

Introduction to the structure of macromolecules

- □ 11 lectures \approx 22 h
 - 1. Introduction to the structure of macromolecules
 - 2. Structure of biomolecules
 - 3. Bioinformatics databases
 - 4. Structure prediction
 - 5. Models of structures
 - 6. Stability and dynamics of macromolecules
 - 7. Analysis of protein structures
 - 8. Protein-ligand complexes
 - 9. Macromolecular complexes and interactions
 - 10. Engineering of protein structures
 - 11. Applications of structural biology and bioinformatics

- □ Lecturers
 - □ Sérgio Marques, PhD
 → Main lecturer

□ David Bednář, PhD
 → Lecture 6

□ Joan Planas, PhD
 → Lectures 3-5

□ Anthony Legrand, PhD
 → Lecture 9

Course information

Examination

- □ Written exam, multiple choices, 25 questions, 25 points
 - A: 25-22
 - B: 21-19
 - C: 18-16
 - D: 15-13
 - E: 12-10
 - F (fail): < 10
- □ 3 exam dates; you can attend them all
 - □ 10/17 Dec. 2024 (to be voted)
 - □ Jan. 2025
 - □ Feb. 2025
- Slides with essential information have the sign:

□ Literature (provided)

 Petsko, G. A. & Ringe, D. (2004). Protein Structure and Function, New Science Press, London.

Gu, J. & Bourne, P. E. (2009). **Structural Bioinformatics**, 2nd Edition, Wiley-Blackwell, Hoboken.

Widłak, W. (2013). Molecular Biology - Not Only for Bioinformaticians.
 Springer Berlin, Heidelberg

- Lecture slides (uploaded every week)
- Journal articles (not essential)

□ Alternative literature (not provided)

Claverie, J-M., & Notredame, C. (2006), Bioinformatics for Dummies. Wiley Publishing, Hoboken

L Xiong, J. (2006), Essential Bioinformatics, Cambridge University Press, New York.

T. Schwede & M. C. Peitsch (2008), Computational Structural Biology: Methods and Applications, World Scientific Publishing Company

Liljas, L. Liljas, J. Piskur, G. Lindblom, P. Nissen, M. Kjeldgaard (2009), Textbook Of Structural Biology, World Scientific Publishing Company

Structural biology - practice - Bi9410cen

- Semester: autumn
- Exercises: 2 hours/week
- Tutors: MUDr. J. Mičan, Mgr. J. Horáčková, Dr. S. Eyrilmez, Dr. A. Legrand
- Outline:
 - Visualize 3D structure of biomolecules
 - Obtain structures and relevant information from databases
 - **Analyze** function, stability and dynamics of biomolecules
 - Predict the structures of proteins and their complexes
 - Predict the effects of mutations and engineer protein properties

Other courses by Loschmidt Laboratories

EN

Molecular biotechnology - Bi7430

- Semester: autumn
- Lectures: 2 hours/week; exercises: 2 hours/week
- Lecturers: Dr. Z. Prokop, Dr. M. Marek, Dr. P. Dvořák, Dr. Š. Nevolová
- Outline:
 - Protein and metabolic engineering
 - Molecular diagnostics and modern vaccines
 - Cell and gene therapy and regenerative medicine
 - Molecular biotechnology in industry and agriculture

Other courses by Loschmidt Laboratories

CZ

Synthetic biology - **S2015**

- Semester: autumn
- Lectures: 2 hours/week
- Lecturers: Dr. M. Marek, Dr. K. Říha
- Outline:
 - Engineering concepts in synthetic biology
 - From genetic engineering to synthetic genomes
 - Protein engineering and design, from proteins to nanomachines
 - Metabolic engineering, artificial organelles

Other courses by Loschmidt Laboratories

CZ

Outline

- In Motivation
- What is Structural Biology and Bioinformatics
- Visualization of structure
- Energetics of structures
- Molecular interactions
- Determination of structure

Motivation

Sequence-structure-function paradigm

Introduction to structural biology and bioinformatics

Motivation

□ 3D structure ⇔ biological function

The inner life of the cell - XVIVO & Harvard University: <u>https://youtu.be/XOaiWI-nW1k</u>

Introduction to structural biology and bioinformatics

 Structural biology is the study of the molecular structure and dynamics of biological macromolecules, particularly proteins and nucleic acids, and how alterations in their structures affect their function Focused on the three-dimensional arrangement of biomolecules – the 3D structure – and their mutual interactions to understand their functions in the cell.

Makes biological objects visible and understood

- "Seeing is believing"
- To understand, we need to see

 "Unfortunately, we cannot accurately describe at the chemical level how a molecule functions unless we first know its structure"

James Watson, 1964

□ Important milestones

- 1838 Protein discovery Gerardus Mulder
- 1869 DNA discovery Friedrich Miescher
- 1953 DNA structure James Watson and Francis Crick
- 1958 Myoglobin crystal structure John Kendrew
- 1959 Hemoglobin crystal structure Max Perutz

Introduction to structural biology and bioinformatics

Several different scales

Several different scales

Bioinformatics is an interdisciplinary field that develops
 methods and software tools for understanding biological data,
 in particular when the data sets are large and complex.

 Sequence analysis, genomics, proteomics, systems biology, structural bioinformatics

A5ASC3.1	14	SIKLWPPSQTTRLLLVERMANNLST., PSIFTRK., YGSLSKEEARENAKQIEEVACSTANQHYEKEPDGDGGSAVQLYAKECSKLILEVLK 101
B4F917.1	13	SIKLWPPSESTRIMLVDRMTNNLST., ESIFSRK, YRLLGKQEAHENAKTIEELCFALADE,, HFREEPDGDGDGSSAVQLYAKETSKMMLEVLK 100
A9S1V2.1	23	VFKLWPPSQGTREAVRQKMALKLSSACFESQSFARIELADAQEHARAIEEVAFGAAQEADSGGDKTGSAVVMVYAKHASKLMLETLR 109
B9GSN7.1	13	SVKLWPPGQSTRLMLVERMTKNFITPSFISRKYGLLSKEEAEEDAKKIEEVAFAAANQHYEKQPDGDGSSAVQIYAKESSRLMLEVLK 100
Q8H056.1	30	SFSIWPPTQRTRDAVVRRLVDTLGG., DTILCKR., YGAVPAADAEPAARGIEAEAFDAAAA, SGEAAATASVEEGIKALQLYSKEVSRRLLDFVK 120
QOD4Z3.2	44	SLSIWPPSQRTRDAVVRRLVQTLVA., PSILSQR., YGAVPEAEAGRAAAAVEAEAYAAVTES, SSAAAAPASVEDGIEVLQAYSKEVSRRLLELAK 135
B9MVW8.1	56	SFSIWPPTQRTRDAIISRLIETLSTTSVLSKRYGTIPKEEASEASRRIEEEAFSGASTVASSEKDGLEVLQLYSKEISKRMLETVK 141
QOIYC5.1	29	SFAVWPPTRRTRDAVVRRLVAVLSGDTTTALRKRYRYGAVPAADAERAARAVEAQAFDAASASSSSSSSVEDGIETLQLYSREVSNRLLAFVR 121
A9NW46.1	13	SIKLWPPSESTRLMLVERMTDNLSSVSFFSRKYGLLSKEEAAENAKRIEETAFLAANDHEAKEPNLDDSSVVQFYAREASKLMLEALK 100
Q9C500.1	57	SLRIWPPTQKTRDAVLNRLIETLSTESILSKRYGTLKSDDATTVAKLIEEEAYGVASNAVSSDDDGIKILELYSKEISKRMLESVK 142
Q2HRI7.1	25	NYSIWPPKQRTRDAVKNRLIETLSTPSVLTKRYGTMSADEASAAAIQIEDEAFSVANASSSTSNDNVTILEVYSKEISKRMIETVK 110
Q9M7N3.1	28	SFKIWPPTQRTREAVVRRLVETLTSQSVLSKRYGVIPEEDATSAARIIEEEAFSVASV.ASAASTGGRPEDEWIEVLHIYSQEIXQRVVESAK 119
Q9M7N6.1	25	SFSIWPPTQRTRDAVINRLIESLSTPSILSKRYGTLPQDEASETARLIEEEAFAAAGSTASDADDGIEILQVYSKEISKRMIDTVK 110
Q9LE82.1	14	SVKMWPPSKSTRLMLVERMTKNITTPSIFSRKYGLLSVEEAEQDAKRIEDLAFATANKHFQNEPDGDGTSAVHVYAKESSKLMLDVIK 101
Q9M651.2	13	SIKLWPPSLPTRKALIERITNNFSSKTIFTEKYGSLTKDQATENAKRIEDIAFSTANQQFEREPDGDGGGSAVQLYAKECSKLILEVLK 100
B9R748.1	48	SLSIWPPTQRTRDAVITRLIETLSSPSVLSKRYGTISHDEAESAARRIEDEAFGVANTATSAEDDGLEILQLYSKEISRRMLDTVK 133

Introduction to structural biology and bioinformatics

- □ Some widespread-used programs
 - PyMOL http://www.pymol.org/
 - Chimera http://www.cgl.ucsf.edu/chimera/
 - VMD http://www.ks.uiuc.edu/Research/vmd/
- Various representation
 - Bond-based
 - Backbone-based
 - Surface-based
- □ Seeing is believing, but ...
 - Beware of misinterpretations and over-interpretations!

Bonds-based representation

- Fast, little resource-demanding
- Suitable for detailed analysis
- Incorrect impression about atom packing (empty space) and interatomic distances

□ Hydrogen atoms are often omitted for simplicity

Ball and stick

hydrogen (H)	white
carbon (C)	black
nitrogen (N)	blue
oxygen (O)	red
fluorine (F), chlorine (CI)	green

- Backbone-based representation
 - Moderately fast, not very resource-demanding
 - Suitable to investigate secondary structure and protein folds
 - Shows main landmarks; good for overall orientation in the structure

Surface-based representation

- Very slow, very resource-demanding
- Suitable to study shapes, volume, cavities and molecular contacts

Structure visualization

- □ Energy
- □ Entropy
- □ Free energy
- □ Energy landscape

- □ Energy
 - Internal energy U (const. V); enthalpy H (constant P), ...
 - Total energy often inaccessible -> differences in energy
 - Convention: negative energy is favorable, positive is unfavorable
 - Potential energy E_p interactions of atoms in a system
 - Kinetic energy E_k movement of atoms

```
U = E_p + E_kH = U + P.V
```

- □ Entropy
 - Related to the thermal disorder or conformational availability (degrees of freedom)
 - Total entropy S > 0
 - Higher entropy is more favorable

□ Free energy

- Helmholtz A or F (const. V), Gibbs G (const. P)
- Combination of internal energy or enthalpy and entropy S

A = U – TS; G = H – TS $\rightarrow \Delta G = \Delta H - T\Delta S$ (T = temperature)

• Negative change of free energy ($\Delta G < 0$) is favorable

Energy landscape

□ Relationship between structure and its potential energy

- Structure dictates potential energy how strong are the individual interactions
- Potential energy reflects probability of finding the different

structures – lower energy \rightarrow more frequently occurrence

- Potential/free energy surface
 - Minima stable structures
 - Saddle points transient
 - Maxima unstable structures
 - Energy barriers

Energy landscape

□ Relationship between structure and its potential energy

- Structure dictates potential energy how strong are the individual interactions
- Potential energy reflects probability of finding the different structures – lower energy → more frequently occurrence

Potential/free energy surface

- Minima stable structures
- Saddle points transient
- Maxima unstable structures
- Multidimensional surface

Energy landscape

□ Relationship between structure and its potential energy

- Structure dictates potential energy how strong are the individual interactions
- Potential energy reflects probability of finding the different

structures – lower energy \rightarrow more frequently occurrence

Molecular interactions

Molecular interactions

- Covalent interactions (chemical bonds)
 - Between two atoms sharing electrons
 - Very stable under standard condition
- Non-covalent interactions
 - Much weaker than covalent bonds
 - Electrostatic interactions
 - Polar interactions
 - Non-polar interactions

Electrostatic interactions

- □ Charge-charge or ionic interactions
 - Coulomb's law between any two charges
 - Attractive (opposite signs) or repulsive (same sign)
 - Long-range interactions (up to 10 Å) decrease with r²

$$F = \frac{q_1 \cdot q_2}{4\pi \cdot \varepsilon \cdot r^2}$$

r = distance $\varepsilon = \text{permittivity}$

Electrostatic interactions

- Charge-charge or ionic interactions
 - Environment-dependent
 - Permittivity

 $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_0 \cdot \boldsymbol{\varepsilon}_r$ $\boldsymbol{\varepsilon}_0 = \text{vacuum permittivity}$

• Relative permittivity (ε_r) = dielectric constant

 $F = \frac{q_1 \cdot q_2}{4\pi \cdot \varepsilon \cdot r^2}$

Electrostatic interactions

- □ Charge-charge or ionic interactions
 - Environment dependent
 - Salt concentration presence of counter-ions (Na⁺, K⁺, Cl⁻, etc.)
 - pH may induce a change of charge

Molecular interactions – electrostatics

Polar interactions

- Hydrogen bonds (H-bonds)
 - Only between highly electronegative atoms: fluorine, oxygen, nitrogen (F, O, N)
 - Donor and acceptor atoms sharing hydrogen
 - H-bond distance: 2.8 3.4 Å

 π orbitals

- **\Box** Aromatic (π - π) interactions
 - Attractive interaction between aromatic rings
 - Distance between the center of mass of rings: ~ 5 Å

Polar interactions

- Van der Waals (vdW) interactions
 - Between any two atoms
 - Permanent dipole-dipole (in polar molecules)

Non-polar interactions

- Van der Waals (vdW) interactions
 - Between any two atoms
 - London dispersion forces, or temporary dipole-induced dipole (in non-polar molecules)
 - Short-range interactions up to 5 Å

$$F_{
m VdW}(r)=-rac{AR_1R_2}{(R_1+R_2)6r^2}$$

 $R_1,R_2- ext{van}$ der Waals radii
 r - distance

Non-polar interactions

- Hydrophobic interactions
 - Entropic origin water molecules ordered around hydrophobic moiety -> unfavorable
 - Hydrophobic packing -> favorable release of some ordered water molecules

Protein folding game

- □ FOLD.IT <u>https://fold.it/</u>
 - Crowdsourcing computer game
 - Prediction of protein structures
 - You can contribute to help scientific research

Structure determination

Structure determination

- Established methods
 - X-ray crystallography
 - NMR spectroscopy
 - Electron microscopy
 - Bioinformatics predictions theoretical

Structure determination

- Crystallization procedures
 - Slow (days-weeks)
 - High risk of failure

Some Crystallization Methods:

Structure determination – X-ray crystallography

Data Collection

4-Circle Gonoimeter (Eulerian or Kappa Geometry)

X-ray sources: X-ray tubes, rotating anodes and synchrotrons.<u>Synchrotrons</u> produce the brightest X-rays (~70 worldwide)

APS Chicago

European Synchrotron Radiation Facility, Grenoble

Structure determination – X-ray crystallography

Image of diffraction

Electron density map

Building a structure model

Structure determination – X-ray crystallography

- Crystallization
 - Hanging drop, sitting drop, microbatch
- Data collection
 - Diffractometers, synchrotrons
- Analysis of diffraction data
 - Solving phase problem
 - Molecular replacement
 - Isomorphous replacement
 - Anomalous scattering
- Iterative model building

Parameters of an X-ray structure

Resolution

Measure of the level of detail present in the diffraction pattern

- R-factor (residual factor; R-value)
 - Measure of a model quality i.e. the agreement between the crystallographic model and the diffraction data
 - Varies from 0 (ideal) to 0.63 (random structure), typically about 0.2

Parameters of an X-ray structure

- B-factors (thermal factors)
 - Measure of how much an atom oscillates or vibrates around the

position specified in the model

Considered a measure of flexibility

- Advantages
 - No limitations in size
 - Possibility to obtain an atomic resolution
- Disadvantages
 - Requirement of a crystal
 - Structure in a crystalline state (non-native)
 - Static picture of macromolecule
 - Position of hydrogen atoms (usually) are not detected

NMR spectroscopy

- Nuclear magnetic resonance (NMR)
 - Detects energy transitions in the magnetic moments of nuclei with non-zero nuclear spins
 - Common isotopes:
 - ¹H, ¹³C, ¹⁵N, ³¹P, ³⁵Cl

900 MHz NMR spectrometer

NMR spectroscopy

Structure determination – NMR spectroscopy

Parameters of an NMR structure

□ RMSD

- Root-mean-squared deviation of atomic positions across the ensemble of solutions
- Reveals the mean differences between individual conformations
- Important parameter to compare different structures

of the same molecule

 $RMSD = \sqrt{\frac{1}{N}\sum_{i=1}^{N}\delta_i^2}$

 δ = atom displacement N = total No. atoms

Structure determination – NMR spectroscopy

NMR spectroscopy

- Advantages
 - Structure in solution state (native)
 - Possibility to investigate dynamics of macromolecules
 - Position of hydrogen atoms detected
- Disadvantages
 - Size limited to approximately 40 kDa (~ 400 amino acid proteins)
 - Requirement of isotopically labeled sample

Electron microscopy

FEI Tecnai T12 Cryotransmission Electron Microscope

Structure determination – electron microscopy

Electron microscopy

- Wavelength of an electron is much shorter than the wavelength of light
- $\Box \rightarrow$ so it can reveal much smaller thin,
- Samples are flash-frozen in their

natural environments (cryo-EM)

Can generate 3D images of large

molecules at nearly atomic resolution

The projection images are categorized into like groups.

Structure determination – electron microscopy

Electron microscopy

- Advantages
 - Applicable to extremely large systems
 - Complements other methods e. g. X-ray, NMR

- Disadvantages
 - Lower resolution (2-3 Å at best)

- Homology modeling
- Machine learning
- □ *Ab initio* prediction

Homology modeling

Structure determination – bioinformatics predictions

- Machine learning
 - Training on sequence and 3D databases
 - □ Ex.: AlphaFold 2

□ *Ab initio* prediction

Structure determination – bioinformatics predictions

Advantages

- Very fast (except *ab initio*)
- Low cost
- Disadvantages
 - Ab initio is very demanding
 - Theoretical model experimental validation is needed

References

- Petsko, G. A. & Ringe, D. (2004). Protein Structure and Function, New Science Press, London.
- Gu, J. & Bourne, P. E. (2009). Structural Bioinformatics, 2nd Edition, Wiley-Blackwell, Hoboken.
- Liljas, A. *et al.* (2009). Textbook Of Structural Biology, World Scientific Publishing Company, Singapore.
- Schwede, T. & Peitsch, M. C. (2008). Computational Structural Biology: Methods and Applications, World Scientific Publishing Company, Singapore.
- O'Donoghue, S. *et al.* (2010) Visualization of macromolecular structures. *Nature Methods* **7**: S42–S55.
- Zhou, H-X. & Pang, X. (2018) Electrostatic interactions in protein structure, folding, binding, and condensation. *Chemical Reviews*. **118**: 1691–1741