

Engineering of protein structures

Outline

- Overview of mutations
- Databases of mutations
- Missense mutations
- Prediction of mutational effects
- Rational design of proteins

Overview of mutations

- Errors in DNA replication during cell division
- Exposure to mutagens (physical or chemical agents)
- Viral infections
- By scientists' intervention

Mutations can be harmful or not

Overview of mutations

Location in the DNA

- Non-coding region -> affect gene expression (transcriptional regulation, mRNA stability, translation rates, location, etc.)
- Coding region (exons) -> may affect protein sequence

Overview of mutations

Types

- Point mutations a single nucleotide is changed in DNA (or RNA)
 - Substitutions
 - Single nucleotide polymorphism (SNP pronounced "snip")
 - Genetic variation; occurs in > 1 % of population
 - About 10,000,000 in the human genome
 - Insertions or deletions
 - Codons have triple nature (3 nucleotides → 1 amino acid)
 - Potential for frameshift (change in the grouping of codons, resulting in a different translation)
 - Can be very deleterious
- Other types (duplications, translocations, inversions, etc.)

Point mutations at protein level

Types of point mutations

Silent (synonymous SNP) – no effect on protein sequence

```
normal: ctg cag act — protein seq.
nucleotide seq.
mutation
mutated: ctg cag act
L 0 T
```

Missense (non-synonymous SNP) – substitution of amino acid

```
normal: ctg cag act — nucleotide seq.

* mutation

mutated: ctg cgg act

L R T
```

Nonsense – introduction of a stop codon -> protein truncation

```
normal: ctg cag act — protein seq.

* mutation

mutated: ctg tag act
```

Databases of mutations

- Human Genome Variation Society
 - http://www.hgvs.org
 - Lists all the available databases of human mutations by types
- □ Central mutation databases (>20)
 - Substitutions in all genes
 - Variability in protein sequences
 - Data mainly from literature
- □ Locus-specific databases (about 700)
 - Substitutions in specific genes
 - Typically manually annotated

Database of Single Nucleotide Polymorphisms - dbSNP

- https://www.ncbi.nlm.nih.gov/snp/
- Repository for both SNP and short deletion and insertion
- For human genome

Online Mendelian Inheritance in Man – OMIM

- http://omim.org/
- Comprehensive database of human genes and genetic phenotypes

OMIM Entry Statistics

Number of Entries in OMIM (Updated December 9th, 2020):

MIM Number Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
Gene description *	15,554	744	51	37	16,386
Gene and phenotype, combined +	30	0	0	0	30
Phenotype description, molecular basis known #	5,565	349	5	33	5,952
Phenotype description or locus, molecular basis unknown %	1,414	115	4	0	1,533
Other, mainly phenotypes with suspected mendelian basis	1,660	103	3	0	1,766
Totals	24,223	1,311	63	70	25,667

Human Gene Mutation Database - HGMD

- http://www.hgmd.cf.ac.uk/ac/index.php
- Comprehensive collection of mutations in nuclear genes
 that underlie or are associated with human inherited disease

UniProtKB/Swiss-Prot

- http://www.uniprot.org/UniProtKB/
- High-quality manually annotated protein entries with partial lists of

known sequence variants

Locus-specific databases

☐ For information on gene-specific databases

ATP-binding cassette, sub-family D (ALD), member 1 300371	A-iii ikeu Aurenoleukouysii oprily <i>Dalaba</i> se http://www.x-ald.nl	Ronald R.J.A. Wanders Lab. of Genetic Metabolic Diseases Academic Medical Ctr. Amsterdam, The Netherlands.
ABO ABO blood group (transferase A, alpha 1-3-N-acetylgalactosaminyltransferase; transferase B, alpha 1-3-galactosyltransferase) 110300	Blood Group Antigen Mutation Database http://www.ncbi.nlm.nih.gov/gv/mhcks/sgi.egi?emd=bgmut/home	Olga O. Blumenfeld Department of Biochemistry, Santosh Patnaik, Department of Cell Biology, Albert Einstein College of Medicine New York, NY. U.S.A
ACAD8 acyl-CoA dehydrogenase family, member 8 604773	Innsbruck Metabolic Diseases Pages http://lovd.i-med.ac.at/home.php?select_db=ACAD8	Barbara Lanthaler, Stefanie Kalb and Martina Witsch-Baumgartner
ACADM acyl-CoA dehydrogenase, C-4 to C-12 straight chain 607008	CCHMC - Human Genetics Mutation Database https://research.cchmc.org/LOVD/home.php?select_db=ACADM	Ammar Husami, Brian Richardson, Edita Freeman, Kerry Shooner, Thedia Jacobs and Theru A Sivakumaran
ACADSB acyl-CoA dehydrogenase, short/branched chain 600301	Innsbruck Metabolic Diseases Pages http://lovd.i-med.ac.at/home.php?select_db=ACADSB	Barbara Lanthaler, Stefanie Kalb and Martina Witsch-Baumgartner
ACADVL acyl-CoA dehydrogenase, very long chain 609575	CCHMC - Human Genetics Mutation Database https://research.cchmc.org/LOVD/home.php?select_db=ACADVL	Ammar Husami, Brian Richardson, Edita Freeman, Kerry Shooner, Thedia Jacobs and Theru A Sivakumaran
ACE2 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 300335	ACE2 database at LOVD http://www.LOVD.ni/ACE2	Johan T. den Dunnen Leiden Univ. Med Centre (acting), Curator vacancy
ACHE acetylcholinesterase (Yt blood group) 100740	Blood Group Antigen Mutation Database http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=bgmut/home	Olga O. Blumenfeld Department of Biochemistry, Santosh Patnaik, Department of Cell Biology, Albert Einstein College of Medicine New York, NY. U.S.A
ACOT9 acyl-CoA thioesterase 9	ACOT9 database at LOVD http://www.LOVD.nl/ACOT9	Johan T. den Dunnen Leiden Univ. Med Centre (acting), Curator vacancy
ACSL4 acyl-CoA synthetase long-chain family member 4 300157	ACSL4 database at LOVD http://www.LOVD.nl/ACSL4	Johan T. den Dunnen Leiden Univ. Med Centre (acting), Curator vacancy
ACTA1 actin, alpha 1, skeletal muscle 102610	Laing Laboratory Skeletal muscle alpha-actin (ACTA1) http://acta1.waimr.uwa.edu.au/home.php?select_db=ACTA1	Nigel Laing and Kristen Nowak

Missense mutations

Missense mutations

- Mutations affecting structure
 - Stability & folding
 - Aggregation
- Mutations affecting function
 - Binding & catalysis
 - Transport processes
 - Protein dynamics
 - Protein localization

Major <u>pathogenic</u> consequences of missense mutation

- Compromised folding the protein has modified folds or presents more unfolded states
- Decreased stability the lifetime of the protein is decreased
- Increased aggregation

- Molecular basis of mutations affecting folding & stability
 - Introduced clashes common for small to large mutations in

buried residues

Loss of interactions – most pronounced effects related to H-bonds,

salt bridges and aromatic interactions

- Molecular basis of mutations affecting folding & stability
 - Altered conformation of protein backbone mutations concerning residues with specific backbone angles (especially glycine and proline)

NOTE:

- Glycine the most flexible amino acid
- Proline the most rigid

- Changes in charge/hydrophobicity
 - Introducing hydrophilic/charged residue into the protein core
 - Introducing hydrophobic residue onto the protein surface

Mutations can reduce solubility or increase aggregation

- Alterations on the surface residues may affects the solubility (ex: reduction of charge)
- Hydrophobic mutations can increase protein aggregation
- Aggregating proteins usually have high level of β -structures

Aggregation modulated by short specific sequences

- Aggregation-prone regions (APRs) are sequences of 5-15 hydrophobic residues
- They tend to stack and form amyloid fibrils (cross-β spines)
- Some mutations can increase the propensity to form such amyloid structures

Effect on binding and catalysis

- Binding sites are tuned to bind specific molecules and stabilize transition states
- Mutations can disrupt or improve the binding and catalysis
- Example drug-resistance of HIV-1 protease mutants

Means: isoleucine in position 84 was mutated to valine

Effect on ligand transport

- Pathways are adjusted to permit transport of specific molecules
- Mutations can speed-up or disrupt the transport, or allow the transport of different molecules

Leu177Trp => tunnel becomes almost *closed*

release of products 500x slower

Effect on protein dynamics

- Dynamics enables proteins to adapt to their binding partners and interchanging between conformations
- Mutations can:
 - Make regions more rigid (targeting hinge or very mobile regions,
 ex.: loops) -> reduced adaptability
 - Increase flexibility of rigid regions (targeting residues with many contacts in mobile elements) -> increased adaptability
- These change may affect activity, specificity or even recognition

Effect on protein localization

- After translation, the protein must be <u>translocated</u> to the appropriate cellular compartment
- Translocation can be regulated by short sequences (Signal Peptides)
 on the N-terminus, by Translocation Complexes, Chaperones, etc.
- Mutations can disrupt or alter the signal, or complex formation ->
 protein fails to be transported to the correct subcellular location
 - Missing protein -> inactive reaction pathways or unregulated signaling cascades
 - Mislocalized protein -> active in the wrong cellular compartment, causing harmful effects

Prediction of mutational effects

- □ Identification of mutable residues
- Prediction of the effects on structure
- Prediction of pathogenicity

- ☐ The effect of mutations on the protein can be predicted directly from the role of the modified residue
- Mutation of evolutionary conserved residues
 - Residues <u>important</u> for protein function or stability tend to be highly conserved over evolution
 - Mutation of highly conserved residues -> often lead to destabilization or loss of function
 - Mutation of highly variable residues -> often neutral

Mutations affecting stability & folding

- Mutation of residues with <u>many contacts</u> or with favorable interaction energy -> often destabilizing or compromise folding
- Mutation of residues in protein core -> often destabilizing
 - Small residue to large -> steric clashes
 - Large to small -> loss of contacts (creation of a void)
 - Polar to non-polar -> loss of H-bond
 - Neutral to charged -> introduction of isolated charge
- Mutation of residues on <u>protein surface</u> (often neutral)
 - Polar to hydrophobic -> desolvation penalty (destabilizing)
- Mutation involving <u>proline</u> or <u>glycine</u> -> <u>altered conformation</u>

Mutations affecting function

- Mutation of residues in binding or active sites -> modify binding or catalysis
- Mutation of residues in transport pathways -> modify transport
- Mutation of hinge or mobile residues, residues on loops with many contacts -> modify flexibility
- Mutation of residues directing protein localization -> mislocalization of proteins

Tools for annotating (identifying) the role of residues

- Individual tools for specific analysis
 - Evolutionary conservation ex:. ConSurf, ...
 - Residue contacts ex: Contact Map Web Viewer, ...
 - Residue interactions ex: Protein Interaction Calculator, ...
 - Accessible surface area ex: AsaView, Naccess, ...
 - Binding sites ex: CASTp, metaPocket 2.0, meta-PPISP, ...
 - Transport pathways ex: CAVER 3.0, POREWALKER, ...
 - Protein dynamics ex: NMA, molecular dynamics, ...
 - Protein localization ex: SignalP, TargetP, Phobius, TMHMM, ...

- HotSpot Wizard meta-server combining several tools
 - http://loschmidt.chemi.muni.cz/hotspotwizard/
 - Homology modelling, MSA, conservation, correlation, pockets and tunnels detection, docking, stability prediction, design of smart library

□ Prediction of mutant structures – general workflow

- Mutated residue and its surroundings represented by rotamers
 from rotamer library (conformations derived form X-ray structures)
- The best set of rotamers selected by Monte Carlo approach
- Optionally energy minimization, backbone flexibility
- Comparing structures of mutant and native protein -> assessment

of the mutational effect ($\Delta\Delta G = \Delta G^{Mut} - \Delta G^{Native}$)

Available tools

- Geometric: PyMOL; WhatIF
- Energy-based: FOLDX, Rosetta-ddG
- Homology: Swiss Model, MODELLER, etc.

PyMOL

- https://pymol.org/
- Mutagenesis module
- User can choose rotamers and visualize potential clashes
- Very fast; fixed backbone; no mutational scoring

- http://foldxsuite.crg.eu/
- Stand alone, with plug-in to Yasara modeling tool
- Fast (minutes)
- Fixed backbone conformation
- Construction of single or multiple mutants
- Empirical scoring function for calculation of stability change ($\Delta\Delta G$)

□ FOLDX

Prediction of effects on structure

Rosetta-ddG

- Under https://www.rosettacommons.org/
- Stand alone with bash and python scripts available
- Slow (hours-days)
- Fixed or flexible backbone conformation
- Construction of single or multiple mutants
- Empirical force field for calculating structure and stability of wild-type and mutant
- Construction of PDB and prediction of stability change ($\Delta\Delta G$)
- ☐ AlphaFold 3, ESM Fold, etc. (ML-based)
 - Only structural prediction (no stability score)

Prediction of impact of mutation on protein function

- Tools employ machine learning approaches
- Trained on functional experimental data
- Predictions can be based on sequence only
- Qualitative results i.e. deleterious versus neutral
- Primarily intended for pathogenicity prediction (leading to disease)

Available tools

- MutPred, SNAP, PhD-SNP, SIFT, MAPP ...
- PredictSNP meta server combining a pipeline of many tools

□ PredictSNP:

- http://loschmidt.chemi.muni.cz/predictsnp/
- Combines many tools for Protein or DNA assessment of SNPs

Consensus classifiers for prediction of disease-related mutations

Consensus classifier for prediction of the effect of amino acid substitutions.

Consensus classifier for prediction of the effect of *nucleotide* substitutions.

□ There are many more tools out there

Method	Based on	Training set	Conservation analysis	Structural attributes	Annotations	Website
MutPred	RF	HGMD, Swiss-Prot	SIFT, Pfam, PSI-BLAST	Predicted attributes	_	http://mutpred.mutdb.org/
nsSNPAnalyzer	RF	Swiss-Prot	SIFT	Homologue mapping	_	http://snpanalyzer.uthsc.edu/
Panther	Alignment scores	-	Panther library, HMMs	-	-	http://www.pantherdb.org/tools/ csnpScoreForm.jsp
PhD-SNP	SVM	Swiss-Prot	Sequence environment, sequence profiles	_	-	http://gpcr2.biocomp.unibo.it/cgi/ predictors/PhD-SNP/PhD-SNP.cgi
PolyPhen	Empirical rules	-	PSIC profiles	Homologue mapping/predictions	Swiss-Prot	http://genetics.bwh.harvard.edu/pph/
PolyPhen2	Bayesian classification	Swiss-Prot, neutral pseudo-mutations	PSIC profiles	Homologue mapping/predictions	Pfam domain	http://genetics.bwh.harvard.edu/pph2/
SIFT	Alignment scores	_	MSAs	-	-	http://sift.jcvi.org/
SNAP	NN	PMD, neutral pseudo-mutations	PSIC profiles, Pfam, PSI-BLAST	Predictions	-	http://rostlab.org/services/snap/
SNPs&GO	SVM	Swiss-Prot	Sequence environment, sequence profiles, Panther	-	GO	http://snps-and-go.biocomp.unibo.it/ snps-and-go/

Rational design of proteins

- Protein engineering: sometimes we can use mutagenesis to rationally design proteins according to our needs
- Properties that can be modified by mutagenesis

Rational design of proteins

- Protein engineering: sometimes we can use mutagenesis to rationally design proteins according to our needs
- Properties that can be modified by mutagenesis
 - Stability
 - Function
 - Binging site (catalytic activity or substrate specificity)
 - Macromolecular interface
 - Molecular tunnels/channels
 - Solubility

- Prediction of stability change upon mutation
 - Structure of mutant protein may not be produced
 - Tools often employ
 - Empirical scoring functions
 - Evolutionary conservation analysis (ex: back-to-consensus)
 - Machine learning approaches
- Available tools
 - Energy-based: Rosetta-ddG, FOLDX
 - Evolution-based: FireProt^{ASR}
 - Hybrid approaches: FireProt, PROSS

□ FireProt

- https://loschmidt.chemi.muni.cz/fireprotweb
- In silico analysis of all possible mutations
- Energy- and evolution-based analyses
- Multiple-point mutants for gene synthesis

□ FireProt

□ FireProt

Combined m	utant	Energy mutant	Evolutio	n mutant	Wild-type					
Mutation info				Energy information			Evolution information			
visualize	chair	position	ref	alt	not conserved	not correlated	rosetta	mutable by majority	mutable by ratio	foldx
= A =									7	
•	Α	11	D	P	√	√	-1.89	×	×	-1.39
\odot	A	20	E	S	1	✓		✓	✓	0.08
•	А	33	Т	1	✓	✓	-1.94	х	×	-1.31
\odot	A	119	N	Н	X	✓		✓	×	-1
•	А	145	Α	L	✓	V	-1.71	×	×	-2.77
\odot	А	148	Т	L	✓	✓	-2.15	×	×	-1.84
•	Α	155	Α	P	✓	✓	-0.85	✓	✓	-1.1
\odot	A	164	D	М	✓	✓	-1.85	x	×	-1.18
•	Α	176	С	W	✓	✓	-6.69	×	×	-1.76
•	Α	187	D	W	✓	✓	-2.81	x	×	-1.1
•	Α	198	D	S	√	✓	¥	✓	×	-0.7
•	А	200	E	R	√	✓		✓	×	-0.4
\odot	Α	217	N	W	√	✓	-1.76	✓	✓	-1.38
•	Α	285	E	Α	√	1		✓	×	-0.38

□ PROSS

- https://pross.weizmann.ac.il/step/pross-terms/
- Combination of mutations "allowed" by conservation analysis and Rosetta calculations (energy)

PROSS: the Protein Repair One-Stop Shop

□ FireProt^{ASR}

- https://loschmidt.chemi.muni.cz/fireprotasr
- Ancestral sequence reconstruction (ASR)
- Automated ancestral inference & phylogenetic tree
- Useful to find stable ancestral enzymes

□ FireProt^{ASR}

- https://loschmidt.chemi.muni.cz/fireprotasr
- Ancestral sequence reconstruction (ASR)
- Automated ancestral inference & phylogenetic tree
- Useful to find stable ancestral enzymes

RosettaDesign

- http://rosettadesign.med.unc.edu/
- Monte Carlo sampling (random search) to predict minimum-energy structure of mutants
- Predicts free energy changes upon mutations ($\Delta\Delta G$)
- Helps design mutations to optimize the binding site and increase

interactions with a ligand/substrate

PocketOptimizer

- https://github.com/Hoecker-Lab/pocketoptimizer/
- Aimed at maximizing the affinity of a binding site towards a ligand
- Modular pipeline with different tools
 - Flexibility, docking, mutagenesis, energy calculation
 - Predicts global minimum-energy designs

FuncLib

- https://funclib.weizmann.ac.il
- To redesign and/or optimize binding site
- Utilizes evolution (conservation) and Rosetta calculations (energy)
 to introduce multiple-point mutations to modify the properties of
 the binding site
- Can be used to improve the binding affinity towards a ligand
- Outputs up to 50 multiple-point mutants for protein synthesis

□ FuncLib

Parameter	Value	
Minimal number of mutations per design	3	
Maximal number of mutations per design	5	
Minimal PSSM threshold	-1 ~	
ΔΔG	5.5 ~	
Sequence space	143A FY	
	144A P	
	151A FMY	
	177A LAGNST	
	211A ILMV	
	247A AGMSTVY	
	248A LIMV	
Total number of designs in tolerated sequence space	3,313	
Reset Verify Proceed		

AffiLib

- https://affilib.weizmann.ac.il
- To optimize protein-protein interface
- Utilizes evolution (conservation) and Rosetta (energy) to introduce
 mutations and optimize macromolecular interface
- Suggests mutations on the interface residues to improve the binding affinity
- Outputs up to 50 multiple-point mutants for protein synthesis

- Mutation Cutoff Scanning Matrix (mCSM-PPI2)
 - http://biosig.unimelb.edu.au/mcsm_ppi2/
 - To optimize protein-protein interface
 - Based on machine learning, evolutionary data and energy (FoldX)
 - Provides mutational ΔΔG
 - Modes of calculations
 - Single mutation single point mutations on interface
 - Mutation list single mutations accordingly to a user
 - Alanine scanning (all interface residues are mutated to alanine)
 - Systematic position saturation (all interface residues are mutated to all other 19 amino acids)

- □ **Aggrescan3D**; **SoluProt** (see lecture 7 Analysis of protein structures)
- SolubiS
 - https://solubis.switchlab.org/
 - To identify stabilizing mutations that reduce the aggregation tendency of a protein
 - 1) Identifies exposed APRs
 - 2) Introduces "gatekeeper" residues (P, R, K, D and E) into APRs
 - 3) Assesses the stability changes of mutations ($\Delta\Delta G$)

References I

- □ Ng, P. C. & Henikoff, S. (2006) Predicting the effects of amino acid substitutions on protein function. *Annual Review of Genomics and Human Genetics* **7**: 61-80.
- Thusberg, J. & Vihinen, M. (2009) Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. *Human Mutation* **30**: 703-714.
- Potapov, V. et al. (2009) Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Engineering, Design & Selection 22: 553-560.

References 59

References II

- □ Khan, S. & Vihinen, M. (2010) Performance of protein stability predictors. *Human Mutation* **31**: 675-684.
- Bendl, J. et al. (2016) PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions. PLOS Computational Biology 12: e1004962.
- Musil, M. et al. (2019) Computational Design of Stable and Soluble
 Biocatalysts. ACS Catalysis 9: 1033–1054.
- Planas-Iglesias, J. et al. (2021) Computational design of enzymes for biotechnological applications. Biotechnology Advances 47:107696

References 60