

Structure of biomolecules

Outline

Proteins

- Primary structure
- Secondary structure
- Tertiary structure
- Motifs and folds
- Quaternary structure
- Nucleic acids
 - Main types of structures
- Primary structural databases
- Structural data formats
 - PDB and mmCIF formats

Protein structure

Structure of proteins...

Hierarchy of protein structure

Amino acids

20 L-amino acids (natural)

Side chains

> Charged, polar, hydrophobic

-NH

NH,

Primary structure

□ Linear chain of amino acid residues

MSLGAKPFGEKKFIEIKGRRMAYIDEGTGDPILFQHGNPTSSYLWRI<mark>NIM</mark> N-terminus C-terminus

Protein backbone

- From N-terminus to C-terminus
- Connected by covalent bonds
- Peptide bond (amide bond)
 - Partial double bond character

Geometry of protein backbone

- Conformation of the peptide chain
 - Defined by Φ (phi) and Ψ (psi) dihedral angle
- Ramachandran plot (Φ, Ψ)
 - ightarrow The majority of proteins follow this distribution

 φ (phi) = dihedral angle {C₋₁ - N - C_a - C} ψ (psi) = dihedral angle {N - C_a - C - N₊₁}

Geometry of protein backbone

- Conformation of the peptide chain
 - Defined by Φ (phi) and Ψ (psi) dihedral angle
- Ramachandran plot (Φ, Ψ)
 - ightarrow The majority of proteins follow this distribution

 φ (phi) = dihedral angle {C₋₁ - N - C_a - C} ψ (psi) = dihedral angle {N - C_a - C - N₊₁}

Secondary structure

- □ Local three-dimensional structure of polypeptide chain
- Governed by hydrogen bonding between backbone

Regular patterns

atoms

- Types of structures
 - Helices
 - β-Structures
 - Loops and coils Irregular patterns

Secondary structure

DSSP (hydrogen bond estimation algorithm)

- The most common method for assigning secondary structure
- Starts by identifying the intra-backbone hydrogen bonds (between NH ····· O=C)
- Hydrogen bond exists if $E \leq -0.5$ kcal/mol
- The type of repetition will assign the residue to one of 7 types
 (3 major types: helices, strands and loops)

$$E = 0.084 \left\{ rac{1}{r_{ON}} + rac{1}{r_{CH}} - rac{1}{r_{OH}} - rac{1}{r_{CN}}
ight\} \cdot 332 \, ext{kcal/mol}$$

Polypeptide bond

Helices

Types of helices

- 3.6_{13} helix (α -helix) most common
- 3_{10} helix less frequent, end of α -helices
- 4.1₁₆ helix (π -helix) (rare)
- Left-handed helix (very rare)
- → Represented by helical cartoons or cylinders
- Right-handed (mostly)
- Hydrogen bonding
 - Within a single chain

Helices

Туре	3 ₁₀	α	π
Residues per turn	3.0	3.6	4.1
Atoms in H-bonded ring	10	13	16
Hydrogen bonding	n - n + 3	n - n + 4	n - n + 5
Angle between neighboring residues	120	100	88
Helical rise per amino acid residue (Å)	2.0	1.5	1.15
φ (°)	-75	-60	-75
ψ(°)	-5	-45	-40

Proteins – secondary structure

\Box Types of typical β -structures

- β-sheets
- β-turns
- β-bulge
- Polyproline helices

- □ Hydrogen bonding
 - Between adjacent chains

\Box Types of β -sheets

- Parallel
- Antiparallel (stronger)
- Mixed
- → Represented by ribbons
 with arrows indicating the sequence direction

•••• H-bonds

□ Side-chains

- Towards the sides of
 - the sheets

Proteins – secondary structure

β-turns

- Short structures (4-5 residues)
- Connects two β-strands
- Ideally H-bond between backbone of n and n+3 residues
- Often includes glycine or proline on specific positions

β-bulge

- Frequently occurs in antiparallel β-sheets
- Disrupts ideal H-bonding pattern
- Increases twists of a sheet

Polyproline helices

- Typical in collagen and other strong fibers
- Left-handed triple-stranded helix (unlike most of other helices)
- Composed of three chains of repetitive sequence (Proline-Hydroxyprolin-Glycine)_n

Tertiary structure

□ Global three-dimensional structure of protein

Governed mainly by hydrophobic interactions involving

side chains of amino acid residues

Tertiary structure

- Supersecondary structures (motifs)
 - Small substructures formed by several secondary structures
- Domain
 - Structurally (functionally) independent regions
 - Compact parts of structure around single hydrophobic core
 - Formed in separate folding unit (fold independently)
- Fold
 - General architecture of protein
 - Type of protein structure

Protein motifs

□ Helix-turn-helix

Helix bundle

 \Box $\beta \alpha \beta$ unit

Protein motifs

Protein domains

□ Parts of tertiary structure

- Separate folding
- Independent structures
- Usually up to 200 residues

Protein folds

- □ Some folds are very common, some are rare
- Classification of folds
 - Biochemical
 - Globular, membrane, fibrous proteins, intrinsically disordered
 - Structural
 - all- α , all- β , α/β and $\alpha+\beta$ proteins
- Number of folds
 - Currently: 1,195 (SCOP) vs 1,373 (CATH)
 - Theoretical maximum: 10,000

Biochemical classification of folds

□ Globular proteins

Membrane proteins

G Fibrous proteins

Structural classification of folds

 \Box All- α (entirely α -helices)

Globin-like

 \Box All- β (entirely β -strands)

Jellyroll

 β barrel

Structural classification of folds

 \Box α/β (sequence alternates between α -helices and β -strands)

 \Box $\alpha+\beta$ (α -helices and β -strands occur separately in sequence)

Quaternary structure

Association of several protein chains

(monomers/subunits) into oligomers (multimers)

- Homomeric protein from identical monomers
- Heteromeric protein from different types of monomers

Heterodimer tryptophan synthase

Proteins – quaternary structure

Nucleic acids

Structure of nucleic acids...

Nucleotides

Composition

Nucleotide

Nitrogenous base

Phosphate Pentose sugar Heterocyclic base

DNA bases: A, T; G, C
RNA bases: A, U; G, C

Rotation about glycosidic bond

The *anti* conformation is dominant in DNA with rare exceptions

Nucleic acids – basic building blocks

□ Linear chain of nucleotides (oligonucleotides or

polynucleotides)

CGCGAATTCGCG

Sugar-phosphate backbone

- Covalent character
- Phosphodiester bond
- From 5'-end to 3'-end

□ Linear chain of nucleotides (oligonucleotides or

polynucleotides)

CGCGAATTCGCG

Sugar-phosphate backbone

- Covalent character
- Phosphodiester bond
- From 5'-end to 3'-end

oligonucleotide dGCAT (**d** indicates *deoxyribose* sugar, or a DNA sequence)

т

Sugar-phosphate backbone

Very flexible backbone

Six torsion angles

- \Box Ribose is not planar \rightarrow sugar puckering
 - Denotes the phosphate-phosphate proximity
 - Two main types of conformation

To base

H'(5')

Nucleotide unit

H(5')

Secondary structure

□ Local interactions between nucleotide bases

 \rightarrow Base pairs

DNA base pairs:
 Adenine - Thymine
 Cytosine - Guanine

RNA base pairs:
 Adenine - Uracil
 Cytosine - Guanine

Complementarity due to hydrogen bonds

Secondary structure

□ Leontis /Westhof classification

- Three base-paring edges
 - Watson-Crick (WC)
 - Hoogsteen (H)
 - Sugar (S)
- 12 types of base-paring

Tertiary structure of DNA

- Overall three-dimensional arrangement and folding
- □ Three types: A-DNA, B-DNA, Z-DNA
- B-DNA is the most common

(described by Watson & Crick)

Туре	A-DNA	B-DNA	Z-DNA
Helix sense	Right	Right	Left
Bases per turn	11	10.5	12
Helical rise per nucleotide (Å)	2.6	3.4	3.7
Sugar pucker	C3'-endo	C2'-endo	C2'-endo C3'-endo

Nucleic acids – tertiary structure of DNA

Tertiary structure of DNA

□ Grooves: crucial for DNA-protein interactions

□ Major groove: wide and deep – where most proteins interact

Nucleic acids – tertiary structure of DNA

Higher structures of DNA

Quaternary structures - with support of proteins

Nucleic acids – higher structures of DNA

Higher structures of DNA

Quaternary structures - with support of proteins

Nucleic acids – higher structures of DNA

□ Most common form: A-RNA helix (similar to A-DNA)

Nucleic acids – secondary structure of RNA

Junctions

- Regions connecting two or more stems
- Two-stem, three-stem and four-stem junction

□ Harpin loops

Sequence inversely self-complementary
 GGCUGGCUGUUCGCCAGCC

Many subtypes - e.g.: GNRA, ANYA, UNCG tetraloops

Nucleic acids – secondary structure of RNA

Tertiary structures of RNA

Phenylalanine Group I intron A-RNA Hammerhead Guanine dodecamer transfer RNA ribozyme ribozyme riboswitch

Nucleic acids – tertiary structures of RNA

Quaternary structure of RNA

Association of several chains of RNA

- Frequently joined with proteins
- Eukaryotic ribosome ~ 6800 nt, 79 proteins

Structural databases?

Primary structural databases

- Worldwide Protein Data Bank (wwPDB) <u>http://www.wwpdb.org/</u>
- RCSB Protein Data Bank (RCSB PDB) http://pdb.rcsb.org
- Nucleic Acid Knowledgebase (Nucleic Acid Database) <u>https://www.nakb.org/</u>
- Biological Magnetic Resonance Data Bank (BMRB) <u>https://bmrb.io/</u>
- Electron Microscopy Data Bank (EMDB)

http://www.emdatabank.org/

Cambridge Structural Database (CSD)

http://www.ccdc.cam.ac.uk/products/csd/

BPDBe Protein Data Bank in Europe

... More details in lesson 3!

Structural data formats

Different file formats used to represent 3D structure data

- PDB
- mmClF
- PDBML
- MOL2
- ...

The spatial 3D coordinates and other information are recorded for each atom

- Designed in the early 1970s first entries of PDB database
- □ Rigid structure of 80 characters per line, including spaces
- Still the most widely supported format

		HEADER TITLE	L) S?	YASE	(CARE JRE (301 0F	-CARBON) DEOXYRIE	ODIPYRIM	IDINE PH	03-j otolyas	UL-95 E	1DNP	
annotation	-	SOURCE KEYWDS KEYWDS	2 (DI 2 1	ORGANI NA REI LYASE	ISM_S PAIR, , CAH	SCI , F	ENTIFIC: LECTRON	ESCHERI TRANSFER	CHIA COL , EXCITA	I TION EN	ERGY TH	RANSFER,	
		ATOM ATOM ATOM ATOM ATOM ATOM	21 22 23 24 25 26	ND1 CD2 CE1 NE2 N CA	HIS HIS HIS LEU LEU	A A A A A A	3 3 3 4 4	55.365 57.200 56.124 57.243 55.580 54.799	27.866 28.354 26.783 27.052 32.694 33.803	62.971 61.894 62.981 62.334 59.656 59.113	1.00 1.00 1.00 1.00 1.00	11.07 13.12 13.03 8.19 12.61 11.56	N C C N N C
amino acid field	-	ATOM ATOM ATOM ATOM ATOM	27 28 29 30 31	C O CB CG CD1	LEU LEU LEU	A A A A A	4 4 4 4	53.552 53.650 55.656 54.946 54.623	33.269 32.363 34.683 35.887 36.920	58.374 57.532 58.174 57.518 58.550	1.00 1.00 1.00 1.00	7.76 6.99 9.03 2.00 6.21	COCCC
cofactor filed	-	HETATM HETATM HETATM HETATM	7641 7642 7643 7644	AN7 AC5 AC6 AN6	FAD FAD FAD FAD	B B B	472 472 472 472	27.855 28.524 29.848 30.787	78.556 78.026 77.609 77.757	29.073 27.955 27.724 28.664	1.00 1.00 1.00 1.00	4.55 2.00 3.40 6.22	N C C N
		ato num	/ m ber	/ res	/ idue ame		\ residue number	X,	y, z coordi	nates	 occupan	cy temperature factor	l atom type
			ator nam	n e	poly chain	/pe id	ptide entifier						

Structural data formats – PDB format

- Atomic coordinates
- Chemical and biological features
- Experimental details of the structure determination
- Structural features
 - Secondary structure assignments
 - Hydrogen bonding
 - Biological assemblies
 - Active sites
 - •••
- <u>https://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html</u>
- <u>https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html</u>

Structural data formats – PDB format

- Advantages
 - Widely used → supported by majority of tools
 - Easy to read and easy to use
 - Can be manually edited

\rightarrow Suitable for accessing individual entries

- Disadvantages
 - Potential inconsistency between individual PDB entries as well as

PDB records within one entry

Ex: different residue numbering in SEQRES and ATOM sections

\rightarrow Not suitable for computer extraction of information

Primary sequence	SEQRES SEQRES ••••	1 2	39 39	6 MET 6 LEU	ASP GLY	GLU LEU	ASN ALA	ILE ASP	THR LEU	ALA PHE	ALA ARG	PRO ALA	ALA ASP	ASP GLU	PRO ARG	ILE PRO
Atoms and residues in the file	 АТОМ АТОМ АТОМ АТОМ	1 2 9 10	N CA N CA	MET MET PHE PHE	5 5 6		41. 40. 39. 39.	.402 .919 .627 .199	11 . 13 . 14 . 15 .	.897 .262 .840 .440	15 15 14 12	.262 .600 .228 .964	1.0 1.0 1.0 1.0	00 4 00 4 00 4 00 4	8.61 7.70 8.66 5.33	

Structural data formats – PDB format

Disadvantages

Absolute limits on the size of certain items of data
 Ex.: max. number of atom records limited to 99,999; max. number of chains limited to 26, etc.

 \rightarrow Large systems such as the ribosomal subunit must be divided into multiple PDB files

→ Not suitable for analysis and comparison of experimental and structural data across the entire database

mmCIF format

- □ Macromolecular crystallographic information file (mmCIF)
- Developed to handle increasingly complicated structural data
- Each field of information is explicitly assigned by a tag and linked to other fields through a special syntax

PDB HEADER PLANT SEED PROTEIN 11-OCT-91 1CBN

mmCIF	_struct.entry_id '1CBN'
	_struct.title 'PLANT SEED PROTEIN'
	_struct_keywords.entry_id '1CBN'
	_struct_keywords.text 'plant seed protein'
	_database_2.database_id 'PDB'
	_database_2.database_code '1CBN'
	_database_PDB_rev.rev_num 1
	_database_PDB_rev.date_original '1991-10-11'

Structural data formats – mmCIF format

mmCIF format

- Advantages
 - Easily parsable by computer software
 - Consistency of data across the database
- \rightarrow Suitable for analysis and comparison of experimental and
- structural data across the entire database

Disadvantages

- Difficult to read
- Rarely supported by visualization and computational tools

 \rightarrow Not suitable for accessing individual entries

- Protein Data Bank Markup Language (PDBML)
- □ Extensible Markup Language (XML) version of PDB format

```
<?xml version="1.0" encoding="UTF-8" ?>
<PDBx:datablock datablockName="EXAMPLE"
  xmlns:PDBx="http://deposit.pdb.org/pdbML/pdbx-v1.000.xsd"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://deposit.pdb.org/pdbML/pdbx-v1.000.xsd
           pdbx-v1.000.xsd">
  <PDBx:entity polyCategory>
      <PDBx:entity poly entity id="1">
        <PDBx:type>polypeptide(L)</PDBx:type>
         <PDBx:nstd linkage>no</PDBx:nstd linkage>
         <PDBx:nstd monomer>no</PDBx:nstd monomer>
         <PDBx:pdbx seq one letter code>
         DIVLTOSPASLSASVGETVTITCRASGNIHNYLAWYOOKOGKSPOLLVYYTTTLADG
         VPSRFSGSGSGTQYSLKINSLQPEDFGSYYCQHFWSTPRTFGGGTKLEIK
         </PDBx:pdbx seq one letter_code>
         <PDBx:pdbx seq one letter code can>
         DIVLTOSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQLLVYYTTTLADG
         VPSRFSGSGSGTQYSLKINSLQPEDFGSYYCQHFWSTPRTFGGGTKLEIK
         </PDBx:pdbx seq one letter code can>
      </PDBx:entity poly>
  </PDBx:entity polyCategory>
</PDBx:datablock>
```

References

- Gu, J. & Bourne, P. E. (2009). Structural Bioinformatics, 2nd Edition,
 Wiley-Blackwell, Hoboken.
- Liljas, A. *et al.* (2009). Textbook Of Structural Biology, World Scientific
 Publishing Company, Singapore.
- Schwede, T. & Peitsch, M. C. (2008). Computational Structural Biology: Methods and Applications, World Scientific Publishing Company, Singapore.
- Schaeffer, R.D & Daggett, V. (2011). Protein folds and protein folding.
 Protein Engineering, Design & Selection 24:11–19.