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Abstract: Structure Based Drug Design (SBDD) is a computational approach to lead discovery that uses the three-
dimensional structure of a protein to fit drug-like molecules into a ligand binding site to modulate function. Identifying the
location of the binding site is therefore a vital first step in this process, restricting the search space for SBDD or virtual
screening studies. The detection and characterisation of functional sites on proteins has increasingly become an area of
interest. Structural genomics projects are increasingly yielding protein structures with unknown functions and binding
sites. Binding site prediction was pioneered by pocket detection, since the binding site is often found in the largest pocket.
More recent methods involve phylogenetic analysis, identifying structural similarity with proteins of known function and
identifying regions on the protein surface with a potential for high binding affinity. Binding site prediction has been used
in several SBDD projects and has been incorporated into several docking tools. We discuss different methods of ligand
binding site prediction, their strengths and weaknesses, and how they have been used in SBDD.

INTRODUCTION

Drug design is a time consuming and expensive process.
The first stages of this process are lead discovery and lead
optimisation. Traditionally, lead compounds have been dis-
covered serendipitously, by chemically modifying and im-
proving existing drugs (the so-called “me-too” approach) or
by isolating the active ingredients in herbal remedies. More
recently, pharmaceutical companies have focussed on high-
throughput screening (HTS). This involves screening a large
chemical library against a protein target. There are around 3
million chemicals publicly available for purchase to be used
in HTS, and many more in proprietary commercial data-
bases. However, large scale HTS is expensive and it is bene-
ficial to restrict the size of a chemical library to compounds
that are most likely to be successful. Screening of a virtual
library is one way in which potentially successful com-
pounds can be identified. HTS and virtual screening are lim-
ited by the size of the library they use. De novo drug design
attempts to overcome this limitation by increasing the explo-
ration of chemical search space. Both virtual screening and
de novo  drug design require a three-dimensional representa-
tion of the protein target and are therefore referred to as
“structure-based” drug design (SBDD) methods. Structure-
based drug design has already yielded several drugs cur-
rently on the market. These include the HIV protease in-
hibitors Viracept [1] and Agenerase [2].

There are two prerequisites for SBDD. Firstly, a three-
dimensional representation of the protein target must be
available. Preferably, this structure should be derived from
X-ray crystallography or NMR. Alternatively, a comparative
(homology) model of the protein structure may be created if
there is sufficient sequence similarity between the target and
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a protein of known structure. The second prerequisite is
knowledge of the location of the ligand binding site. Com-
putational methods for the detection and characterisation of
functional sites on proteins have increasingly become an area
of interest [3]. Binding sites can be identified by co-
crystallisation of a protein with a ligand, by identifying
structural or sequence similarity with a known binding site or
by using a binding site prediction tool.

Several types of algorithms have been developed to pre-
dict ligand binding sites. Some analyse the protein surface
for pockets. Many studies have suggested that the binding
site is usually in the largest pocket [4-7]. Another type of
algorithm analyses the binding energies of probes placed on
a grid around the protein. Probe clustering [8, 9] and energy
contour analysis [10] can be used to predict ligand binding
sites. Alternatively, more complex simulation methods can
also be used to predict binding sites e.g. Bhinge et al. [11]
used molecular dynamics simulations to identify ligand
binding sites. Elcock [12] used the assertion that functionally
important residues are often in electrostatically unfavourable
positions.

A series of functional site comparison tools also exist to
identify binding sites, and have recently been reviewed by
Jones and Thornton [13]. These tools can be used to assign
function to newly resolved protein structures with unknown
function. Such tools include 3D templates [14, 15], graph
theory [16, 17], ‘fuzzy pattern matching’ [18] and evolution-
ary trace methods [19]. Such tools are not normally used for
binding site prediction in SBDD studies. They are more of-
ten used to allocate function to newly resolved protein
structures from structural genomics projects. Other ap-
proaches include the expectation that amino acids within a
binding site mutate simultaneously during evolution (corre-
lated mutations), which has been applied to protein-protein
binding site prediction [20]. It has also been observed that
brackets of proline residues are often found in protein-
protein binding sites [21], although the same has not been
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noted for protein-ligand binding sites. It should be noted that
the prediction of protein-protein binding sites (see Szilagyi et
al. [22] for a recent review) usually requires a different com-
putational approach to protein-ligand binding site prediction
and is beyond the scope of this review.

There are many problems involved in predicting ligand
binding sites. One major problem is induced fit. The binding
site can change shape significantly upon binding a ligand.
Another problem is where a ligand binding site occurs at an
inter-subunit interface. Some algorithms have only been
tested on single subunits, and some have been shown to per-
form less well on complexes. A third problem is the sheer
variety of ligands that exist, and the corresponding variety of
binding sites. It is difficult to design an algorithm that ac-
counts for all conformationally and physicochemically dif-
ferent ligand binding sites. There remains the problem of
how to validate a binding site prediction tool. Often a suc-
cessful prediction is defined as covering a certain number of
ligand atoms. However, if the predicted sites are very big
(for example, covering the whole protein) then the prediction
can be still counted as a success even though it is not very
precise. In general, SBDD requires a precise definition of the
ligand binding site to restrict the search space to relevant
areas of the protein, and reduce false-positive results. In this
review, we explore some of the different methods used to
predict ligand binding sites on proteins as a first step in lo-
cating sites for the SBDD process. Pocket-detection, both
geometry and energy-based methods are of principal impor-
tance in defining the binding site in SBDD, we therefore
concentrate on describing these methods. However, increas-
ingly functional site prediction and “blind docking” methods
will play a role in SBDD, therefore, we have covered albeit
more briefly recent advances and applications in these areas.

POCKET DETECTION: GEOMETRY-BASED METH-
ODS

Protein pocket detection is a widely used technique to
identify potential ligand binding sites. It uses geometric con-
siderations to define pockets and studies have shown that the
binding site is commonly found in the largest pocket. For
example, SurfNet [23] was used to analyse 67 protein struc-
tures, and the ligand binding site was found to be in the larg-
est pocket in 83% of cases [7]. Another method, APROPOS
[24] looks for characteristic patterns of small “caves” into
which molecular groups can fit into, and has a high reported
success rate. Other pocket detection algorithms include Cav-
ity Search [25], POCKET [26], VOIDOO [27], LIGSITE [5],
CAST [28, 29], PASS [30], LigandFit [31] and algorithms
developed by Delaney [32], Del Carpio et al.  [33] and Ma-
suya & Doi [34].

Pocket detection algorithms frequently employ a three-
dimensional grid surrounding the protein or a definition of
the molecular surface. The molecular surface can be defined
purely using a grid, by finding the interface at which grid
points no longer coincide with protein atoms. This technique
is employed by LIGSITE [5], POCKET [26] and the method
of Delaney [32]. Molecular surface algorithms can also be
used. These have the advantage of not being dependent on
grid resolution. Molecular surface algorithms are generally
dependent on the radius of a “solvent” probe that rolls across

the surface (this is generally taken to be water, with a radius
of 1.4Å). The Solvent Accessible Surface of Lee & Richards
[35] is the surface defined by the centre of the probe, whilst
the Molecular Surface or Connolly surface [36] is defined by
the protein-solvent interface i.e. the surface completely ex-
cluded from solvent volume, and therefore defines the point
of contact between the solvent probe and van der Waals sur-
face of the protein atoms. Several pocket detection algo-
rithms are discussed in more detail below.

POCKET [26]

A probe sphere of radius 3Å is passed across the protein
along each line of a Cartesian three-dimensional grid in the
x, y and z directions. An interaction between the protein and
probe sphere occurs if the centre of a protein atom is found
to be within the probe sphere. A pocket is identified if an
interaction occurs followed by a period of no interaction,
followed by another interaction. Pockets are shown by dotted
areas in Fig. (1). The main disadvantage of this algorithm is
that the precise nature of the pockets is dependent on the
angle of rotation of the protein relative to the coordinate ref-
erence frame.

Fig. (1). The POCKET algorithm. Probe spheres (black circles)
scan a protein. Dotted areas indicate pockets and cavities identified
by the algorithm.

LIGSITE [5] and Pocket-Finder [8]

LIGSITE is very similar to POCKET (described above).
However, LIGSITE also scans with probes along the Carte-
sian cubic diagonals as well as the x, y and z axes, i.e. seven
scan directions as opposed to three. This makes identification
of protein pockets much less dependent on the orientation of
the protein in the three-dimensional grid (compare Fig.  1 and
Fig. 2). LIGSITE has a variable known as the MINPSP
(minimum protein-site-protein) threshold. A single grid point
has seven probe lines passing through it (x, y, z and the four
cubic diagonals). The grid point can be defined to be a
pocket (PSP event) up to seven times. The MINPSP thresh-
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old defines how many PSP events must occur for a grid point
to be defined as being part of a pocket. By setting the thresh-
old higher, shallow pockets are excluded. LIGSITE was veri-
fied on ten protein structures, and was shown to give good
results, with seven of the proteins having the binding site in
the largest pocket. The accuracy, speed and simplicity of this
type of algorithm has made it ideal for use in several subse-
quent studies, including CavBase [37] and SuperStar [38].
Recently, we have implemented our own version of the
LIGSITE method, called Pocket-Finder [8]. This was done in
order to make direct comparison with the energy-based
method, Q-SiteFinder (see below).

Fig. (2). LIGSITE scans cubic diagonals in addition to the x, y and
z axes.

Delaney [32]

The protein is placed within a three-dimensional grid.
Where grid points intersect the protein, they are set to ‘true’,
otherwise they are set to ‘false’ (Fig. 3A). The protein sur-
face (and cavity boundaries) are defined to be grid points set
to ‘true’ that are adjacent to grid points set to ‘false’. A mon-
olayer of particles is then added to the protein surface (a sur-
face expansion) and the true/false representation is recalcu-
lated to redefine the surface (Fig. 3B). A surface contraction
then takes place, where a monolayer of particles is removed
(Fig. 3C). Some of the particles added to pockets survive the
surface contraction. This is because expansion into pockets
can add particles that are not subsequently defined to be part
of the protein surface. After repeated expansions and con-
tractions (usually five to ten), the protein cavities are filled
with particles (Fig. 3D).

PASS [30]

PASS (Putative Active Site with Spheres) uses a similar
concept to Delaney [32], described above. However, a dif-
ferent type of analysis is used to achieve a similar effect. The
algorithm looks at all possible combinations of three protein
atoms. If the three atoms are close enough together, the algo-
rithm calculates the two possible positions for a probe sphere

A)

B)

C)
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(Fig. 3) contd….

D)

Fig. (3). The algorithm of Delaney [32]. A: The protein is placed in
a three dimensional grid. B: A surface expansion takes place. C: A
surface contraction takes place. D: After repeated surface expan-
sions and contractions, particles accumulate in the pockets and
cavities.

to just touch the surface of all three protein atoms (Fig. 4).
The probes are rejected if they clash with protein atoms. This
results in a covering of the protein surface with probes,
similar to the surface expansion of Delaney [32], shown in
Fig. (3B).

Fig. (4).  The PASS algorithm. The positions of probes (dark grey)
are calculated from the positions of three protein atoms (light grey).
There are two possible probe positions, and each is tangential to all
three protein atoms.

A filtration step then occurs, which has a similar effect to
the surface contraction of Delaney [32]. The burial count of
each probe is measured by calculating the number of protein
atoms found within an 8Å radius of the probe. Probes in
pockets have a higher burial count than those outside pock-
ets. A burial count threshold is applied to remove probes
outside pockets. This filtration step leaves probes in pockets
and cavities as shown in Fig. (3C). Repeated cycles of addi-
tion of probe spheres followed by filtration to remove
spheres not found in protein pockets causes accumulation of
spheres in a similar fashion to that shown in Fig. (3D). When
these cycles of addition and filtration no longer lead to a
change in the number of probes bound to the protein, the end

point is reached. PASS then assigns probe weights using a
method related to free surface volume analysis of Stouten et
al. [39]. These weights are used to determine a single point
to represent the binding site, referred to as “Active Site
Points”. The algorithm was tested on 30 complexes and most
of the ligand binding sites were identified by one or more of
the three largest pockets [30].

Del Carpio et al. [33]

This algorithm uses a surface “growing” process to iden-
tify cavities and pockets. The molecular surface is first iden-
tified using the method of Lee & Richards [35]. The centre
of gravity of the protein is identified along with the closest
surface atom (Fig. 5A). The surrounding surface atoms are
then flagged such that a concave pocket is defined by atoms
within line of sight of the first atom. The algorithm then
searches for the next closest unflagged atom to the centre of
gravity and repeats the process. The algorithm continues
until no more concave regions on the surface can be identi-
fied (Fig. 5B).

A)

B)

Fig. (5). The algorithm of Del Carpio et al. A: The nearest surface
point to the centre of gravity (C.O.G.) is taken as the first starting
point, and the resulting binding site is indicated by the shaded area.
B: Other starting points are identified in order of their proximity to
the centre of gravity.
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APROPOS [24]

The Automatic PROtein POcket Search (APROPOS)
algorithm is based upon creating an α-shape representation
of the protein. The algorithm used to generate the α-shape
creates a Delaunay [40] representation of the protein. The
nature of the α-shape is dependent on a parameter “α”. This
can be thought to be the radius of a probe that is rolled over
the surface of the protein. The probe can erase the sides and
edges of the triangles, but not the vertices (atomic centres).
When α approaches infinity, the convex hull is formed (Fig.
6). In practice, an experimental value of around 20Å was
used, otherwise false positive pockets were identified. The
alpha-shape (Fig. 6) is created by using values of α between
2.8Å (oxygen atom radius) and 4.5Å (methyl group radius)
to find pockets that could bind to ligand groups. The pockets
are identified by comparing the structures of the alpha-shape
and convex hull. Protein pockets are revealed where the
structures of the two representations differ significantly.

Fig. (6). The APROPOS algorithm. Pockets are identified by com-
paring the convex hull with the α-shape (see text).

APROPOS also includes a method to predict which
pocket(s) are ligand binding sites. It has been noted that
ligand groups tend to fit into small “caves” in protein mole-
cules. APROPOS searches for these characteristic “caves”.
The algorithm was shown to have a 95% success rate on a
dataset of proteins consisting of one subunit, although the
accuracy was much lower when protein complexes were
tested.

CAST [28, 29]

CAST uses a similar method to APROPOS (described
above) to detect protein pockets. Delaunay representations of
the proteins are created and discrete flow theory is used to
determine which pockets to consider (Fig. 7). The algorithm
was tested on the data set of 67 protein structures used by
Laskowski et al. [7]. When using CAST, 74% of ligand
binding sites were identified in the largest pocket as opposed
to 83% found using SurfNet. However, the authors con-
cluded that differences between the size and nature of the
pockets produced by the two methods make direct compari-
son difficult. CAST has been made available online as
CASTp (Table 1).

Fig. (7). The CAST algorithm. A diagram demonstrating discrete
flow theory (adapted from [29]). A: One Delaunay triangle acts as a
sink for the flow. CAST considers this a true pocket. B: The trian-
gles flow to infinity. CAST does not consider these types of pock-
ets.

SurfNet [23]

SurfNet takes pairs of relevant atoms within a protein and
forms a test sphere between them. If this sphere overlaps any
protein atoms, the radius of the test sphere is reduced until
there is no further overlap (Fig. 8A). The test spheres there-
fore accumulate in pockets and cavities as shown in (Fig.
8B). Test spheres are only retained if they have a radius be-
tween 1Å and 4Å. SurfNet has been made available for
download (Table 2).

In summary, the main issue when designing a pocket
detection algorithm is defining where the boundary between
protein and pocket occur. Many algorithms include a method
to estimate pocket volume, often by counting the number of
grid points contained within the predicted binding site. We
have shown that pocket volume calculated with Pocket-
Finder [8] (our implementation of LIGSITE) increases line-
arly with protein size, but the average volumes of bound
ligands are independent of protein size and show little
change. Sometimes, pockets defined by geometric means can
therefore be very large relative to the size of the volume oc-
cupied by the ligand.

Pocket Modelling by Docking Tools

Docking tools require a three dimensional representation
of the binding pocket. However, it is not always necessary to
use a pocket-detection approach. Sometimes the scoring
function and ‘bumps checking’ (for protein-ligand overlap)
are sufficient to representing the binding pocket. For exam-
ple, Q-fit creates a series of three-dimensional energy grids
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Table 1. Website Addresses for Online Servers that can Identify Ligand Binding Sites

Type Method Address

CASTp http://cast.engr.uic.edu/castPocket Detection

Pocket-Finder http://www.bioinformatics.leeds.ac.uk/pocketfinder

Energy-based site detection Q-SiteFinder http://www.bioinformatics.leeds.ac.uk/qsitefinder

Phylogenetic Analysis Consurf http://consurf.tau.ac.il

SitesBase http://www.bioinformatics.leeds.ac.uk/sb

ProFunc http://www.ebi.ac.uk/thornton-srv/databases/ProFunc

eF-site http://ef-site.hgc.jp/eF-site

SiteEngine http://bioinfo3d.cs.tau.ac.il/SiteEngine

Binding Site databases and functional site com-
parison

PINTS http://www.russell.embl.de/pints

A) B)

Fig. (8). The SurfNet algorithm. A: A protein pocket is shown. Protein atoms are represented by white circles. For each pair of atoms (indi-
cated by stripes) a test sphere (light grey circle with dotted outline) is created between them. If the test sphere overlaps with protein atoms, the
radius is reduced until they no longer overlap (dark grey circle). If the radius falls below an arbitrary value (for example, 1.0Å), no test sphere
is placed at this location. B: The process continues, testing all relevant pairs of atoms, until the pockets are filled with spheres.

Table 2. Web Addresses for Downloadable Tools that can Identify Ligand Binding Sites

Type Method Address

SurfNet http://www.biochem.ucl.ac.uk/~roman/surfnet/surfnet.html

VOIDOO http://xray.bmc.uu.se/usf/voidoo.html

Pocket Detection

PASS http://www.ccl.net/cca/software/UNIX/pass/overview.shtml

Phylogenetic Analysis Rate4Site http://www.tau.ac.il/~itaymay/cp/rate4site.html
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around the binding pocket for a variety of probe types [41].
The potential energy maps are used to define the binding
pocket. Algorithms such as DOCK define the binding pocket
more explicitly. The “sphgen” program forms part of the
DOCK suite and generates a series of overlapping spheres to
describe the three dimensional shape of a binding pocket.
The Connolly algorithm [36] is used to generate a molecular
surface. Spheres are placed on the molecular surface such
that each sphere just touches the surface at two points and
the radius of each sphere passes through the surface normal
of one of the points. The spheres are then filtered so that only
the largest sphere touching each protein atom is retained.

POCKET DETECTION: ENERGY-BASED METHODS

Goodford [10]

Several techniques have been developed for estimating
the interaction energy between a probe molecule (e.g. a
methyl, hydroxyl, or amine groups) at a given point and a
protein. Probably the first time this was introduced and cer-
tainly one of the most widely established methods is GRID
developed by Goodford [10]. It identifies sites of favourable
interaction with specific probe types. This is particularly
useful for viewing energy contours to find favourable sites
on the protein surface and has been widely used in structure
based drug design, since it identifies which parts of the pro-
tein are likely to interact favourably with functional groups

on a drug-like molecule. For example, studies have been
carried out to identify the hydrogen bonding potential of
drug-like molecules using GRID [42, 43]. The Multiple copy
simultaneous search (MCSS) method of Miranker [44] has
also been used to detect favourable binding sites for different
functional groups. However, neither method has been used to
locate the ligand binding sites on a protein directly.

Ruppert et al. [9]

The method of Ruppert et al. has been developed for es-
timating the interaction energies between a probe at a given
point and a protein. They use the scoring function developed
by Jain [45] to optimise interaction energies of three differ-
ent probe types (hydrophobic, hydrogen atom; hydrogen
bond donor, NH; hydrogen bond acceptor, C=O). They re-
tain probes with the most favourable interaction energies.
They then identify “sticky spots”, which are regions that
have the highest density of probe interaction energy. Next a
pocket is grown, by defining protein-free spheres in the pro-
tein void around the sticky spot. Lastly, a process of accre-
tion takes place, which enlarges the sticky spots into larger
pockets, by adding nearby accessible probes defined by the
pocket. Thus, both energetic and geometric criteria are used
to define a ligand binding site. Their algorithm was shown to
give good results on nine ligand-bound and two proteins in
the unbound state.

Fig. (9). Q-SiteFinder web page showing the ligand binding site prediction for HIV protease (1aaq). The protein is shown in grey tubing with
ten colour-coded predicted binding sites, each represented by a cluster of methyl probes. The location of the ligand binding site is identified
by the 1st (turquoise), 2nd (light green) and 8th (pink) predicted binding sites.
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Q-SiteFinder [8]

Q-SiteFinder locates ligand binding sites by clustering
favourable regions for van der Waals (CH3) probes on the
protein surface (Fig. 9). It uses the GRID forcefield parame-
ters [41] to estimate the interaction energies of probes placed
at all points on a three dimensional grid that encompasses the
entire protein. Probes with favourable interaction energies
are retained and are clustered according to their spatial
proximity. The clusters are ranked according to their total
interaction energy.

The algorithm was shown to have a 90% success rate in
the top three predicted sites when tested on 134 protein-
ligand complexes corresponding to the GOLD docking test
set described by Nissink et al. [46]. The success rate showed
a small decrease (to 86%) when tested on proteins in the
unbound state, possibly because of the effect of induced fit.

Comparison of Q-SiteFinder and Pocket-Finder [8]

Q-SiteFinder was validated using a precision-based
threshold for success. Precision is defined as the percentage
of probes in a single cluster that are within 1.6Å of ligand
atoms. A precision threshold of 25% was used to define a
successful prediction. Q-SiteFinder obtained an average pre-
cision of 68% in the first predicted site. Q-SiteFinder was
compared with a pocket detection algorithm, Pocket-Finder,
(our implementation of LIGSITE [5]), which was optimised
and tested on the same data set as Q-SiteFinder. Pocket-
Finder obtained a similar success rate to Q-SiteFinder but
only when the precision threshold was dropped to zero.
Pocket-Finder had an average precision of 29% for the larg-
est pocket. We think that the high precision and success rate
of Q-SiteFinder will be of benefit in SBDD studies and
functional site analysis. Q-SiteFinder and Pocket-Finder
have been made available online (Table 1).

Pocketome [47]

The pocketome algorithm is similar to that of Q-
SiteFinder. It creates a three-dimensional grid around the
protein and calculates van-der Waals potentials at each point.
The potential map is then smoothed, and envelopes of fa-
vourable binding energy were identified. Only envelopes
with volume exceeding 100Å3 were retained. A site coverage
threshold is used rather than a precision threshold [8] to de-
fine success. 85.7% of 5616 protein-ligand binding sites
were correctly identified with coverage greater than 80%.
The vast majority of these were identified in the largest pre-
dicted site. Without a coverage threshold, the success rate
increased to 96.8%.

KNOWLEDGE-BASED FUNCTIONAL SITE PREDIC-
TION

Knowledge of binding sites can often be obtained using
biochemical data, if not directly in the form of high resolu-
tion structure determination methods (X-ray, NMR), then
indirectly by NMR relaxation studies or site-directed
mutagenesis and related experimental techniques. Compara-
tive (homology) modelling studies can sometimes identify
ligand binding sites, since they are often highly conserved.
This knowledge is employed by Pupko et al. [48]

(Rate4Site), de Rinaldis et al. [49] and Armon et al. [50]
(ConSurf). Databases such as PROSITE [51] can also be
used to identify sequence similarity with known ligand
binding sites for which structures are available. Alterna-
tively, structural similarity with a known ligand-protein
complex can indicate the presence of a binding site. Struc-
tural alignments of binding sites are held in the LigBase da-
tabase [52]. Structural similarity studies are often particu-
larly successful with enzymes. The enzyme active site is
often the primary ligand binding site, and usually shows very
high levels of structural similarity between enzymes that
catalyse similar reactions [14]. One example is the serine
protease family, whose active sites consist of a serine, a his-
tidine and an aspartate residue which each have highly con-
served orientations. An algorithm designed to identify them
was nearly 100% successful [53]. The same research group
also used a support vector machine to identify enzyme serine
hydrolase active sites and achieved an 85% success rate on a
data set of 139 structures [54].

Several databases contain information about binding sites
and/or allow comparison of binding sites to allow the recog-
nition of shared protein function. CavBase [37], Patterns In
Non-homologous Tertiary Structures (PINTS) [55],
SiteEngine [56], eF-site [57], ProFunc [15] and SitesBase
[58] hold three dimensional structural information about
protein pockets and allow structural comparisons between
them. This is also useful for analysing newly resolved pro-
tein structures with unknown function to assign function
from structural similarity with characterised sites. This is
also useful for analysing newly resolved protein structures
with unknown function to assign function from structural
similarity with sites of known function. These databases also
have potential use in identifying potential drug interactions
with proteins other than the intended drug target. SitesBase,
ProFunc, eF-site, SiteEngine, and PINTS are available online
(Table 1). SitesBase uses geometric hashing to pre-calculate
results for an all-against-all binding site comparison at the
atomic level for the Protein DataBank (PDB) [59]. PINTS,
uses a different method which calculates results on the fly
and uses a depth-first search. CavBase stores property based
surface patches which can be compared against each other
and is commercially available as part of Relibase+ [60].
SiteEngine [56] uses a low then high-resolution geometric
search method to either search a known functional site
against a set of complete protein structures, or against other
known binding sites. eF-site [61] uses a method based on
graph theory [57] to detect similarity between molecular
surfaces. They used a training set of 10 pairs of proteins to
determine what level of similarity calculated by their algo-
rithm indicates a likely match. They applied their method to
18 newly resolved hypothetical proteins and found potential
matches for each of them. Using this information, they were
able to propose possible functions for the proteins. Lask-
sowski et al.  [14] derive 3D templates from the PDB which
represent ligand and DNA binding sites as part of the Pro-
Func [15] server for predicting protein function from 3D
structure. They calculate the similarity between any two
templates by performing a rotation/translation to align the
two templates. They apply the Dayhoff mutation data matrix
to take into account mutations between physiochemically
similar amino acids. They also calculate an expectation
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value, which indicates the likelihood that two templates
would match through random chance when screening the
database. The algorithm was tested by searching a random
subset of 100 CATH domains against 1337 CATH domains
and was shown to distinguish between true positives and
false positives. The best match was a true positive in 74% of
cases.

STATISTICAL AND MACHINE LEARNING APPRO-
ACHES

Statistical analysis of protein-ligand contacts and orien-
tations can be used to predict ligand binding sites, for exam-
ple PATCH [62] was developed to detect carbohydrate
binding sites with a 65% success rate when tested on 40
proteins. Neural networks have also been used to classify
enzymes based upon an identification of their active sites
similarity [63, 64]. Similarly, surface property based ap-
proaches have also been used for predicting protein-protein
interactions, including the use of support vector machines
[65]. Stahl et al. [64] found the solvent accessible surface
area using the Connolly algorithm [36] and surface points
were allocated an interaction type (‘aliphatic’, ‘hydrogen-
bond donor’, ‘hydrogen-bond acceptor’, ‘aromatic-face’ and
‘aromatic-edge’). They located the five largest protein pock-
ets, and classified them according to whether or not they
bound to a ligand. A neural network was trained on 176
proteins and tested on 18 zinc-containing enzymes. The
pockets were correctly classified for 16 of these structures.
The neural network can be used for binding site classifica-
tion and could be applied to the identification of protein
function from structure.

BLIND DOCKING

Blind docking is the process by which a standard docking
tool is applied to a whole protein. It implicitly includes
binding site prediction but also aims to give information
about the correct ligand binding orientation. However, blind
docking requires that the structure of the ligand is known.
Other binding-site prediction tools do not have this prerequi-
site. Blind docking is very slow, especially when screening a
large number of ligands against a protein. In summary, blind
docking is most useful where the two binding partners are
already known and the user is trying to identify a biologi-
cally relevant binding mode.

Blind docking has been conducted by Hetényi and Van
Der Spoel [66] using AutoDock [67]. They successfully rep-
licated the protein-ligand orientation in eight complexes.
Blind docking was also conducted in the CASP2 docking
challenge [68]. The challenge posed in CASP2 was: given
the three dimensional structure of a ligand and protein, de-
termine where a ligand will bind. Nine groups submitted
predictions for seven protein-ligand complexes and one pro-
tein-protein complex. The overall results were good, with
nearly all of the 77 predictions being within 3Å of the actual
orientation, and over half were within 2Å. Therefore, despite
the slow speed of such docking simulations, the results ap-
pear to be useful. There are many examples of studies where
docking has been used to characterise a putative binding site
e.g. Kurowski et al.  [69] used AutoDock to characterise the

cofactor-binding site of methyltransferase by docking S-
adenosylmethionine.

Blind docking has also been carried out by Bliznyuk and
Gready [70], using a technique called van der Waals – fast
Fourier transform (vdW-FFT). This involves using the OPLS
or AMBER forcefield to estimate van der Waals energy
terms at each point on a grid surrounding the protein. Fast
Fourier transform is used to evaluate the binding affinity of
different ligand orientations. The most favourable orienta-
tions should identify the binding site. The method was
shown to be successful on a small test set.

DOCKING INTO PREDICTED BINDING SITES

Virtual screening studies allow large libraries of com-
pounds to be analysed to find out which ones are likely to
bind to a protein target with high affinity. Such studies are
much faster and cheaper than their experimental high-
throughput screening counterparts, and frequently generate
good results. Two review papers [71, 72] give many exam-
ples of virtual screening successfully leading to a drug being
developed and ultimately released onto the market. There are
many examples of binding site prediction being used in vir-
tual screening studies, some of which are described below.

Li et al. [73] used APROPOS and DOCK [6, 74] to iden-
tify a potential CD4 binding site on a major histocompatibil-
ity complex (MHC) class II protein. This is an unusual use of
APROPOS, since the CD4 binding site is a protein-protein
rather than a protein-ligand binding site. However, the aim of
the study was to find small molecule (non-peptide) inhibi-
tors, so APROPOS was used to located a potential ligand
binding site within the protein-protein interface. They then
performed a virtual screening study with 150,000 chemicals
from the ACD database [75]. 41 compounds were selected
for laboratory binding affinity testing, of which eight were
found to have some activity (<100µM). The four most potent
inhibitors were tested further to ensure that the inhibition
was specific to MHC-II. These inhibitors are probably too
weak to be used as lead compounds but could form a starting
point for the design of other potential immunosuppressive
drugs.

LIGSITE [5] is a popular method for pocket detection. It
has been used to define binding sites in several applications,
including de novo drug design [38], docking [76], functional
site comparison [77] and CavBase [37]. For example, Super-
Star [38] has been developed to generate propensity maps of
basic molecular probe types on the surface of the protein,
with the intention that it could be used in SBDD studies as a
pharmacophore descriptor. It incorporates an implementation
of the LIGSITE algorithm to analyse the protein surface for
pockets.

Automated docking tools are those capable of docking a
library of compounds to the potential sites, scoring them and
returning the output to the user without requiring any user-
interactivity. Sometimes they incorporate a binding site pre-
diction algorithm. Hammerhead is a completely automated
flexible docking tool [78]. It uses a method of binding site
prediction related to that of Ruppert et al. [9] described
above and uses the same scoring function [45]. It was tested
by performing a virtual screening experiment on streptavidin
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using 80,000 molecules. The highest scoring molecule was
biotin, and it was docked successfully in the experimentally
derived conformation.

LigandFit [31] incorporates a binding site prediction tool.
Bindewald & Skolnick [79] also implemented the same cav-
ity search routine in their docking algorithm. The algorithm
is summarised in Fig. (10).

A)

B)

Fig. (10). The LigandFit pocket detection algorithm. The protein is
placed in a three dimensional grid. Each grid point is tested to see if
it is within the protein (black circles). A: A cubically shaped
“eraser” is passed over the protein. It is obstructed by grid points
within the protein. B: The cube “erases” free grid points (white
circles). The remaining grey circles represent protein pockets and
cavities.

LigandFit incorporates a protein pocket detection algo-
rithm and a Monte Carlo stochastic ligand docking routine.
Pocket detection is summarised in Fig. (10A) and Fig. (10B).
It involves the creation of a grid representation around the
protein, with each grid point being defined as free or occu-
pied. A cubically shaped “eraser” then removes all accessible
free grid points. The remaining free grid points define the
pockets and cavities. The size of the eraser had a significant
bearing on the calculated pocket volumes (estimated from
the number of grid points that form a pocket). The size of the
eraser had to be specified manually to obtain the best results.
If an appropriate eraser size was used, the binding site was
found in the largest identified pocket in 53 out of the 75
proteins tested. If a fixed eraser size of 5Å was used, 45 out
of 75 proteins were found to have the ligand binding site in
the largest pocket. LigandFit has been used in several virtual
screening studies [80, 81] and has also been incorporated
into a screensaver to allow the processing of large virtual
screening tasks to be distributed across several computers
(see, www.grid.org).

SUMMARY

Ligand binding site prediction is a broad and active field
of research, and several different approaches have been
adopted to address the problem. No method is 100% success-
ful, and each have their own advantages and disadvantages.
The first computational method to determine binding sites
was pocket detection, pioneered by Cavity Search [25] and
POCKET [26]. Subsequent advances in pocket detection
yielded algorithms such as LIGSITE [5], APROPOS [24],
PASS [30] and SurfNet [23]. Such algorithms show very
good coverage of the ligand binding site. Pocket detection
algorithms report success rates in the 70-90% range. How-
ever, the ligand binding site can be much smaller than the
pocket in which it is found. Therefore, algorithms that rely
on a geometric approach do not always define the precise
location of the ligand binding site.

Energy-based based methods of pocket detection include
those of Ruppert et al. [9] and Q-SiteFinder [8]. The reported
success rates are similar to the pocket detection algorithms,
although we observed that Q-SiteFinder predicted sites with
a higher average precision than pocket detection, which
makes this type of algorithm suited to restricting the search
space for SBDD. It is possible that a combination of the two
types of algorithm may prove even more successful, i.e. de-
tect pockets first with a pocket detection algorithm, and use
Q-SiteFinder to further restrict the search space.

Identifying sequence and structural similarity with pro-
teins with known functional sites is an emerging area for
identifying ligand binding sites. This type of analysis is most
often used to identify function from structure. The main
drawback of this method is that it cannot detect binding sites
that have no similarity with proteins of known function,
whereas pocket detection and energy-based based methods
are independent of this information.

Identification of binding sites is of fundamental impor-
tance in SBDD and virtual ligand screening. It restricts the
search space to the relevant parts of a protein complex, ac-
celerating the process and reducing false-positive results.
Functional site location is also extremely important for pre-
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dicting function from structure [13]. We have provided an
overview of the different methods of ligand binding site pre-
diction and an insight into their use in SBDD. If little infor-
mation is available about the ligand binding site or protein
function it is strongly recommended that several different
types of tool are used simultaneously to predict ligand bind-
ing sites before starting a virtual screening project. Other-
wise, pocket detection and energy-based methods may be
appropriate for defining the search space appropriate for
SBDD.
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