc.mitchell-lab.org

28-69%2

48%

Energy based

Complex structure

ROBETTA!'8

Physical-biochemical features

Machine learning algorithm

Complex structure

K-FADE'9/K-CON/

ROBETTA

MAPPIS!20

http://bioinfo3d.cs.tau.ac.il/MAPPIS

63%

66%

Multiple alignments, 3D clustering
Accessibility, knowledge-based

Evolutionary conservation

Empirical model

Complex structure

http://prism.ccbb.ku.edu.tr/hotpoint

70%

59%

Complex structure

HotPoint!2!

potentials
Docking simulations

http://mmb.pch.ub.es/PyDock

68-75%

42-43%

Energy based

Unbound protein

pyDockNIP122

structure

© 2011 John Wiley & Sons, Ltd.

! Calculated based on data from several studies.'!7. 122,124

2Calculated based on data from several studies,''8-119.120.124
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Hot-Spot Prediction Based on the

Complex Structure

Most of the available hot-spot prediction methods
are based on the 3D structure of the complex. We
can roughly classify such methods into those that are
based on an empirical function, very often using con-
servation data, and those based on energy considera-
tions.

Empirical Function
Different studies have tried to find characteristic
structural features in the known hot spots. The cur-
rent view is that protein—protein interfaces are com-
posed of a variety of residues involved in the speci-
ficity of the interaction, with a group of quite
conserved hot-spot residues acting as binding site
anchors that are required to stabilize the complex.
One basic observation is that the number of hot
spots increases with the size of the interface.!% Struc-
turally, hot spots are surrounded by moderately con-
served and energetically less important residues form-
ing a hydrophobic O-ring responsible for bulk solvent
exclusion.!% 119 They appear to be clustered in tightly
packed regions in the center of the interface.'® How-
ever, it has not been found any single attribute as
shape, charge, or hydrophobicity that can unequivo-
cally define a hot spot by itself, 3447111124

Given the energetic importance of hot-spot
residues, it is expected that they will be conserved
at the interfaces along the members of a given
family.'%7-125 This can be used to computation-
ally identify hot spots, as in the recently reported
method Multiple Alignment of Protein-Protein Inter-
faceS (MAPPIS) (Table 2), which aims to predict hot
spots by detecting spatially conserved patterns ap-
plying multiple alignment of physicochemical inter-
actions and binding properties in the 3D space.'?’
MAPPIS success rates on predicting hot spots have
been analyzed on a dataset of 440 mutants from 10
different complexes,'?? yielding quite good predictive
rates (for further information, PPV was recalculated
in a recent study).'*® However, this method needs a
sufficient number of high-resolution complex struc-
tures of functionally similar proteins in order to build
reliable structural alignments. A recently reported
web server, HotPoint,'?! predicts hot spots using an
empirical model, based on relative accessibility in the
complex state and knowledge-based pair potentials.

Energy Based

Several methods for hot-spot prediction are based
on the computational alanine scanning of a
protein—protein complex. This approach consists in
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computing the variation of binding affinity (AAG)
upon in silico modification of a given residue to ala-
nine. One of such methods uses the energy-based scor-
ing function in ROBETTA (Table 2) to predict hot
spots, with reported high success (PPV was recalcu-
lated in a recent study)'?® on a data set of 380 mu-
tants from 19 different complexes.!'$12” However,
this method gave slightly worse success rates on dif-
ferent data sets,''”-123 which again shows the diffi-
culties of comparing methods when using different
test sets. Another method, FOLD-X Energy Func-
tion (FOLDEF) (Table 2) with the FOLD-X energy
function, has also been used to provide a fast and
quantitative evaluation of the interactions involved
in a protein—protein complex.!!” On a set of 40 single
mutations to alanine from three complexes, this ap-
proach yielded 61% PPV and 72% sensitivity. How-
ever, on larger benchmark sets!??:123 the success rates
were different (slightly higher PPV but significantly
lower sensitivity).

Using a different energy-based approach, two
different machine learning algorithms called K-FADE
and K-CON (Table 2) have been recently reported to
predict hot-spot residues based on the use of phys-
ical/biochemical features.''” A combination of both
models gave better results than the individual ones,
and even better when they were integrated with RO-
BETTA. More sophisticated energy analyses have
been reported, but they have not been benchmarked
on large datasets of cases. For instance, a fully atom-
istic method based on MD with generalized Born
model in a continuum medium (MM-PBSA) obtained
high PPV for the prediction of hot-spot residues (de-
fined by AAG > 2 kcal/mol) but only on a reduced
set composed of three complexes.'?® Another inter-
esting study estimated the effect of point mutations in
the binding free energies of protease—inhibitor inter-
actions using MD simulations combined with the lin-
ear interaction energy (LIE) approach.'® This study
underlined the importance of considering the preorga-
nization of the binding surface when modeling point
mutations.

Hot-Spot Prediction Based on the Unbound

Protein Structure

All of the above described methods can give reli-
able predictions of hot spots on a given protein—
protein complex. However, a major limitation is that
they need the 3D structure of the complex or that
of a closely homologue. Unfortunately, in most of
the protein—protein interactions the 3D structure of
the complex is not yet available, and thus the above
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described methods are of limited applicability. Very
few hot-spot prediction methods have been reported
based only on the structure of the unbound proteins.

An interface prediction method based on com-
putational protein—protein docking simulations, and
therefore suitable for cases in which the structure
of the complex is not available, has been recently
applied to hot-spot prediction.'?> The pyDockNIP
method (Table 2) was a variation of the original
algorithm for interface prediction.”® In the original
NIP calculations, a longer docking approach was
used, based on ICM pseudo-Brownian rigid-body
docking search with a complete energy function, in-
cluding van der Waals, hydrogen bonding, electrostat-
ics and desolvation. This rather sophisticated dock-
ing and scoring scheme was replaced by a simpler
one, which achieved similar docking results in previ-
ous tests, based on faster FFT-based docking search
(FTDock'* and ZDOCK") and a simple energy func-
tion implemented in pyDock.?> These new NIP from
the FFT-based rigid-body docking and pyDock scor-
ing predicted known hot-spot residues on a bench-
mark of 586 mutations from 21 complexes with 68%
PPV and 43 % sensitivity (Figure 6). The method was
also applied to homology-based models of the inter-
acting proteins, with similar predictive rates.'?? This
method was the first reported systematic application
of protein—protein docking calculations to the identi-
fication of hot-spot residues. This kind of approach
can be especially helpful in drug design projects tar-
geting protein—protein interactions in cases with no
structural information about the complex. The NIP
method is a description of the distribution of docking
poses around certain residues, based on the percent-
age of low-energy docking poses in which a given
surface residue is involved in the docking interface.
Thus, another interesting aspect of the NIP values is
that they can be also seen as the residue binding free
energies estimated from the Boltzmann population of
the two states in which a given residue can be found
after the docking simulations: either exposed or in-
volved in the docking interface. A similar approach,
but based on the distribution of MD conformations of
organic solvents around the protein, has also shown
hot-spot detection on selected test cases.'3°

Mechanistic Considerations and
Practical Applications

Mechanistic Considerations
It is interesting to find that two independent and quite
different approaches for hot-spot predictions, ISIS'?*

© 2011 John Wiley & Sons, Ltd. 691
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FIGURE 6 | Examples of hot-spot predictions by pyDockNIP
method (in red predicted residues, left panel). (a) SEC3 super antigen
(hot spots for interaction with T-Cell B-chain; complex PDB 1JCK); (b)
D1.3 1gG1 (hot spots for interaction with lysozyme; complex PDB
1VFB); (c) IL-4 receptor «-chain (hot-spots for interaction with IL-4;
complex PDB 11AR). In the right panel, the experimentally known hot
spots (in red) and the non-hot spots (in blue) are shown. Residues in
white have not been tested experimentally.

and pyDockNIP,'?? were based on methods previ-
ously devised for interface prediction. Both showed
high positive predictive value and low sensitivity in
their interface predictions, which is compatible with
the hypothesis that they were identifying only the few
residues that were truly important for the interaction
(i.e., the hot spots). The rationale is that any descrip-
tor that may be useful for predicting the tendency of
a residue to be at interface might be also useful to
detect hot-spot residues, since these should have in-
creased signal for that descriptor. On the other side,
these methods based on interface prediction descrip-
tors will necessarily miss those hot-spot residues that
form specific interactions, since these are not included
in the predictor. This logical chain of thoughts may
lead to the conclusion that hot-spot prediction meth-
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ods that are based on the structure of the complex
will be more accurate than those based on sequence
alone or on the unbound structures. However, the
comparison of their predictive success rates (Table 2)
does not support this conclusion. In a seemingly con-
tradiction, methods based on the unbound structures
show similar success rates to those based on the com-
plex structure. This suggests that calculations on a
single complex configuration are not sufficiently accu-
rate for a correct description of specific interactions,
mostly because dynamic and plasticity of protein in-
terfaces should play a relevant role. Indeed, a detailed
study about the effect of point mutations on protein—
protein interaction energies achieved good correla-
tion between computational and experimental ener-
gies only after inclusion of MD for the consideration
of the preorganization energy.'?’

Comparison of Predictive Methods

One of the difficulties when comparing published
methods is that every laboratory may use different
evaluation measures and statistical parameters to as-
sess the success rates of their predictions. Perhaps
the most useful measure for the experimentalists that
want to test the predictions is the statistical param-
eter called positive predictive value (Eq. 1), which
indicates the reliability of the predictions and the ex-
pected outcome of mutation experiments. However,
one could also be interested in finding as many inter-
face residues or hot spots as possible, in which case the
best measure to assess the outcome of the predictions
would be the statistical parameter called sensitivity
(Eq. 2). For the sake of clarity, here are the defini-
tions used in the statistical field for these commonly
used measures to assess the predictive success rates:

TP
Positive predictive value = TP—+FPlOO’ (1)
TP
SR 1 2
Sensitivity TP+ FN 00, (2)

where TP is the number of true positives (i.e., pre-
dicted residues that are correctly located at interfaces
or hot spots), FP is the number of false positives (i.e.,
predicted residues that are not interface or hot-spot
residues), and FN the number of false negatives (i.e.,
interface or hot-spot residues that have not been pre-
dicted). However, the absence of a common accepted
standard for these definitions makes the comparison
problem even more difficult. As a note of caution,
positive predictive values can also be called precision
in some studies (or even accuracy or specificity, whose
statistical definition is different from that in other
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fields). Similarly, sensitivity is also called coverage or
recall in different studies.

An additional problem for comparing methods
is the different test sets used for benchmarking. An
ideal comparative study of different methods would
require performing calculations in the same condi-
tions and on the same data set. Unfortunately, there
are not many benchmark studies of this type. A recent
critical assessment of different methods for predic-
tion of protein binding sites has been published.>3: 13!
Regarding hot spots, there is a recent comparative
analysis of predictive methods, which included the
recalculation of their success rates considering the
same data sets whenever was possible.'?® In any case,
the field would largely benefit from a world-wide
community assessment in the spirit of Critical As-
sessment of protein Structure Predition (CASP)'3?
or Critical Assessment of PRedicted Interactions
(CAPRI).'33-13% Actually, the previously reported use
of docking results to predict binding interfaces,”®
has also suggested the possibility of further assess-
ing the docking submissions in CAPRI for interface
prediction.’® The necessity of objective benchmark-
ing and comparative assessment is even more evi-
dent in the hot-spot prediction field, given the lim-
ited availability of experimental data, which hampers
correct training of the developed methods. In addi-
tion, these methods are currently tested only on the
very few residues that have been experimentally de-
scribed. Thus, the majority of predictions for a given
benchmark case remain untested and it is impossible
to know the true PPV and sensitivity values for all
predictions. In comparison, in the case of interface
prediction there are usually available data for all the
residues in a given benchmark complex, which makes
it possible to test all the predictions. It is true that
there could be interface residues yet to know (e.g.,
multiple interfaces),>® but this would only make ac-
tual PPV values higher than the obtained ones.

Use of Predicted Hot Spots for

Drug Discovery

The prediction of hot-post residues for protein—
protein binding opens interesting applications in drug
discovery. The design of small molecules capable of
inhibiting or modulating protein—protein interfaces is
a long-awaited goal of the pharmaceutical field. How-
ever, the main difficulty for using protein—protein in-
terfaces with therapeutic purposes is that they are
quite large as compared to small-molecule binding
sites, and in addition, they lack clear cavities that
might serve as targets for drug design.3%-*” Of course,
one can always try to apply the same techniques that
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are commonly used to determine the ‘druggability’
of a standard surface, by analyzing the whole sur-
face in search of possible binding pockets or cavities
on the interacting surfaces so that classical rational
drug design can be applied.'*® Indeed, the protein—
protein interfaces that have already been targeted
with drugs typically contain a sufficiently deep sur-
face pocket suitable for small molecule binding.!3”
Thus, experimental and computational prediction of
binding pockets on the surface of proteins has been
successfully used in rational drug design.!38143 How-
ever, the flatness, large size, and lack of clear pock-
ets of most protein—protein interfaces makes it much
more efficient to focus the druggability analysis on
the existence of possible hot spots, where the com-
puter methods can be helpful. Indeed, a specific in-
teraction may be disrupted with small molecules by
targeting one or several of the hot-spot residues found
in protein—protein interfaces,'°®- 11 and actually some
of these small molecules targeting hot spots to disrupt
protein—protein interactions are currently in clinical
trials.!12

CONCLUSION

Protein—protein interfaces are usually large and
formed by a variety of residues, which is needed in or-
der to achieve high affinity and specificity in protein—
protein recognition. The physicochemical features of
protein interfaces strongly depend on the type of as-
sociation, ranging from obligate complexes in which
the separated components are not stable, to transient
interactions in which the lifetime of the complex is
extraordinarily small. Based on observed structural
and physicochemical patterns, conservation, and en-
ergy considerations, a number of computer methods
have been reported for the prediction of protein bind-
ing sites, which we have reviewed here. Most of the
methods show quite good predictive success rates,
so interface prediction is becoming a common tool
to help characterizing a given protein—protein inter-
action. However, important challenges remain, such
as the impossibility of identifying the relevant in-
terface for each partner in cases of shared binding
sites or multiple interfaces, or the lack of truly neg-
ative data in benchmark tests (some authors discuss
about whether there is really any residue that is not
involved in any interaction). Future efforts should fo-
cus on including flexibility and allosteric considera-
tions in the predictions, as well as to improve affinity
and specificity predictions when dealing with multiple
interfaces.
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In spite of the variety of protein interfaces, it has
been observed that most of the binding affinity usu-
ally arises from only a few residues, so called hot
spots, which are important from a functional and
practical point of view and can be used as starting
points for drug discovery targeting protein—protein
interactions. We report here a survey of methods that
have been developed to predict such hot spots. The
majority of them need the structure of the protein—
protein complex, although a few of the methods are
able to identify hot spots on the structures of the
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