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Computational methods for the detection and characterisation of

protein ligand-binding sites have increasingly become an area of

interest now that large amounts of protein structural information

are becoming available prior to any knowledge of protein

function. There have been particularly interesting recent

developments in the following areas: first, functional site

detection, whereby protein evolutionary information has been

used to locate binding sites on the protein surface; second,

functional site similarity, whereby structural similarity and three-

dimensional templates can be used to compare and classify and

potentially locate new binding sites; and third, ligand docking,

which is being used to find and validate functional sites, in

addition to having more conventional uses in small-molecule

lead discovery.
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Introduction
It is well known that protein function is intimately related

to three-dimensional structure and high-throughput struc-

tural genomics projects are now starting to increase the

structural information available for genome sequences. It

seems likely, however, that many of these structures will

be relatively poorly characterised in terms of biological or

biochemical function. Ligand binding, the subject of this

review, is a key aspect of protein function, mediating the

ability of proteins to recognise their natural ligands for

transport, signal transduction or catalysis, and also our

ability to modulate function through the discovery of

drugs. Facing the possibility of large amounts of relatively

uncharacterised protein structure data, the field has

focused on computational means of function prediction.

This review covers improved methods for the identifica-

tion of potential functional sites in new protein structures

and new methods for the discovery of similarity in func-

tional sites. It also covers the significant progress that has

been made in the prediction of protein–ligand interac-

tions (docking).

Functional site location
A fundamental question to ask when considering an

uncharacterised protein structure is the location of

ligand-binding or active sites. In this section, we review

methods for finding such sites in the absence of informa-

tion about the ligand. If the ligand is already known, then

alternative approaches are possible, including the exploi-

tation of similarity to known binding sites and docking

(see below).

Enzyme active sites commonly occur in large and deep

clefts on the protein surface [1], and the need for sig-

nificant favourable interactions between ligand and pro-

tein usually means that other small-molecule ligands also

bind in surface depressions. Work related to the location

of such clefts and depressions has been reviewed recently

[2]. This review focuses on recent developments in

functional site identification. Two major approaches have

emerged: methods based on evolutionary information and

methods that employ other criteria. The evolutionary

method is potentially powerful because of the abundance

of structural and sequence-related data for many protein

families. Such methods [3–5] exploit the observation that

important functional sites in proteins usually display a

high level of conservation (see [6��] for a recent review).

More recent methods are discussed below, some of which

have been developed for interactions in protein–protein

or other macromolecular systems, but are equally applic-

able to the discovery of small-molecule binding sites.

A common analysis method has been the mapping of

evolutionary data to the three-dimensional surface of

representative molecules [7–9]. Campbell and Jackson

[10] divided the Src homology 2 (SH2) family into groups

on the basis of binding site residue similarity. Subsequent

conservation data are mapped to representative domains

(see Figure 1) to investigate diversity between these

groups within the ligand-binding region. Two other groups

developed this technique and demonstrated the impor-

tance of taking into account the divergence levels expected

with a particular phylogenetic depth, rather than simply

considering the conservation against variability of residue

positions. Pupko et al. [11��] describe a method to distin-

guish between residues that are conserved because of
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functional importance and those that appear to be con-

served because of shortness of divergence time. They

describe the shortcomings of the maximum parsimony

approach, whereby conservation scores are assigned with-

out taking branch lengths into account. The group found

that functionally important regions often correspond to

surface patches of slowly evolving residues and identified

interaction regions in the Src SH2 domain. Blouin et al. [12]

also use the maximum likelihood rate of evolution to

qualify the level of evolutionary constraint on residue

positions within a site. The technique allows the detection

of functional divergence between subtrees.

In related work, Friedberg and Margalit [13�] propose a

method for the identification of mutually persistently

conserved (MPC) positions within pairs of sequence

dissimilar and structurally similar protein families.

MPC positions, which are positions that are conserved

over long evolutionary times in both families, are found to

correspond to key structural features, including catalytic

residues and those that stabilise active sites. An interest-

ing contrast is provided by the work of Kunin et al. [14],

who compare multiple alignments of protein families that

might or might not be structurally similar. Their cyclical

relations consistency analysis is able to identify functional

sequence motifs shared by proteins with different folds;

for example, there are phosphate-binding regions that are

shared by some Rossmann and TIM barrel folds.

Finally, two groups [15,16] have investigated the theory

of co-evolution in protein–protein interactions. This

might be applicable to protein–peptide (ligand) interac-

tions. Goh and Cohen [15] developed a method for

identifying binding partners for uncharacterised proteins

and new binding partners for previously characterised

proteins, whereas Bickel et al. [16] developed a statistical

method whereby important sites are identified either by

residue identity within and outside functional subfami-

lies, or by strong covariance between a pair of motif sites.

Although evolution is a powerful tool in many cases, there

will always be a need for alternative approaches in cases

where conservation does not indicate a well-defined site.

Two groups have produced interesting and related

approaches to the identification of key functional residues

using electrostatic (Poisson–Boltzmann) calculations

[17,18��]. Ondrechen et al. [17] observe that the theore-

tical titration curves of ionisable residues involved in

catalysis are often anomalous, showing unexpected ‘flat’

regions and shifts in pKa. Shifts in pKa are related to

stability effects and Elcock [18��] employs the hypothesis

that functionally important residues are often a thermo-

dynamic disadvantage to a protein structure. Several

experimental studies have shown that such residues

can be mutated to give a more stable structure, and

Elcock shows that calculation of the electrostatic compo-

nent of the free energy also enables the identification of

these destabilising and functionally important residues. It

is likely that these approaches will be valuable in identi-

fying potential functional sites, particularly if coupled

with other evidence, for instance, from studies such as

that of Bartlett et al. [19�], who showed that six amino acid

residues (histidine, cysteine, aspartic acid, glutamic acid,

arginine and lysine) account for >70% of all catalytic

Figure 1
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Surface mapping of phylogenetic information. In this example,

phylogenetic analysis has been used to divide a group of SH2 domains

into two clades of similar sequences. The sequences from clade A have

then been scored for conservation using a conservation scoring

algorithm [9]. Conservation scores are produced for each residue

position in the alignment and these values are mapped to the three-

dimensional surface of the representative syk C-terminal SH2 domain

structure. Red surface areas indicate low conservation, blue regions

high conservation and white represents intermediate conservation. This

method demonstrates the effective identification of the conserved

phosphotyrosyl peptide binding site, in blue. (Based on a study by
Campbell and Jackson [10].)
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residues, and that they tend to occupy less flexible

structural locations.

Functional site similarity
Prediction by similarity, for example predicting function

using similarity at the sequence level, is a very strong

theme in genome annotation, and recent years have seen

much discussion of the precise nature of the relationship

between similarity at the sequence, structural and func-

tional levels [20,21]. Here we focus on similarity at the

level of ligand-binding or functional sites. There are two

motivations for this type of study. First, when proteins

with different folds share aspects of function (e.g. ligand

binding or catalysis), this can be reflected in site simila-

rities independent of evolutionary homology. Second,

even within evolutionary families, there are often func-

tional differences between proteins that may be major

(e.g. whether they are enzymes or nonenzymes) or minor

(e.g. the specificity of different enzymes). Nagano et al.
[22] describe the many functions associated with the

ubiquitous TIM barrel fold. Functional differences might

be more obvious from structural comparison of functional

sites than they would be from comparison of sequences or

overall tertiary structure. It is unsurprising, therefore, that

databases of ligand-binding sites are starting to emerge

that can, as in the case of LigBase [23], contain mappings

of active site residues to structural alignments of protein

family members.

There are two distinguishable approaches to functional

site similarity. The first involves the creation of three-

dimensional templates reflecting particular functions; an

example is the continuing work of one group on three-

dimensional ‘fuzzy functional forms’ to predict disulfide

oxidoreductase activity, an approach that can be useful

even with predicted structures [24]. Similar three-dimen-

sional templates can also define the recognition properties

of ligand-binding sites. Ligands containing adenine moi-

eties have been the subject of considerable interest in the

literature [25,26,27�,28��], probably because of the rela-

tively rigid adenine ring structure and the ubiquitous

nature of adenine in many key biological molecules

(ATP, ADP, NAD, FAD, etc.) bound by nonhomologous

proteins with different folds. Zhao et al. [28��] describe

novel three-dimensional templates that define the con-

sensus interaction energetics of the binding site volume

in a diverse set of known adenine-binding sites. These

templates out-perform traditional docking methods and

energy calculations in distinguishing adenylate and gua-

nylate recognition sites.

The above approach — describing the energetic proper-

ties of the binding site volume — is interesting, and

contrasts with earlier work in which the focus has been

more strongly on residues and chemical groups flanking

the binding pocket and interacting with the ligand. Cat-

alysis often involves universally conserved residues, but

ligand binding often does not (there are many ways of

binding the same ligand), so templates of this nature

would seem to be a promising future direction for binding

site analysis. Nevertheless, there have also been inter-

esting developments in describing interactions with key

protein atoms. Following a large volume of earlier work,

which they review in detail, Rantanen et al. [27�] intro-

duce a Bayesian approach using Gaussian mixtures to

describe the distributions for particular protein atoms

around ligand fragments. They demonstrate that their

approach can narrow down the search for the positions and

types of protein atoms interacting with particular ligand

fragments, and consider that the main application of their

methods is in the prediction of the nature of the ligand-

binding pocket in the absence of protein structure infor-

mation. However, these methods would be equally

applicable to the analysis of potential sites in new and

uncharacterised protein structures.

The second approach to functional site similarity does not

involve the creation of three-dimensional templates for

particular ligands or activities. Methods have been devel-

oped by Schmitt et al. [29��] and Kinoshita et al. [30] that

provide similarity searches over functional site databases.

These use related clique detection algorithms to find

similarity, but employ different representations of the

site. Schmitt et al. use chemical groups able to make

hydrogen bonds and/or aliphatic interactions with ligands,

whereas Kinoshita et al. represent the sites as surfaces

with electrostatic and hydrophobic characteristics. Both

methods are able to detect functional similarity in the

absence of homology or fold similarity. As an example,

Figure 2 shows some results from a similar approach

based on differing site descriptions that was developed

in our own laboratory (N Gold, D Westhead, unpublished

data). Here, the query site binds the cofactor NAD;

similarity is found to other NAD-binding sites and then,

Figure 2
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at lower ranks, to binding sites for adenine-containing

ligands in proteins with unrelated folds. Similarity

searches of this nature are usually more demanding in

terms of computational time than matching to three-

dimensional templates, but they might provide useful

information for sites not covered by templates and could

lead to the discovery of new and interesting relationships

and templates.

Predicting ligand interactions by
molecular docking
The increasing availability of protein three-dimensional

structures coupled with continuing advances in docking

and scoring methods have established docking as an

important tool for small-molecule lead discovery. Two

reviews on the subject have recently been published,

covering many of the docking methods [31] and their

importance for lead generation in structure-based drug

design [32]. The number of applications to lead discovery

has increased dramatically in recent years; however, these

studies will not be covered here. Although there are

several well-established docking methods that continue

to undergo further development [32,33], new approaches

to protein–ligand docking continue to be proposed that

focus on efficient search criteria and models for solvation

and protein flexibility. We also discuss scoring functions

and proposed data sets for use in their validation.

Docking methods

In most cases, a functional site such as an enzyme active

site is already known and the practitioner either performs

docking of a known substrate/inhibitor or an in silico
screening of a ligand database. However, with the advent

of structural genomics and the prospect of large numbers

of structures with unknown functional properties, the

ability to perform docking to validate functional sites will

become important. This ab initio prediction problem has

received little attention to date and new applications in

this area are of particular interest. Hetenyi and van der

Spoel [34] apply the well-known AutoDock program to

try to reproduce experimental structures of several pro-

tein–peptide complexes without prior knowledge of the

binding site. Their results are very encouraging, given

that the whole protein constitutes a large search space.

However, computational times (tens of hours) per ligand

are a serious limiting factor for multiple ligands. Glick

et al. [35�] address this problem by using a multiscale

ligand representation in which a ligand is first docked

using a very small number of feature points. These

represent a more complex ensemble of rigid ligand con-

formations. Results for finding binding sites and a final

close root mean square deviation solution are encouraging

for the seven ligands featured and can be achieved at

reasonable computational cost (minutes) per ligand.

One objective of docking programs is to target the bio-

logically active conformations quickly, therefore limiting

the relatively large amount of search space. In the pro-

gram Q-fit [36�], a probabilistic method ranks receptor

binding modes so that those with the lowest energy are

sampled first in the docking procedure. Limits can be

placed on the search depth, therefore restricting sampling

to low energy conformation space. Alternatively, search

algorithms such as the ‘Mining Minima’ optimiser com-

bine several methodologies; this algorithm has undergone

recent enhancement [37]. EUDOC [38] uses a more

conventional systematic search method followed by

focused finer searches. It was applied to a large ligand

test set with good results.

The importance of protein flexibility is increasingly being

recognised as fundamental to the wider applicability of

docking methods [39]. Fradera et al. [40] analyse ligand-

induced changes in protein binding sites. Using a fixed

receptor structure can impose considerable limitations if

the protein undergoes an induced fit on ligand binding, as

is often the case. However, more sophisticated protein

models come at the expense of increased computer time

and, on a practical level, the results are often worse [32].

Docking with full protein flexibility is currently not

feasible for a large number of ligands and therefore some

level of approximation must be introduced. Kua et al. [41]

apply ligand docking to different static conformations of

the protein acetylcholinesterase taken from snapshots of

a molecular dynamics trajectory. The docking energies

correlate well with experimental binding affinities for a

series of substrate and inhibitor analogues. This method

would be computationally expensive for a large ligand data

set. Alternatively, methods that combine several struc-

tures simultaneously (taken from experiments, molecular

modelling or simulation) to produce an ensemble repre-

sentation have recently been developed. In the program

FlexE [42], discrete alternative conformations are expli-

citly taken into account. These can be combinatorially

joined to create new protein structures. Osterberg et al.
[33] generate a single representative grid of interaction

energies. Using 21 HIV-1 protease structures as a test case,

they show that the type of flexibility can pose problems.

However, an energy-weighted average of the grids per-

forms well for redocking of most of the ligands.

Given the increasing availability of three-dimensional

structures arising from models built by comparative

(homology) modelling, there is a need for docking methods

to be able to handle lower-quality structural information.

Often these models are not sufficiently accurate to apply

conventional docking methods. Schafferhans and Klebe

[43�] have developed a method to do this that integrates a

ligand three-dimensional quantitative structure–activity

relationship (QSAR) model and a model-built representa-

tion of the protein binding site using soft potentials.

Distance restraints can also help to constrain the docking

search space. Hindle et al. [44�] have developed a docking
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methodology that allows incorporation of pharmacophore-

type constraints. These guide the docking procedure to

generate solutions that obey these constraints, allowing

pharmacophore-based or experimental filters to be used. In

[45], intraligand exchange transfer nuclear Overhauser

effect data are used to restrict the conformation of a peptide

ligand in docking. This method provides intramolecular

proton distances for the peptide but no information on

intermolecular contacts, and therefore docking of the

protein–peptide complex is a useful additional tool.

Scoring functions

The development of scoring functions continues to be a

subject of considerable study within the docking com-

munity [46]. Clearly, the ability to develop a universally

applicable function would greatly enhance the docking

methodology. The functions can be broadly classified

according to whether they are empirical or knowledge-

based in origin; functions in the former category are

based on a parameterised force field model (e.g. includ-

ing van der Waals, electrostatic, entropy and solvation

terms), whereas functions in the latter category are based

on a statistical analysis of observer contacts in the struc-

tural database.

Wang et al. [47] report the development of a new con-

sensus empirical scoring function for binding affinity

prediction. In a particularly interesting development

[48��], the knowledge-based potential DrugScore is tai-

lored to a particular protein by using known ligand-

binding affinities to reparameterise the interaction grid

used in scoring. This adaptive method has considerable

future potential. Increasingly, drug targets will already

have ligand binding data available and increased amounts

of data will facilitate better predictive models.

Both empirical and knowledge-based functions have their

advantages and limitations, and several comparative stu-

dies have been reported recently. Stahl and Rarey [49]

compare the empirical FlexX and PLP score functions

and the knowledge-based PMF and DrugScore functions.

Also, Perez and Ortiz [50] compare the AMBER force

field against the knowledge-based PMF function, and

Sotriffer et al. [51] compare Autodock’s largely AMBER-

based score function against their scoring function, Drug-

Score. The idea of using a consensus score from different

methods has been investigated [52] and found to outper-

form the individual docking methods for predicting the

top-ranked cluster.

Validating methods

Comparison between different docking methods and

scoring functions is difficult. Only general conclusions

can be made when comparing two different studies.

Standardising data sets and computer hardware (for run

time comparison) would greatly help in making compar-

isons; however, this is clearly difficult to achieve without a

coordinated effort. Recently, a large validation data set

has been proposed [53]. This consists of 305 complexes

with protonation states assigned by manual inspection.

Care has been taken to remove unsuitable entries. Also,

Roche et al. [54] have proposed a ligand–protein database

that combines structural data with experimental binding

data. In addition, they have generated sets of ‘decoys’ that

could prove useful for testing new scoring functions.

Conclusions
We have reviewed recent computational advances in

understanding ligand binding. Protein functional site

detection and characterisation is a major goal of structural

bioinformatics and its application to other protein–

biomolecule interactions is reviewed elsewhere in this

issue. Several powerful techniques have emerged in

recent years that will hopefully be of use both in detecting

functional sites in new structures solved before any

knowledge of function and in aiding the rational design

of new pharmaceuticals. Mapping evolutionary data to

the three-dimensional surface of proteins has emerged as

a promising technique for many protein families; how-

ever, it is no panacea for all functional interactions.

Similarly, the evidence is that structural (or feature)

similarity in the binding sites of proteins will yield mean-

ingful information only in certain cases; nevertheless, this

could prove critical in the detection of new functional

sites and is invaluable in understanding ligand recogni-

tion, including issues of cross-reactivity and toxicity. The

possibility that protein docking methods can also be used

for site detection and characterisation is an important new

application of an older technique. Given the likely future

growth in protein structure information, approaches such

as these will become increasingly important tools for the

functional characterisation of ligand-binding sites and for

structure-based drug design.
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