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Abstract
The identification of protein^protein interaction sites is an essential intermediate step for mutant design and the
prediction of protein networks. In recent years a significant number of methods have been developed to predict
these interface residues and here we review the current status of the field. Progress in this area requires a clear
view of the methodology applied, the data sets used for training and testing the systems, and the evaluation
procedures. We have analysed the impact of a representative set of features and algorithms and highlighted the
problems inherent in generating reliable protein data sets and in the posterior analysis of the results. Although it
is clear that there have been some improvements in methods for predicting interacting sites, several major bottle-
necks remain. Proteins in complexes are still under-represented in the structural databases and in particular many
proteins involved in transient complexes are still to be crystallized. We provide suggestions for effective feature
selection, andmake it clear that community standards for testing, training and performance measures are necessary
for progress in the field.
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INTRODUCTION
Interactions between proteins play a crucial part in

cellular function and form the backbone of almost

all biochemical processes. While many interacting

protein pairs have been identified through large-scale

experiments on whole genomes [1–5], the residues

involved in these interactions are generally not

known and the vast majority of the interactions

remain to be characterized structurally.

The experimental determination of protein–

protein complexes is an expensive and time

consuming process and is particularly problematic

for transient complexes, while the prediction of

complexes by comparative modelling is suitable only

in relatively few cases. One alternative to prediction

by comparative modelling is protein–protein dock-

ing [6]. Docking procedures use surface comple-

mentarity and electrostatics to predict structural

complexes, fitting together two or more known

structures or reliable 3D structural models via their

interacting surfaces. Although there have been

successes and advances in the field [7, 8], the

methods are hampered by a lack of a complete

understanding of the forces involved and by the
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conformational changes that often take place upon

protein–protein binding.

As the number of proteins with known atomic

resolution has grown more groups have addressed

the issue of extracting basic features of interacting

protein complexes such as shape complementarity

[9–15], chemical complementarity [16, 17] and

combinations of the two [18–20].

The prediction of the specific amino acid residues

that play essential roles in protein–protein interac-

tions is an important step towards deciphering

the functional mechanism of proteins. Information

about residues that form the interacting surface of

a protein are useful for a wide range of applications

such as the design of mutants for experimental

verification of the interactions, the development of

drugs that target protein–protein interactions, under-

standing the mechanism of the molecular recogni-

tion and as an aid to predicting complexes through

docking and homology modelling. The prediction

of the residues that mediate interactions has taken

on a new urgency now that knowledge of protein–

protein interactions can help to build detailed maps

of metabolic pathways.

Clearly residues present in protein interfaces

should be easier to predict if they have distinguishing

features. Many studies have attempted to characterize

the residues in protein–protein interfaces [21–25].

Earlier works were restricted by the limited subset of

oligomeric proteins in the Protein Data Bank (PDB)

[26], but more recent works [24, 25] have been able

to sub-divide the set of oligomers depending on the

strength of the interaction and on whether or not

the complexes were homo-complexes.

These later studies suggested that the composition

of interacting residues in the interfaces was different

in each subset, for example homodimers tended to

have more hydrophobic residues in their interfaces

than heterodimers and strong transient complexes

tended to be larger, less planar and often more

hydrophobic than weak transient complexes [24].

Based on these conclusions it was suggested that

interacting residues might be predicted from

sequence alone [25].

Recent studies have suggested that protein surface

‘hot spots’ (residues that cause a large drop in binding

energy when mutated to alanine) have physico-

chemical properties that may be predictive [27, 28].

The term ‘hot spots’ has also been applied to

conserved residues found in protein-binding sites.

Hot spot residues can be predicted and these residues

might be used for predicting protein–protein-bind-

ing sites [29–31].

Despite these differences the take-home lesson

from these many studies is that protein interfaces

do not have characteristics that make them simple to

predict. Many groups have developed computational

methods for the prediction of interface residues based

on either structure [32–46] or on sequence [47–50].

Most prediction methods use features such as the

observed and predicted patterns of hydrophobicity,

shape and charge of residues on the surface of

the protein and resort to using ‘black box’ machine

learning methods to predict the interface residues.

These methods claim similar success rates, but

there has been little independent evaluation of the

results.

Recently Zhou and Qin [51] and de Vries and

Bonvin [52] have published excellent and compre-

hensive reviews on the state of the art of protein–

protein interaction prediction and docking. While

these two reviews are complementary to this paper,

the objective of our review is to assess the current

limits of the performance of protein–protein inter-

face residue prediction methods. We review the

constraints imposed by the limited structural infor-

mation available to researchers in the PDB, evaluate

the range of features used by most prediction

methods and investigate to what extent these

methods can be compared and attempt to answer

the main questions surrounding the prediction

of protein–protein interfaces. For example how

useful are sequence-based features such as predicted

secondary structure, physico-chemical properties,

evolutionary conservation and predicted solvent

exposure in predicting protein–protein-binding

sites? To what extent do features extracted from

the three-dimensional structures of protein com-

plexes help predictions?

DATA SETS
One of the challenges in creating a method for

predicting protein–protein interactions is finding

a reliable data set of multimeric proteins. The data

needed to train predictors must come from the

known structural complexes in the PDB, but

while much effort has been put into determining

the three-dimensional structures of proteins, few of

the structures deposited in the PDB are biological

multimers. The relative paucity of data on which

to train prediction methods is just one of a number
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of challenges that predictors face. In part because of

this lack of data there is no standard data set in use.

De Vries and Bonvin [52] list 19 different testing and

training sets for the 22 different predictors that they

consider.

Complex classification
Complexes can be divided into homo-complexes

and hetero-complexes based on sequence identity.

Homo-complex interfaces are easier to distinguish

because they are typically large and hydrophobic and

tend to bury large areas of non-polar residues on

binding [22].

Hetero-complexes are more difficult to predict

and therefore more interesting, as these include

transient complexes where binding sites have to be

predicted blindly, from unbound structures. For this

reason many prediction groups focus on hetero-

complexes [35, 43–50, 53–55]. However, since the

vast majority of PDB complexes are homo-

complexes of identical chains they are often included

in the training and testing sets of a number of

methods [36, 38, 39, 41].

Some groups have discriminated between obli-

gate, non-obligate, transient and permanent com-

plexes [56]. The monomers in obligate interactions

do not exist as stable structures in vivo, while the

monomers from non-obligate complexes can exist

independently. The distinction between transient

and permanent interactions was originally based on

the lifetime of association [57].

Although no single physical property definitively

distinguishes the interface for all classes of protein

complexes, Ofran and Rost [25] showed that homo-

obligomer, hetero-obligomer, homo-transient and

hetero-transient complexes had different amino acid

compositions, suggesting that the prediction of

interface type on the basis of amino acid composition

might be possible for subsets of complexes.

Obligatory interaction patches tend to have

higher shape complementarity and to be character-

ized by the presence of hydrophobic residues and by

tighter packing. In contrast, transient interaction

patches are generally smaller and tend to be more

polar, with the exception of some enzyme–inhibitor

complexes. Furthermore, transient interfaces have

lower geometrical complementary and generate

weaker associations [24, 25, 58].

Zhus et al. [59] developed an automatic classifica-

tion method for distinguishing obligate, non-

obligate and crystal packing interactions using a

structural model of the complex to determine the

interaction types. Although this method is useful

for filtering out crystal artefacts from biologically

relevant interactions, it cannot be applied when the

interacting partner is unknown.

Most protein–protein interaction predictors do

not distinguish between sub-classes of complexes

when deriving features for training. Although it may

be important to take differences between sub-classes

into account, most interactions do not readily fall

into a definite class and it is difficult to know the

complex type in advance of the prediction.

Redundancy and bias
Training sets are limited to the complexes found in

the protein databases. Unfortunately the few hetero-

complexes in the PDB are also highly redundant. In

addition the PDB has an inherent bias towards

certain complexes such as antibody–antigen or

enzyme–inhibitor complexes while others, such as

membrane complexes, are underrepresented. It is not

clear whether any family of complexes is easier to

predict, but antigen–antibody complexes, the largest

group of complexes, are much more difficult to

manage because of antigens highly variable regions.

Bias should be removed but retaining sufficient data

to train the classifier is a difficult juggling act.

Traditionally redundancy has been tackled by

using sequence identity thresholds or by clustering

sequences with BLAST [60].

Biological relevance
The paucity of hetero-complexes means that many

predictors include homo-complexes in the training

data. In turn this makes the biological relevance of

homo-complexes important since predictors are not

interested in interactions resulting from crystalliza-

tion conditions. Predictors generally use the PQS

server [53] to predict biological relevance and Swiss-

Prot [61] annotation control, to eliminate homo-

complexes formed by crystal packing. Not all

prediction methods separate out biologically relevant

complexes.

Surface and interface definition
The definition of surface residues is a critical part of

creating a data set. Predictor results will depend on

how surface residues are defined. The most common

definition of surface residues defines exposed residues

as those with a relative solvent accessibility (RSA)

above 16% [40, 42], in other works use a cut-off
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above 10% [62, 63] and above 5% [35]. The higher

the threshold, the lower the number of surface

exposed residues. This sometimes improves the

performance of the classifier, even if some informa-

tion is lost.

Protein complex interfaces are usually defined by

one of three methods. The first simply defines

interfaces by distances between interacting residues.

Another approach would be to define interacting

residues based on differences in the solvent accessible

surface area (ASA) when the monomers are separated

[21, 23, 57, 64–66]. In this case the coordinates from

the monomeric and independently solved unbound

structures should be used, since conformational

changes upon complex formation can affect the

surface patches involved in protein–protein interac-

tions. Interacting regions can also be defined by

means of computational geometry, using Voronoi

diagrams [67–69].

Based on our calculations and those of previous

[70] works the method chosen to define the interface

may not be important because the interface sizes

and areas defined by the three different approaches

tend to be identical or almost identical. When

comparing two of the most frequent definitions,

distance cut-off for contacts (1.2 nm between CA)

and ASA change upon complex formation (fixing

a threshold of 4% ASA for the relative change in

surface exposure between an isolated chain and

complex structures), we found that the interface

residues in the data set overlapped in 97% of the

cases without affecting predictor performance.

Although the method chosen to define the interface

is not critical, the threshold chosen for contacts or for

accessible surface area differences is important when

selecting features since the influence of certain

features may differ at the edge of the interface [52].

Another place where different thresholds need

to be taken into account is in comparisons between

different prediction methods. The higher the pro-

portion of residues in the interface, the easier it is to

correctly predict them. This in turn conditions the

choice of performance evaluation measures.

Although it would be ideal to use only unbound

monomers in training predictors, the available set

of bound and unbound structures is very small, so

it is currently not possible to show the true effect of

training with unbound structures. In addition the

interaction surfaces of the bound monomers in those

few complexes that have bound–unbound pairs tend

to be much smaller than the average due to the bias

in the PDB. This bias suggests that it is not even

fair to test predictors that have been trained on a

standard set of complexes. Testing with unbound

complexes is something that may become feasible

as the number of known complexes in the PDB

expands.

Some authors train and test their predictors using

patches [22, 39, 71–74]. Patch analysis methods are

limited by shape (patches are generally circular, while

interfaces are irregular) and because patch size has

to be estimated.

Multiple interfaces
How to treat multiple protein-protein interfaces is

an emerging problem. A number of studies have

suggested that proteins may be involved in interac-

tions with a wide range of interaction partners [1–4].

It is possible that many proteins may be transiently

involved in several different protein complexes in

the same pathway and the lack of experimentally

validated complexes in the PDB may mean that we

are underestimating the pool of interacting residues

by several orders of magnitude. Many and perhaps

most proteins may be involved in multiple interac-

tions and have multiple and overlapping interaction

surfaces.

We have to ask whether it is really possible to

define non-interacting residues based on the cur-

rently available data. Although we must consider

residues that are not observed to form part of any

complex as non-interacting, it is impossible to be

sure that these residues do not form part of a

complex that has yet to be crystallized.

Dealing with multiple interfaces does present

difficulties. If each interface is considered indepen-

dently, residues may be defined as both interacting

and non-interacting, introducing incorrect class

assignments in the training of the classifier. Known

multiple interaction interfaces should not be con-

sidered independently of each other.

While most methods consider dimer interfaces

independently, a few groups have taken multiple

interactions into account [35, 75].

Disorder
One further feature to take into account when

constructing data sets are disordered regions. Many

authors have highlighted the importance of dis-

ordered regions in protein–protein interactions and

suggested that disorder allows for more interaction

partners and modification sites [76–79]. Disorder has
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been shown to be important in many interactions

[80–82] and there are complexes in the PDB where

it is clear that regions that are likely to be disordered

in the unbound state become ordered on binding

and have an important role to play in stabilizing the

interaction. Gunasekaran et al. [83] suggested that

ordered monomers could be distinguished from

disordered monomers on the basis of the per-residue

surface and interface areas after analysing the

structural characteristics of complexes.

The order–disorder state change that can occur

with protein–protein binding represents an added

difficulty when training and evaluating predictors

with bound complexes.

DISCRIMINATORY FEATURES IN
PROTEIN^PROTEIN INTERACTION
INTERFACES
Many groups have attempted to discern the distin-

guishing features of protein–protein interaction

interfaces. For example, Jones and Thornton [57]

analysed the surfaces of protein complexes in terms

of patches and showed how features as solvation

potential, residue interface propensity, hydrophobi-

city, planarity, protrusion and accessible surface

area might be a good candidate for the prediction

of protein interfaces. Indeed many methods have

used the different characteristics of known protein–

protein interaction sites [21, 23, 25, 57] to make

predictions for residues involved in protein–protein

interactions.

Discriminating features used in interface predic-

tion can be divided into two groups, those that

require knowledge of the structures of the interact-

ing proteins (for example surface area, B-factors) and

those that require no structure input [multiple

sequence alignment (MSA) information, amino

acid hydrophobicity]. The vast majority of known

proteins do not have experimental 3D structures, so

discriminatory features that help identify interface

residues without the use of structures are very

valuable. In the absence of known structure,

predicted structure-based features such as secondary

structure and accessibility can still be used to predict

interface residues.

While sequence and structural features have been

much used in predicting protein–protein interaction

surfaces, no single feature has been inextricably

linked to protein–protein interfaces. Correlations

between these features and protein–protein-binding

patches are so subtle that they cannot be predicted

with linear statistics alone. This may just reflect the

fact that major features of the interaction such as

surface area and binding stability can vary substan-

tially in different complexes. For example, the

relative contributions of electrostatic and hydro-

phobic forces involved in complex formation vary

between complexes [84].

Many protein structures undergo conformational

changes on binding another protein. This means

that the use of features derived from static molecular

structures may not be enough to describe potential

interacting surfaces where conformational flexibility

plays a key role. This additional aspect introduces

a degree of complexity that is very difficult to take

into account with computational methods.

SEQUENCE-BASED FEATURES
Residue composition and propensity
Residue interface propensities—the ratios of amino

acids contributing to the interface compared to

amino acid composition of the whole protein

surface—was first used as a feature by Jones and

Thornton [22]. They showed that residue frequen-

cies in interfaces vary; for example the mean

frequency of tryptophan was higher than that of

alanine. Z-scores rather than residue frequencies

have also been used and, more recently, interface

propensities have been calculated at the profile

level [41].

Hydrophobicity
The hydrophobic effect is often a major contributor

to binding affinity and interfaces bury a large extent

of non-polar surface area [54]. One characteristic

that has been noted is that many interfaces have a

hydrophobic core surrounded by a ring of polar

residues [85]. Some studies have suggested that

interface residues can be predicted to some extent

by using the hydrophobic moment and averaged

hydrophobicity [86], although other studies have

shown that hydrophobic moment and averaged

hydrophobicity do not appear to be useful for

general interface prediction [33]. It appears likely

that the magnitude of the hydrophobic effect is

insufficient to identify interfaces [22, 23, 87].

Predicted structural features
Methods that predict secondary structure are highly

reliable [88]. Ofran and Rost [47] have suggested
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that methods that incorporate predicted structural

features, such as predicted secondary structure, could

improve sequence or evolutionary based methods.

They found that the prediction of structural features

significantly improved their sequence based predictor

performance.

Features derived fromMSAs
Characteristics indicative of interaction sites can be

captured by sequence profiles such as those generated

from PSI-BLAST [55] multiple-sequence align-

ments. Various methods have been used to calculate

conservation from MSAs as it is widely discussed in

the review of Valdar [89]. Residue conservation at

the interface is observed to be slightly higher than

those of general surface residues, although it is

not significantly different from those in the protein

interior [90–92]. This is because many conserved

residues are buried and contribute to protein fold-

ing and stability, and conservation is really only

discriminatory when surface residues are compared.

Despite this Guharoy and Chakrabarti [93] found

that the interface core tends to be more conserved

than the periphery in both obligate and non-obligate

complexes, while other groups have suggested that

evolutionary conservation has discriminatory power

for obligate and more permanent interactions [75,

94]. Other authors [74] did not use evolutionary

signals from multiple-sequence alignments and

have claimed that adding evolutionary information

only marginally influences the overall prediction

performance.

STRUCTURE-BASED FEATURES
Solvent accessible surface area
Interface residues are likely to be accessible to solvent

in the unbound state. An analysis of surface patches

[22] found that certain classes of complex residues

in the unbound interface have a higher solvent-

accessible surface area than other surface patches. The

solvent accessibilities of individual residues or those

averaged over a surface window are used as input by

most predictors. The difference between predicted

RSA and the observed RSA in detached monomers

(dSA) was introduced by Porollo and Meller [35]

and was the most discriminative feature for their

predictor. They observed that predicted RSA tended

to be more consistent with the level of surface

exposure in protein complexes than the unbound

structures of individual protein chains and used this

as a discriminatory characteristic.

B Factors
Interface surfaces are less flexible than the rest of the

protein surface [95], suggesting that interface residues

are ready for the loss of side-chain conformational

entropy upon binding. This feature has been used

to improve predictor performance. Chung et al. [42]

weighted conservation scores by a normalized

B-factor, thus reducing the conservation scores of

the residues in the flexible regions and magnifying

those in the rigid regions. Although including

B-factors improves the accuracy when using struc-

tures detached from complexes, these improvements

are much smaller when using independently resolved

unbound structures.

Electrostatic potential
It has been suggested that simple electrostatics could

drive the formation of many complexes, while the

specificity of the final orientation might be driven

by more specific interactions such as hydrogen

bonding, salt bridges and interaction between

hydrophobic patches [96]. One important finding

has been the presence of a significant population

of charged and polar residues on protein–protein

interfaces [23, 84, 97–99]. Electrostatic potentials

have improved predictor performance in various

works [42, 71] although they do not play an

important role in the funnel concept of protein–

protein interactions [100].

Sensitive sub-family specific methods
These have been developed to uncover functionally

important residues in proteins with known structure

using information from the differential conservation

at the sub-family level [101–103]. Evolutionary

Trace has been used with some success to locate

protein–protein binding sites [38, 104]. Wang et al.
[40] also showed that there was little to choose

between sequence profiles methods and evolutionary

trace methods, but that predictions seemed to

improve when the two were combined.

FEATUREREPRESENTATION
Sequence windows
Many predictors [36, 47–50, 86, 105] used sequence

windows as input rather than single residues because

protein features that are proximal in sequence are
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often co-located in three-dimensional conformation

too [36, 105].

Structural windows
Structural windows are centred on the surface

residue to be predicted and accompanied by a

number of nearest neighbours in the patch. The

number of nearest neighbours is usually calculated

by empirical experiments or based on previous

works. Using aggregate features with weighted

neighbour averages over spatial nearest neighbours

often improves the discriminatory power [32–35, 39,

40, 43, 44, 71, 72, 75].

CLASSIFICATIONAND
EVALUATION
Classification methods
Several methods have been used for the binary

classification of interacting and non-interacting

residues without any knowledge of binding partners.

These include simple statistical functions, scoring

functions, supervised learning algorithms and com-

binations of these algorithms in different steps.

Machine learning methods are well suited to

the classification of surface residues into interface

and non-interface and allow better discrimination

than other methods, but the results are difficult to

interpret.

Most machine learning methods are based on

support vector machines [33, 35, 36, 39–42, 48–50,

71, 75, 86], neural networks [32, 37, 38, 40, 44] or

Bayesian networks [39, 72]. In the case of support

vector machines (SVM) [106], input data are non-

linearly mapped into a hyperspace and optimally

separated by a hyper-plane into two classes. Neural

networks (NN) combine the input data linearly into

nodes then perform a non-linear transformation

using hidden intermediate layers. The output data

are fed to the final output node. The weights of

the linear combinations that form the input to

the nodes are optimized on a training data set to

minimize the differences between predicted output

values. Bayesian networks are probabilistic graphical

models that represent joint probability distributions

and inference. Conditional random fields [45] and

more recently random forest [107] have also

been used in the protein–protein interaction sites

prediction.

False positives and post-processing
The performance of the classifier depends to a large

extent on how false positives are treated. The

simplest way to avoid false positives is to filter the

output by omitting isolated predictions [47]. This

works because interfaces formed by few residues are

rare [38]. The false positive problem can also be

avoided by taking into account the distances from

each surface residue to all other surface residues in

the same chain. The identities of the nearest

neighbours are later used for the input to a second

predictor. By doing this, information about the shape

of the interface is learned and isolated raw false

positive predictions are eliminated. For example,

Yan et al. [36] used the Boolean output of the SVM

as input to a Bayesian network classifier that analysed

the labels of the neighbours of each predicted

residue. Chung et al. [42] filtered the output so that

a predicted non-interface residue became an inter-

face residue when the distance between its CB atom

and the CB atoms of at least three predicted interface

residues was lower than 6 Å. Chen and Zhou [63]

improved their performance and minimized the

problem of over-prediction and under-prediction by

combining different neural network results from

models with a range of accuracy and coverage.

Bradford et al. [39] used a Bayesian network for the

selection of the patch, improving by 6% on their

previous work [71].

From a more general point of view, de Vries and

Bonvin [52] suggest that methods disagreeing in

patch predictions could be complementary and

could be combined for performance improvements.

There are currently several consensus prediction

methods [108, 62].

Classifier performance evaluation
Prediction groups have used a number of standard

performance measures to assess the accuracy of their

classification methods. These include, two-class

classification accuracy, Q2, the percentage of correct

predictions for a two-class problem, recall (sensi-

tivity), R and the precision (specificity), P, defined

as follows:

Q2 ¼
TPþ TN

TPþ TNþ FPþ FN
, R¼

TP

TPþ FN
,

P¼
TP

TPþ FP

A true positive prediction (TP) is when an observed

interface residue is also predicted to be at the
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interface. When an observed non-interacting residue

is predicted not at the interface we have a true

negative (TN) prediction. A false positive assignment

(FP) occurs when an observed non-interacting

residue is predicted to be at the interface and a

false negative one (FN) accounts for an observed

interface residue predicted as non-interacting. These

measures may not be very informative when classes

are not balanced, as is the case with protein–protein

interaction residues.

When the outputs are continuous, another

measure for comparing the performance of classifica-

tion methods is the ROC (Receiver Operator

Characteristics) curve. The Area Under Curve

(AUC) can be computed to give a unique scalar

value for comparison. A random classifier corre-

sponds to the diagonal line in a ROC plot and it has

an area under that line of 0.5. Thus, all classifiers

are expected to show an AUC greater than 0.5, the

higher the AUC the better the method performance.

A good measure of classifier performance for

problems with unbalanced classes is the Matthews

correlation coefficient [109], MCC, which is the

correlation coefficient between two dichotomous

variables. Defined as follows:

MCC ¼
TPTN� FPFN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTNþ FPÞðTNþ FNÞ

p

The correlation coefficient is 0 for completely ran-

dom predictions, making comparison with a random

baseline easy. Together with the AUC, the correla-

tion coefficient often provides a better-balanced

evaluation of predictions.

COMPARATIVE EVALUATIONS
The majority of the methods cited in this review

have used evolutionary information from sequence

alignments in addition to residue properties and/or

structural properties. However, it is almost impos-

sible to perform an exhaustive comparison of the

results obtained from different methods because

they use different data sets for testing and training,

different definitions of interface residues and different

evaluation procedures. Comparison between meth-

ods is further complicated by the fact that many

methods are not publicly available.

Despite the inherent difficulties in evaluating

predictors, two recent reviews [51, 52] have made

comparisons between their in-house prediction

method and the currently available web servers.

Zhou and Qin, for example, describe the classifica-

tion methods developed by available web servers

and carry out a detailed and thorough assessment

using a test set of 60 complexes that came from a

docking benchmark set [110] and from the CAPRI

docking experiment [8]. The authors were able

to rank the servers based on the benchmark set. The

complexes from the CAPRI experiment proved

to be much more difficult to predict, in part because

almost a third of them were antibody–antigen or

other immune system complexes.

Unfortunately, as the authors pointed out, the

complexes in the test set, or complexes that were

homologous to those in the test set, were likely

to have been used to varying degrees in developing

the tested servers. De Vries and Bonvin has the same

problem with their server comparison—some of the

protein chains that made up their testing set were

used in training the servers that were being tested.

The paucity of complexes in the PDB that can

be used for training means that predictors often use

most or all of the known complexes in training

their methods. The only truly fair means of testing

interaction prediction servers would be using new

complexes, but resolving new complexes is a slow

process. Initiatives in establishing community stan-

dards and evaluation of progress such as those of

ProMateus [111] should help to advance this area

of research.

FEATURE EVALUATION
We performed multiple experiments using an SVM

classifier (TIPPI-SVM) developed with the LIBSVM

[112] module for the R package [113]. The classifier

was built solely with the aim of analysing and

verifying results from previous studies and will not

be built as a web server. All training and testing

was carried out with the data set used by Porollo

et al. [35] because it is available, manually curated

and has been evaluated against other servers. The

training set consisted of 262 hetero-complexes and

173 homo-complexes referenced as S435 and there

was a non-redundant control set of 92 hetero-

complexes and 57 homo-complexes (S149). The

data sets are available on the SPPIDER web site

(http://spider.cchmc.org).
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Feature importance
We tested a comprehensive set of input features

in the SVM classifier. The features tested in the

classifier included:

� Evolutionarily conserved residues found by

Scorecons (http://www.ebi.ac.uk/thornton-srv/

databases/cgi-bin/valdar/scorecons_server.pl) and

the Rate4Site algorithm [114] using MSAs taken

from HSSP.

� Simple predicted RSA using SABLE [115], the

stand-alone version with default parameters.

� The difference in solvent accessibility (dSA), in

an unbound structure between the predicted

accessibility with SABLE and observed accessi-

bility calculated with DSSP [116].

� Electrostatic potential, extracted from the

STING server [117].

� Residue interface propensity, for each of the 20

amino acids based on the training set calculated as

a fraction that each surface amino acid contributed

to the interface compared to the fraction that each

amino acid contributed to the whole protein

surface [71].

� Hydrophobicity taken from the AAIndex database

[118].

� Surface curvature extracted from STING server

[117].

We also tested other features that are mentioned

in the review, but not listed here, such as predicted

secondary structure, the relative surface composition,

the residue composition of spherical regions (with

radius ranging from 0.6 to 1.4 nm) centred on the

residue to predict and the protrusion index [119].

For comparison purposes we trained our classifier

on combinations of prediction features by leaving

one feature out at a time and testing changes in

performance.

Feature input was arranged in three different ways

to test the impact upon predictor performance.

By using a 10-residue sequence window profile,

by using the features of the 10 closest spatially

neighbouring residues and by weighting the input

features based on spatial distance (WNA) [75].

For the structure-based classifiers, a second SVM

was used for false positive filtering: the input was the

predicted output class from the first SVM along with

the initial features. Performance improves as the

classifier is able to filter false positives and learn

plausible patch shapes.

Surface residues were defined as those with a

relative solvent accessibility greater than 5%; interface

residues were defined as those surface residues

whose Euclidean distance to at least one residue in

the partner chain was below 1.2 nm.

Features derived from sequence only have

slightly higher than random class correlation

scores*, but when used along with a structural

window correlation significantly improves (Table 1).

This shows that the representation of neighbouring

residues is crucial for the characterization of inter-

acting residues.

In our tests, using weighted neighbour averages

(WNA), rather than spatial nearest neighbours and

a 10 residue structural neighbour window, signifi-

cantly improves the discriminatory power of the

features. Taking into account neighbouring resi-

dues and their distances improves correlation

performance.

Tests on the importance of features confirmed

that the most relevant input feature is dSA (Table 2),

with a four-point improvement in MCC when it is

included (comparing the predictor with all the

features and the predictor with dSA left out).

Interface residue propensity and MSA-based features

from Rate4Site and Scorecons are also relevant to the

overall performance. Hydrophobicity makes small

improvements while the remainder of the tested

features (data not shown) did not significantly

Table 1: The performance of the classifier with a range
of feature representations

Method Q2 R P MCC

SVM-Struct. 69.4 45.3 64 0.32
SVM-WNA 71.5 58.6 63.4 0.37
SVM-Seq 63.2 54.3 4.2 0.09
SVM-WNA-Seq 58.9 49.6 57.8 0.28

The impact of different combinations of input features is shown by
the accuracy (Q2), recall (R), specificity (P) and Matthews correlation
coefficient (MCC) for each form of representation. SVM-Struct
corresponds to the classifier trainedusing the10 closest spatially neigh-
bouring residues and all input features, SVM-WNA corresponds to
the classifier trained using weighted neighbour averages and all
features, SVM-seq corresponds to the classifier trained using a10-resi-
due sequencewindow and sequence features only and SVM-WNA-Seq
corresponds to a classifier trained using the 10 closest spatially neigh-
bouring residues and taking into account only sequence related
features.
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improve classifier performance when they were

added as input.

We have limited the performance evaluation here

to the assessment of the effect of single features, as

an exhaustive combination of features is not within

the scope of the evaluation. We cannot exclude

the possibility that a specific feature that does not

contribute to the performance on its own, may

improve predictor performance when it is used in

a combination with another input feature that has

not been tested here.

COMPARISONWITH ANOTHER
PREDICTOR
In order to compare predictor robustness for

different test sets, we compared the results from

our SVM predictor with those assessed by Porollo

et al. SPPIDER is a consensus-based classifier

that combines 10 different neural networks (NNs)

obtained from cross-validated training on the

augmented S435 set, with k-NN selection procedure

used to filter out likely mislabelled points.

Table 3 shows how our SVM classifier performs

compared to SPPIDER [35] on four independent

test sets of 50 randomly chosen complexes. None

of the chains in the four test sets shares more than

25% sequence similarity between each other or

with any of the chains in the S435 training set (which

was used to train the two methods being tested).

The results of the two predictors show that

different data sets result in notable variations in

performance and highlight that the performance of

a given classifier depends to a certain extent on

the data set used for evaluation. The effect would

have been even greater if the test sets had included

very close homologues of the complexes in the

training set. Though the differences between the

four sets of results are substantial, they are not

statistically significant. These differences highlight

another problem with the lack of non-redundant

known complexes—testing sets that do not contain

homologues of the complexes used for training

have to be small.

CONCLUSIONS FROMTHE
TESTINGANDTRAINING OF
FEATURES
The results obtained here concur largely with the

study carried out by Porollo et al. [35] and confirm

that predictors can make fairly reliable predictions for

protein–protein-binding residues based on a limited

set of structure-based features. The incorporation of

structural information is crucial for the prediction—

we found that predictions based solely on sequence

features were not much better than random.

This assessment of feature importance demon-

strates that although a combination of all relevant

features improves the performance of a prediction

method, a few features generate quantitative

improvements of classification performance. How

these features are represented (the structure or

sequence window) is also a key point in designing

methods to predict interacting residues.

The results do suggest that the prediction of

interface residues may have reached a point of

saturation. It seems unlikely that there are further

improvements to be obtained by additional combi-

nations of the same set of basic input features.

Although predictors will have to extract some new,

as yet untapped, indicators from the sequence or the

Table 3: Performance of our dummy classifier against
SPPIDER with the Porollo and Meiler test set and four
random test sets

Method S149 Dataset 1 Dataset 2 Dataset 3 Dataset 4

SPPIDER 0.42 0.25 0.24 0.26 0.29
TIPPI-SVM 0.37 0.26 0.22 0.25 0.32

TIPPI-SVM and SPPIDER performance is shown against four random
data sets of 50 non-overlapping proteins. TIPPI-SVM is the dummy
method developed for this review and was trained with the S435
data set using all input features andWNA representation.The publicly
available SPPIDER server was developedby Porollo etal. [35].Matthews
correlation coefficient (MCC) is shown as the sole performance
measure for reasons of clarity. MCC was chosen as the sole
measure because it is the only score that takes into account the
over-representation of non-interface residues in the data sets.

Table 2: Theperformance of the classifier with a range
of features

Method (all useWNA) Q2 R P MCC

All 71.5 58.6 63.4 0.37
All (-dSA) 64.1 55.3 62.4 0.33
All (-residue interface propensity) 67.3 55.4 61.2 0.34
All (-MSA based features) 66.5 57 61.1 0.34
All (-hydrophobicity) 71.1 57.6 62.8 0.36

Feature importance was measured by evaluating predictor perfor-
mance after leaving out one feature at a time.Results for overall classi-
fication accuracy (Q2), recall (R), specificity (P) and Matthews
correlation coefficients (MCC) are shown.
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structure in order to move forward in any mean-

ingful way, a slow but steady improvement in

prediction is likely as more complexes are deposited

in the PDB.

CONCLUSIONS
An understanding of the mechanisms of protein–

protein interactions and the prediction of interacting

surfaces requires detailed knowledge of the three-

dimensional structures of protein complexes and

their unbound monomers. Unfortunately, the

dearth of complex structures and the large degree

of redundancy in the PDB make it impossible to

generate the large data sets that would be required

for a reliable training of prediction methods and

mean that it is very difficult to test new methods

reliably. Indeed the difficulties in working in this

field are to a large extent related to the lack of

available structural information. As more protein–

protein complexes are resolved this will become less

of a problem.

From a more general point of view, the

publication of methods that have not been evaluated

and assessed under consensus standards, such as in

other areas of protein structure prediction [8, 120]

does not aid scientific progress in protein–protein

interaction prediction. This review makes evident

the necessity of using common training and testing

data sets and common evaluation criteria in order

to assess the performance of different prediction

methods.
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