

Applications of structural

biology and bioinformatics

Outline

- Structural biology paradigm
- Applications of structural biology and bioinformatics
 - Biological research
 - Drug design
 - Protein engineering
- Summary
- □ Final remarks on the course

A structural biology paradigm...

Sequence-Structure-Function

□ Challenges:

- Determine structure from sequence
- Determine function from sequence/3D structure
- Modify function (by modifying sequence or external molecules)

Sequence-Structure-Function

A structural paradigm...

Applications of structural biology and bioinformatics

- Biological research
- Drug design
- □ Protein engineering

Applications of structural biology and bioinformatics

- Biological research
- Drug design
- Protein engineering

Biological research

□ HIV-1 protease

- Plays critical role in viral maturation for producing viral particles
- Aspartic protease with characteristic triad Asp-Thr-Gly
- Symmetric homodimer, 99 amino acids per monomer
- In the protease structure
 - Active site cavity
 - Flexible flaps
 - Dimer interface

□ HIV-1 protease

- Plays critical role in viral maturation for producing viral particles
- Aspartic protease with characteristic triad Asp-Thr-Gly
- Symmetric homodimer, 99 amino acids per monomer
- In the protease structure
 - Active site cavity
 - Flexible flaps
 - Dimer interface
- Flap opening/closing is crucial for catalysis

By comparing 2 crystal structures (PDBs: 1HXW and 1TW7)

□ HIV-1 protease

- Plays critical role in viral maturation for producing viral particles
- Aspartic protease with characteristic triad Asp-Thr-Gly
- Symmetric homodimer, 99 amino acids per monomer
- In the protease structure
 - Active site cavity
 - Flexible flaps
 - Dimer interface
- Flap opening/closing is crucial for catalysis

- Protease inhibitors (PIs)
 - Introduced into clinical practice in 1995 known as antiretrovirals
 - Competitive inhibitors, designed to mimic the transition state of the substrate-enzyme complex
 - Binding affinity in nanomolar to picomolar range (very high)
 - Currently ~ 10 different inhibitors available

Nelfinavir, atazanavir

- Drug resistance to Pls
 - Drug resistance emerged against all clinically available PIs
 - Resistant mutations in HIV-1 protease reduced susceptibility to inhibitors while maintaining protease function
- Important factors in development of drug resistance
 - Rapid mutation
 - High rate of viral replication (10⁸-10⁹ virions/day)
 - High error rate of HIV reverse transcriptase (≈1 in 10,000 bases)
 - Long term exposure to drugs

- Molecular mechanisms of drug resistance
 - Deduced from comparison of structures and activities of

native and mutant proteases

Biological research

- Molecular mechanisms of drug resistance
 - Deduced from comparison of structures and activities of native and mutant proteases
- Several distinct mechanisms
 - Active site mutations
 - Mutations at dimer interface
 - Mutations at distal positions

- □ Active site mutations
 - Mutation of single residue in the active site cavity eliminating direct interactions with inhibitor
 - Mutations are very conservative ex: substitutions of hydrophobic amino acids

Biological research

- Mutations at dimer interface
 - For example: Phe53Leu
 - Wider separation of the two flaps
 - Reduced stabilization of bound inhibitor

Biological research

- Mutations at distal positions
 - For example: Leu90Met
 - Promoted contacts with catalytic Asp25
 - Reduced interaction with inhibitor

- Novel PIs for resistant HIV-1 protease
 - Inhibitors fitting within envelope formed by bound substrate
 - Inhibitors binding flaps or the dimer interface
 - Inhibitors targeting main chain and conserved regions of active site
 - Inhibitors targeting the gating mechanism

- □ Novel PIs for resistant HIV-1 protease
 - Inhibitors targeting the gating mechanism
 - Stabilize the closed state
 - Stabilize the open state
 - Mixed interactions (AS and gating elements)

- Virtual screening of inhibitors of endonuclease MUS81
- □ Selective inhibitor of LTA4H

- Methods of drug discovery
 - Ligand-based
 - Knowledge of active ligands
 - Search for similar ones

- Methods of drug discovery
 - Ligand-based
 - Knowledge of active ligands
 - Search for similar ones
 - Structure-based
 - Knowledge of receptor
 - Search for strong binders
 - Molecular docking

- Methods of drug discovery
 - Ligand-based
 - Knowledge of active ligands
 - Search for similar ones
 - Structure-based
 - Knowledge of receptor
 - Search for strong binders
 - Molecular docking
 - High-throughput screening (HTS)
 - Large library of compounds
 - Experimental or in silico screening

Virtual screening

- Structure-based VS
 - Receptor-ligand docking
 - Often combined with HTS
 - Followed by hit optimization
 - Many success stories
 - Speed-up drug discovery
 - Lower the costs

Scoring and Ranking Stage: Discrimination of potential binders

Virtual screening

Drug Target	Disease Target or Function	Receptor	SBVS Method	Comment	Potency of Lead Scaffold (IC50)
EGFR	Cancer	X-Ray	ICM	First SBVS to EGFR crystal structure	10 µM
Casein Kinase 2	Prostate Cancer	X-Ray	MOE, GLIDE, FRED and GOLD	Multiple docking algorithms and consensus scoring	20 nM
β-Secretase	Alzheimers	X-Ray	SEED	Fragment-based	10 µM
DPP-IV	Diabetes	X-Ray	FlexX	Fragment-based	3-70 μM
SARS-CoV	SARS	X-Ray	EUDOC	Receptor Ensemble Docking approach	23 µM
SHBG	Endometrial cancer, ovarian dysfunction, male and female infertility osteoporosis and diabetes	X-Ray	GLIDE	Ligand-based and structure-based	13-124 μM
SARS-CoV	SARS	Model	DOCK 4.01	Screened NCI, ACD, MDDR + consensus scoring	K _i = 61-178 μM
L-xylulose reductase	Diabetes	X-Ray	DOCK 4.01	Screened NCI database	29-100 μM
HSP 90	Cancer	X-Ray	RDOCK	Post VS crystal structure provides rationale to docking results	0.6-26 µM
ER-β	Alzheimers	X-Ray	GOLD 2.0	25000 plant based ligands	680 nM

Inhibitors of endonuclease MUS81

- DNA structure-specific endonuclease MUS81
 - Endonucleases are involved in DNA reparation
 - Help maintaining genomic stability
 - Cancer cells often have higher replication rates
 - MUS81 is a target for anti-cancer drug development

Inhibitors of endonuclease MUS81

- □ High-throughput screening (HTS)
 - Robotic platform at Center of Chemical Genetics, ASCR, Prague
 - About 23,000 compounds experimentally tested
 - Identified 1 effective inhibitor: $IC_{50} = 50 \mu M$

Inhibitors of endonuclease MUS81

- □ Structure-based VS
 - Molecular docking + rescoring of binding interaction
 - Binding of more than 140,000 compounds predicted
 - Experimental verification on 19 potential inhibitors
 - Identified 6 effective inhibitors with $IC_{50} \le 50 \mu M$
 - Best inhibitor: $IC_{50} = 5 \mu M$

Comparison

	HTS	VS	
Equipment (Kč)	50,000,000	500,000	
Testing			
Computational	-	140,000	
Experimental	23,000	19	
Costs (Kč)	2,000,000	40,000	
Time	Weeks	Days	
Results			
# of inhibitors	1	6	
Best: IC ₅₀ (µM)	50	5	

Selective inhibitor of LTA4H

- Leukotriene A4 hydrolase/aminopeptidase (LTA4H)
 - Involved in chronic inflammatory and immunological diseases
 - Bifunctional metalloenzyme
 - Catalyzes hydrolysis of the leukotriene A4 (LTA4) into the pro-inflammatory mediator LTB4
 - Also hydrolyses the pro-inflammatory Pro-Gly-Pro
 - Distinct but overlapping

Pro-Gly-Pro

Selective inhibitor of LTA4H

- Leukotriene A4 hydrolase/aminopeptidase (LTA4H)
 - Structural studies (crystallography) with a tripeptide analogue revealed the aminopeptidase mechanism

Selective inhibitor of LTA4H

- Leukotriene A4 hydrolase/aminopeptidase (LTA4H)
 - Structural studies (crystallography) with a tripeptide analogue revealed the aminopeptidase mechanism
 - This knowledge allowed designing a selective inhibitor that blocks the hydrolysis of LTA4 but NOT the hydrolysis of Pro-Gly-Pro
 - New promising lead compound against chronic inflammation

Protein engineering

- Stabilization of dehalogenase
- Dehalogenase activity
- Lipase enantioselectivity
- De novo design of a Diels-Alderase

Enzymes: practical applications?

Protein engineering

Enzymes: practical applications?

- Ability to catalyse a desirable reaction
- Stable under operating conditions
- Soluble expression
Enzymes: practical applications?

- Ability to catalyse a desirable reaction
- Stable under operating conditions
- Soluble expression

Protein engineering process

- Improvement of activity or selectivity
- Robust stabilization of proteins
- Design of more soluble proteins

Different approaches

- Dehalogenase DhaA
 - Bacterial origin
 - Hydrolytic cleavage of C-X bond
 - Multiple biotechnological applications

By-product recycling

Biosensing

Bioremediation

Cell imaging & protein analysis

Biocatalysis

Decontamination

- Dehalogenase DhaA
 - Melting temperature $T_{\rm m}$ = 49 °C
 - Unstable at high temperatures
 - Activity half live at 60 °C $\tau_{1/2}$ ~ 5 min

- **Gene Site Saturation Mutagenesis**
 - Joint project of Diversa and DOW Chemical
 - All 19 possible mutations at 315 positions tested experimentally
 - → 120,000 measurements
 - In single-point mutants more stable
 - Cumulative mutant:
 - *T*_m = 67 °C (18 °C ↑)
 - τ_{1/2} = 36 h (ca. 36 h ↑)

- Rational design
 - FIREPROT method
 - Structure and sequence analyses
 - ~5,500 possible mutants

- Rational design
 - FIREPROT method

- Rational design
 - FIREPROT method

- Rational design
 - FIREPROT method

FIREPROT method

Energy-based

Protein engineering

Evolution-based

N10D

M1L

FIREPROT method

Combined mutant

Rational design

- **Rational design**
 - **FIREPROT** method

Energy-based

Protein engineering

Evolution-based

- Rational design
 - FIREPROT method
 - Structure and sequence analyses
 - ~5,500 mutants predicted
 - Experimental verification on
 5 multiple-point mutants
 - 3 mutants more stable
 - Best mutant (combined):

*T*_m = 74 °C (25 °C ↑)

τ_{1/2} = 72 h (ca. 72 h↑)

□ Comparison

	GSSM	Rational design
Equipment (Kč)	20,000,000	500,000
Testing		
Computational	-	5,500
Experimental	120,000	5
Costs (Kč)	1,000,000	80,000
Time	Months	Weeks
Results		
# of stable mutants	11	3
Best: $\Delta T_{\rm m}$ (°C)	18	25
τ _{1/2} (h)	36	72

TCP: toxic persistent pollutant
 from industrial sources

- DhaA dehalogenase (poor catalyst)
 - DhaA31: 5 mutations narrowed the access tunnels
 - □ 32-fold higher catalytic rate (k_{cat}) ; release of product became

limiting step

□ Catalytic cycle: enzymes with buried active site

Conclusions

- Catalytic improvements explained
- Key mutations identified
- New hot-spots for mutagenesis

- □ Lipase (EC 3.1.1.3, bacterial enzyme)
 - Triacylglycerol + $H_2O \rightarrow$ diacylglycerol + carboxylic acid
 - Versatile biocatalysts: catalyze hydrolysis of carboxylic esters, esterification, transesterification, etc.
 - Many industrial applications
 - Food, detergent, pharmaceutical, leather, textile, cosmetic, paper industries

- □ Lipase (EC 3.1.1.3, bacterial enzyme)
 - Triacylglycerol + $H_2O \rightarrow diacylglycerol + carboxylic acid$
 - Versatile biocatalysts: catalyze hydrolysis of carboxylic esters, esterification, transesterification, etc.
 - Many industrial applications
 - Food, detergent, pharmaceutical, leather, textile, cosmetic, paper industries
 - Used to resolve <u>racemic mixtures</u>

- □ Lipase (EC 3.1.1.3, bacterial enzyme)
 - Triacylglycerol + $H_2O \rightarrow$ diacylglycerol + carboxylic acid
 - Versatile biocatalysts: catalyze hydrolysis of carboxylic esters, esterification, transesterification, etc.
 - Many industrial applications
 - Food, detergent, pharmaceutical, leather, textile, cosmetic, paper industries
 - Used to resolve racemic mixtures

- □ Lipase (EC 3.1.1.3, bacterial enzyme)
 - Molecular modeling suggested residues in the tunnel controlling substrate access are key to enantioselectivity
 - Saturated mutagenesis at 3 positions
 - Mutants with higher E-value and conversion %

Variants	Enantiopreference	E value	Conversion [%]
Wild-type	R	13 (± 1.8) ^[b]	6.5 (48 h)
V266G	S	20 (±4) ^[c]	6.6 (51 h)
L17S	R	128 (±35) ^[b]	15.6 (49 h)
L17M	R	133 (±31) ^[b]	15.5 (48 h)

- □ Lipase (EC 3.1.1.3, bacterial enzyme)
 - Molecular modeling suggested residues in the tunnel controlling substrate access are key to enantioselectivity
 - Saturated mutagenesis at 3 positions
 - Mutants with higher E-value and conversion %

□ Lipase (EC 3.1.1.3, bacterial enzyme)

Molecular dynamics with substrates

Variants	Enantiopreference	E value	Conversion [%]
Wild-type	R	13 (±1.8) ^[b]	6.5 (48 h)
V266G	S	20 (±4) ^[c]	6.6 (51 h)
L17S	R	128 (±35) ^[b]	15.6 (49 h)
L17M	R	133 (±31) ^[b]	15.5 (48 h)

- Lipase (EC 3.1.1.3, bacterial enzyme)
 - Molecular dynamics with substrates

Variants	Enantiopreference	E value	Conversion [%]
Wild-type	R	13 (± 1.8) ^[b]	6.5 (48 h)
V266G	S	20 (±4) ^[c]	6.6 (51 h)
L17S	R	128 (±35) ^[b]	15.6 (49 h)
L17M	R	133 (±31) ^[0]	15.5 (48 h)

- Steric changes on either side of the active site favor reactive binding of one enantiomer
- Combined mutations favor one enantiomer and disfavor the other

Time

De novo design of a Diels-Alderase

- Non-existing Diels-Alderase
 - Goal: design biocatalyst for intermolecular Diels-Alder reaction
 - \rightarrow very specific geometric and electronic requirements \rightarrow theozymes

diene dieneophile

Diels–Alder cycloaddition

De novo design of a Diels-Alderase

- Non-existing Diels-Alderase
 - Goal: design biocatalyst for intermolecular Diels-Alder reaction
 - \rightarrow very specific geometric and electronic requirements \rightarrow theozymes
 - Design: computational match with protein scaffolds and refinement
 - Mutagenesis: site-directed to design active site
 - Evaluated library: < 100</p>
 - Results: creation of functional & stereoselective Diels-Alderase

- □ Structural biology methods are important tools to:
 - Explain biological phenomena
 - Increase efficiency of drug discovery
 - Successfully engineer proteins for biotechnological applications
- Often produce better results than experimental brute-force
- □ Can reduce costs and save time

- □ Structural biology methods are important tools to:
 - Explain biological phenomena
 - Increase efficiency of drug discovery
 - Successfully engineer proteins for biotechnological applications
- Often produce better results than experimental brute-force
- Can reduce costs and save time

□ This lesson will not be on the exam!

References

- Congreve, M. *et al.* (2005) Structural biology and drug discovery. *Drug Discov Today* **10**: 895-907.
- Lee, D. *et al.* (2007) Predicting protein function from sequence and structure.
 Nat Rev Mol Cell Biol. 8: 995-1005
- Lutz, S. (2010) Beyond directed evolution semi-rational protein engineering and design. *Curr Opinion Biotechnol* **21**: 734–743.
- Weber, I. T. & Agniswamy, J. (2009) HIV-1 protease: structural perspectives on drug resistance. *Viruses* 1: 1110-1136.
- Marques, S.M. *et al.* (2017) Catalytic cycle of haloalkane dehalogenases toward unnatural substrates. *J Chem Inf Model*. 57: 1970-1989.
- Jessop, T.C. *et al.* (2009) Lead optimization and structure-based design of potent and bioavailable deoxycytidine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters 19 6784–6787

→ Evaluation Survey – PLEASE respond!

- □ Exam 1 h, 3 dates
 - 17 Dec. 2024, 10:00 (location: B11/333)
 - **7** Jan 2025, 10:00 (location: B11/333)
 - 28 Jan. 2025, 10:00 (location: B11/333)
- Multiple-choice exam
 - 25 questions
 - 10 points out of 25 needed to pass
 - Multiple correct answers possible
- Only topics with the sign o

on the slides will be asked

Teachers are available for questions. Contact me!

□ Questions – example 1

Choose the true statements about van der Waals interactions.

- 1. These are long-range interactions
- 2. Interaction occurs between any types of atoms
- 3. These interactions play a role only with charged amino acid residues
- 4. These are short-range interactions
- 5. These interactions are entropic in nature

Questions – example 1

Points:Choose the true statements about van der Waals interactions.-1/31. These are long-range interactions+1/22. Interaction occurs between any types of atoms-1/33. These interactions play a role only with charged amino acid
residues+1/24. These are short-range interactions-1/35. These interactions are entropic in nature

□ Questions – example 2

Choose the true statements about homology modeling.

- A) It is based on the principle that sequences are much more conserved than 3D structures during evolution
- B) The structural model of the target protein is predicted based on the known experimental 3D structure of a related protein
- C) A necessary condition for homology modeling is the existence of a suitable template
- D) Homology modeling generally provides less accurate results than ab initio predictions

□ Questions – example 2

Points: Choose the true statements about homology modeling.

- -1/2 A) It is based on the principle that sequences are much more conserved than 3D structures during evolution
- +1/2 B) The structural model of the target protein is predicted based on the known experimental 3D structure of a related protein
- +1/2 C) A necessary condition for homology modeling is the existence of a suitable template
- -1/2 D) Homology modeling generally provides less accurate results than ab initio predictions

□ Bring only one pen and ID card

