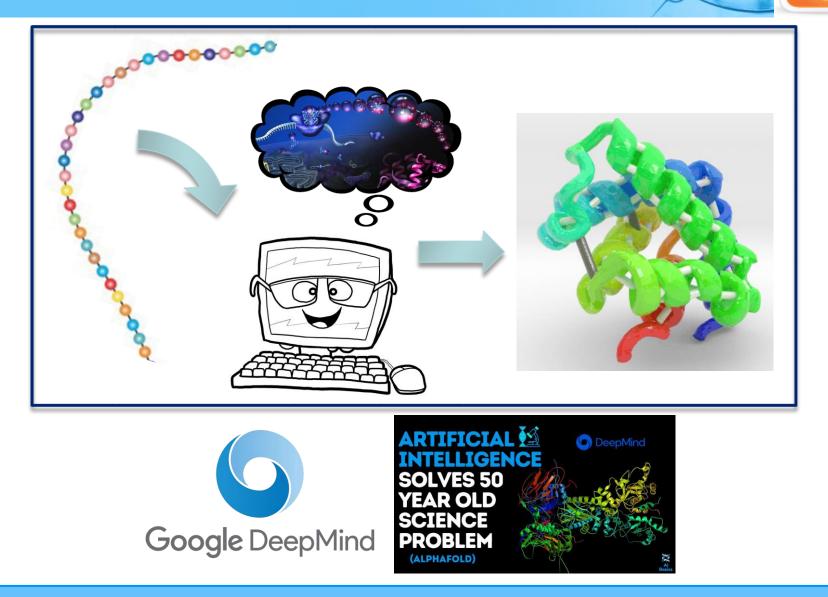
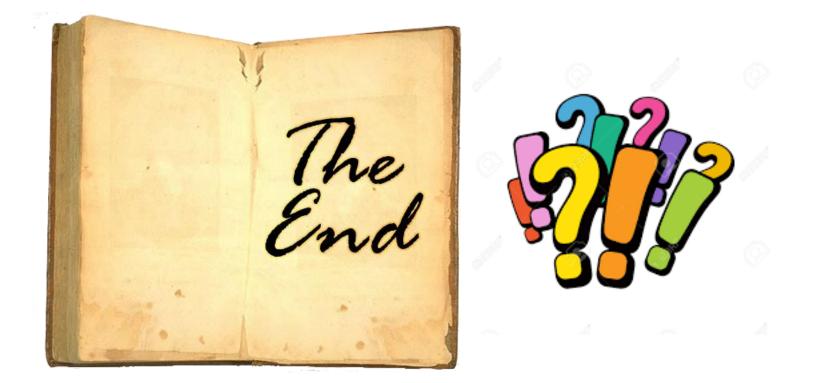


Bioinformatics protein sequences and databases

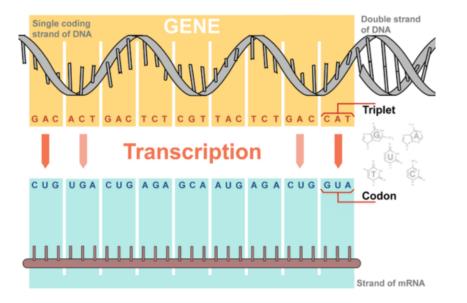

Outline

- Introduction
- Primary sequence of proteins
- Protein sequence databases
- Sequence alignments
 - evolution of proteins
 - Sequence-structure-function paradigm
 - Alignment of sequences
- Prediction of protein properties from sequence

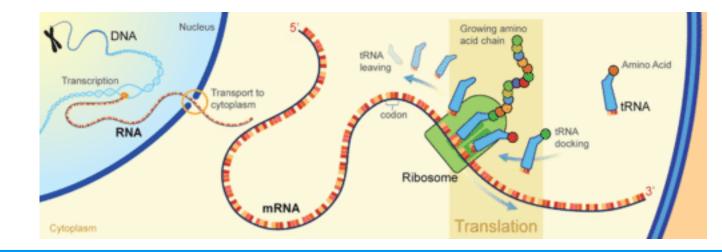
Proteins: a quick overview



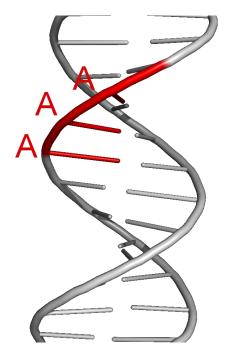
Structure prediction

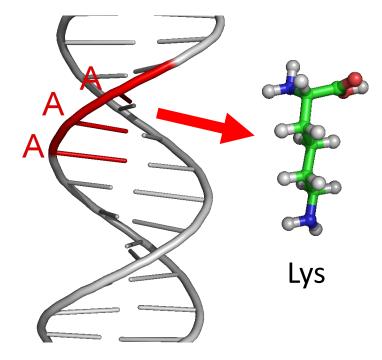

3-Binf DB & Str. Pred -> Intro

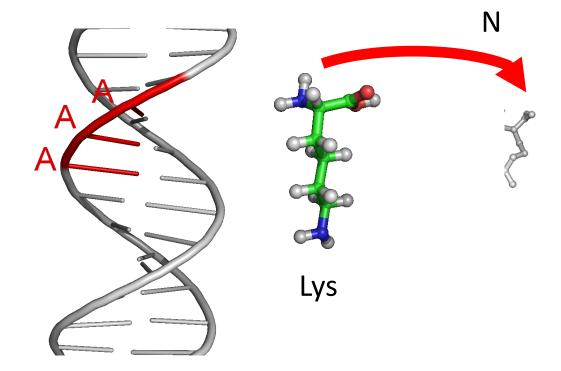
Structure prediction

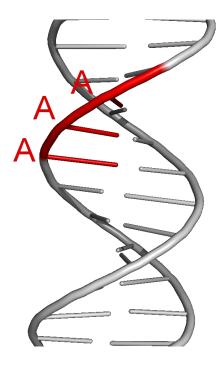

Let's start from the beginning...

3-Binf DB & Str. Pred -> Intro

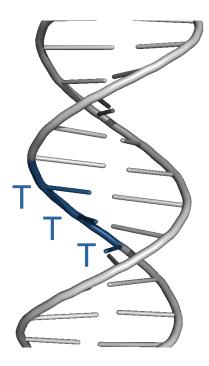


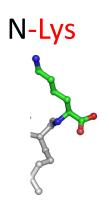

Protein synthesis occurs in two steps:

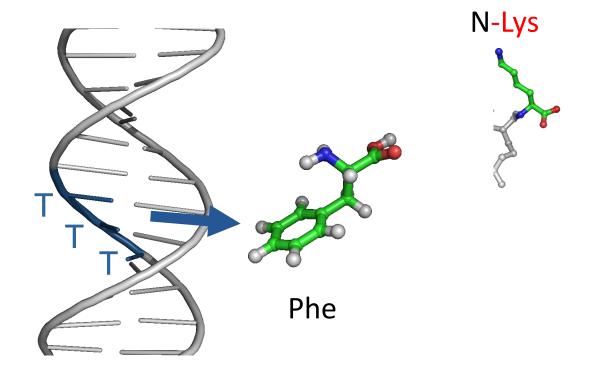

- Transcription: DNA -> RNA
- Splicing: RNA -> mRNA
- Translation: mRNA -> Protein
- Post-translational modifications: protein → mature protein

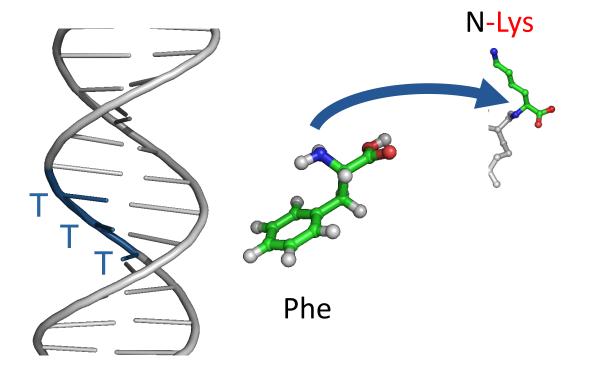


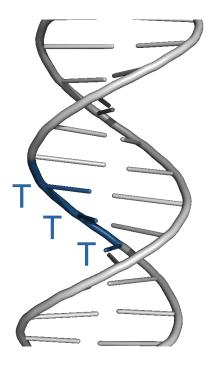
Translation

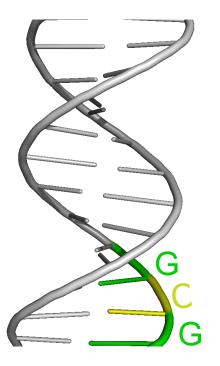


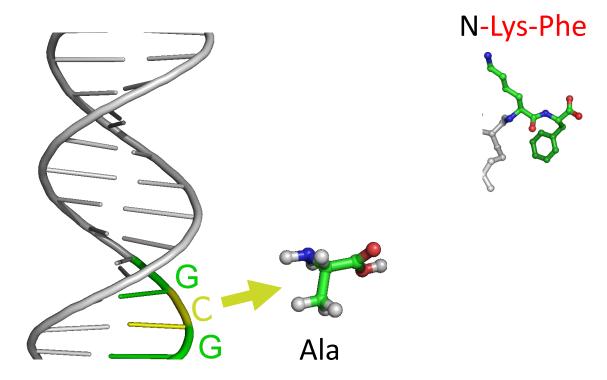


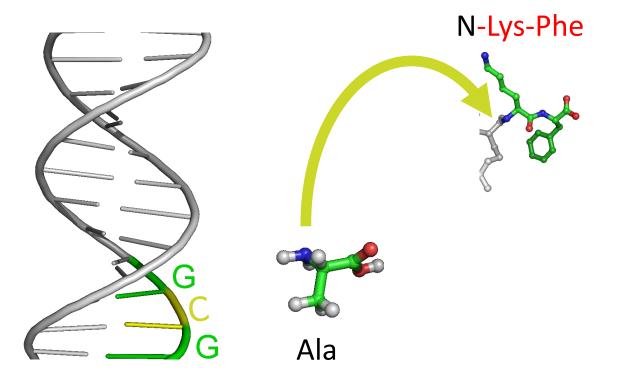


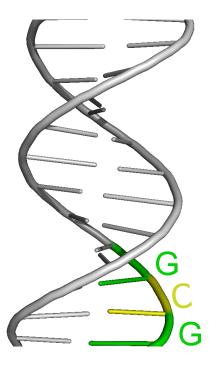


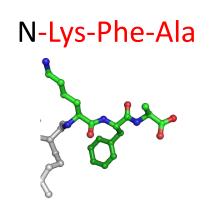




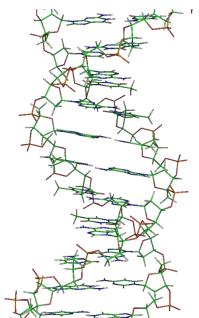


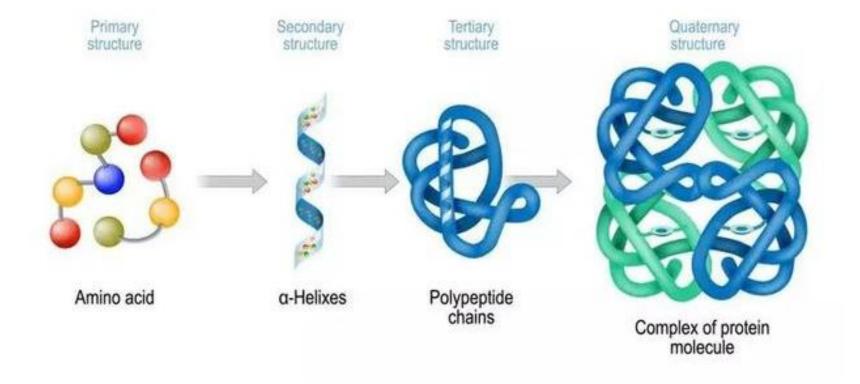



N-Lys-Phe

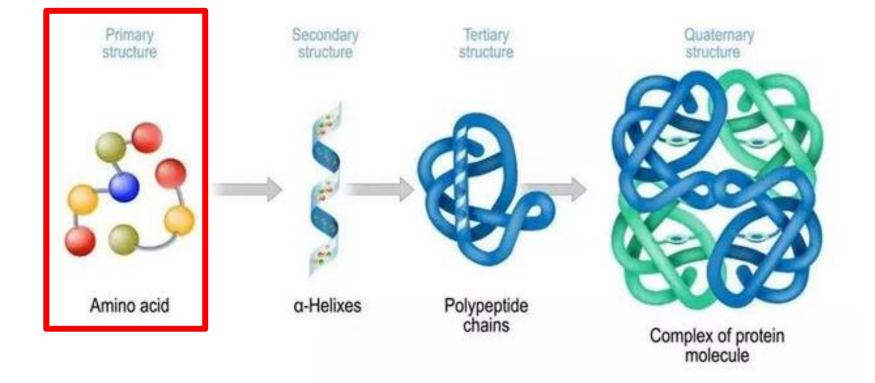


N-Lys-Phe





5'-NCG-AAA-TTT-GCG-3'

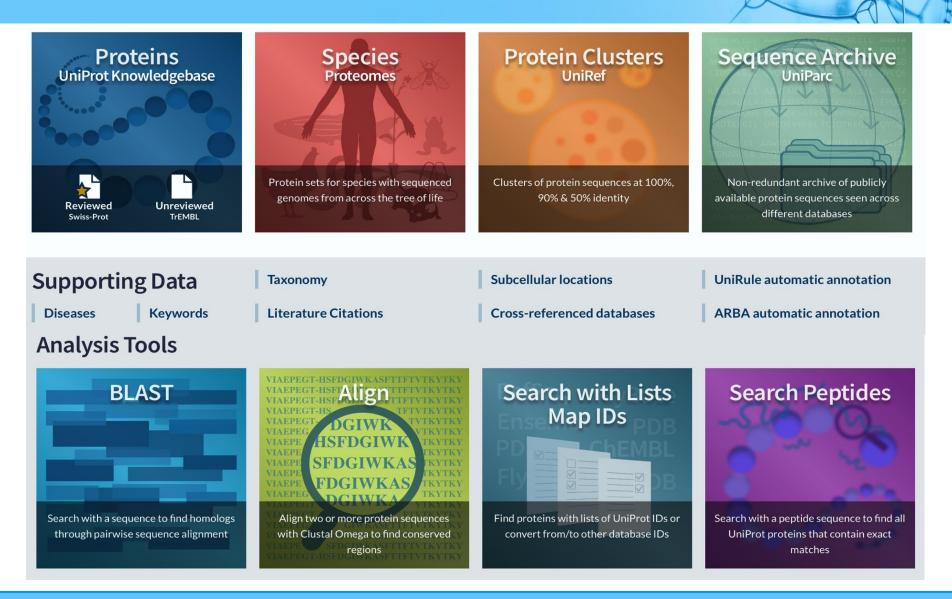


N-Lys-Phe-Ala

Levels of protein structure

Levels of protein structure

Sources of protein sequences


- Multiple databases available:
 - □ With different scope focus:
 - Generalist: sequences from any source (UniProtKB)
 - Specialist: sequences focusing on one more specific condition(s)
 (i.e. biologic pathway, disease, organism) (WormBase)
 - □ With different types of sequence content:
 - Primary sequence of proteins, and annotations and crossreferences to that sequence (UniProtKB)
 - Motifs or profiles databases: contain information derived from the primary sequence, in the form of abstractions (patterns) that distil the most conserved features among related proteins (PFam)

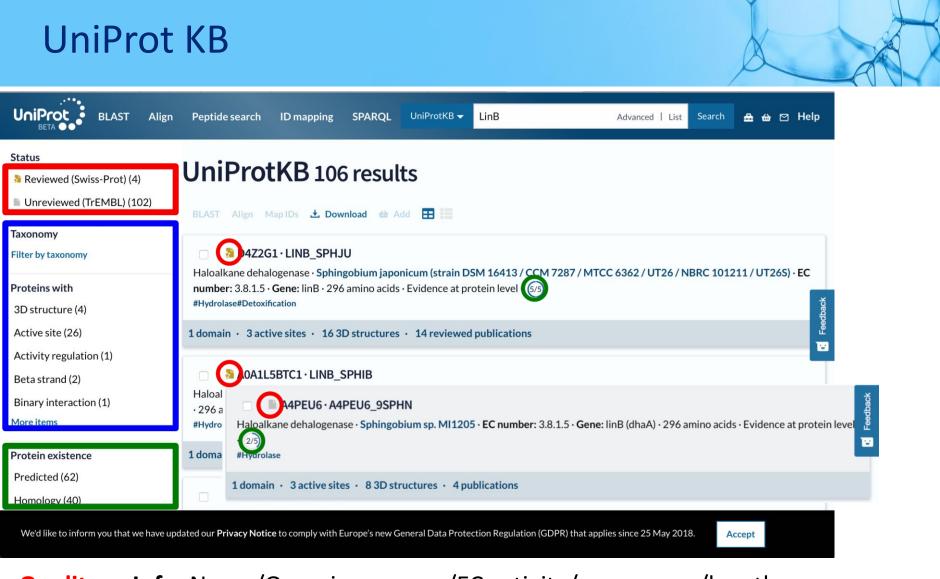
Sources of protein sequences

Multiple databases available

- UniProtKB
 - Collaboration between EBI, Swiss Institute of Bioinformatics and Protein Information
 - Central repository of protein sequences and functional information
 - Quality annotations information on protein function and individual amino acids, experimental information, biological ontologies, classification, links to other databases
 - Quality level of the annotation (manual vs. automatic)

Bioinformatics databases & Structure prediction

24/83


- Main component of the database
- □ Reviewed protein entries (SwissProt):
 - High quality manual annotations
 - \odot Manual annotations \rightarrow reliable info
 - 🙁 >570,000 protein records (2024)
- □ Automatic protein entries (TrEMBL):
 - Automatic translation of protein sequences from EMBL data bank
 - Output Automatic annotations → lower quality, chance for errors.
 - ③ ~250,000,000 protein records (2024) (400x info ammount)

Proteomes for 25,000 model organisms available Different degrees of coverage (other 160,000 available)

Clusters of proteins at 100%, 90%, and 50% seq. ID Groups of similar proteins where to sample from

Stable identifier repository Cross-references to a wealth of 40 external different databases (generalist and specialist)

QualityInfo: Name/Organism source/EC activity/gene name/length.FiltersProtein evidence+Info: Domain/3D structure/active site/pubs.

Names & Taxonomy

Subcellular Location

Phenotypes

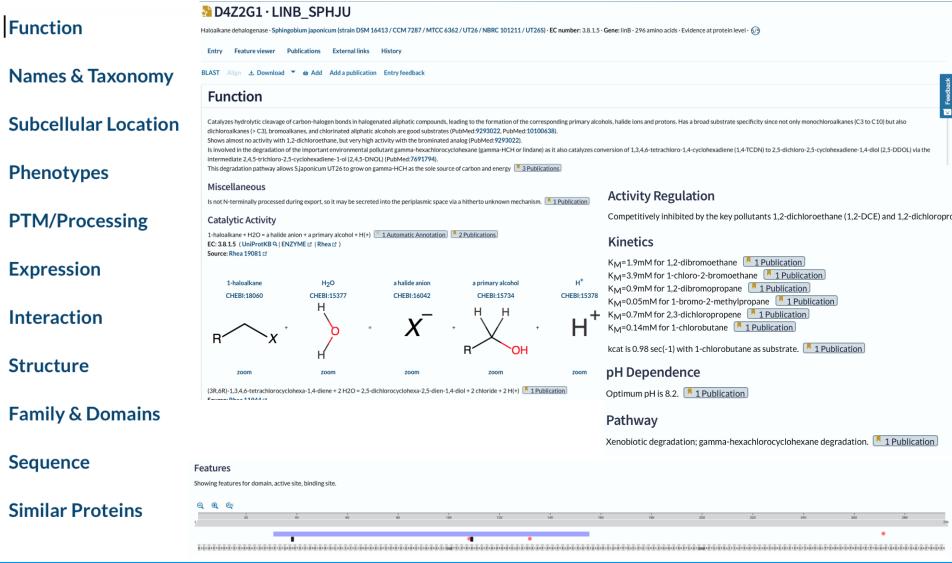
PTM/Processing

Expression

Interaction

Structure

Family & Domains


Sequence

Similar Proteins

Human readable explanation of the protein function Wealth of systematically organized information. In the illustrated example:

- **Catalytic activity**: with details of the enzymatic reaction and cross-links to chemical databases
- Activity regulation: competitive inhibitors
- Kinetics: experimental measurements towards n substrates
- Optimal pH
- Implication in biological pathways
- Catalytic and Key Residues (active/binding sites)
- Gene Ontology (GO) annotations (enrichment values)
- Enzyme/Pathways and Protein Family DBs
- Keywords

Features Showing features for domain, active site, binding site. Function Q Q Arc Names & Taxonomy Т Nucleophile **3** Publications Active site 108-108 ► Proton donor 3 Publications Subcellular Location Active site 132-132 Proton acceptor 👎 3 Publications Active site 272-272 **Phenotypes** Chloride 👎 1 Publication Binding site 38-38 Chloride 2 Publications Combined Sources Binding site 109-109 **PTM/Processing GO** Annotations Slimming set: agr **Expression** Interaction **Structure** Cell color indicative of number of GO terms ASPECT TERM Family & Domains Cellular Component periplasmic space 🖾 📃 IEA:UniProtKB-SubCell Molecular Function haloalkane dehalogenase activity 🗳 📃 IEA:UniProtKB-UniRule Sequence **Biological Process** response to toxic substance ☑ IEA:UniProtKB-KW Keywords Protein family/group databases Enzyme and pathway databases **Similar Proteins** Molecular function #Hydrolase BRENDA 3.8.1.5 2 10293 ESTHER sphpi-linb 🗗 Haloalkane_dehalogenase-HLD2 Biological process #Detoxification UniPathway UPA00689

Function	Names & Taxo	nomy
	Protein names	
Names & Taxonomy	Recommended name	Haloalkane dehalogenase 🛄 1 Automatic Annotation) 💽 1 Publication
	EC number	3.8.1.5 Automatic Annotation 1 Publication
Subcellular Location	Alternative names	1,3,4,6-tetrachloro-1,4-cyclohexadiene halidohydrolase 🚺 1 Publication (1,4-TCDN halidohydrolase 🚺 1 Publication)
Phenotypes	Gene names	
	Name	linB 2 Publications
PTM/Processing	Ordered locus names	SJA_C1-19590 Imported
Expression	Organism names	
	Organism	Sphingobium japonicum (strain DSM 16413 / CCM 7287 / MTCC 6362 / UT26 / NBRC 101211 / UT26S)
Interaction	Taxonomic identifier	452662 NCBI ₽
Structure	Taxonomic lineage	Bacteria > Proteobacteria > Alphaproteobacteria > Sphingomonadales > Sphingomonadaceae > Sphingobium
	Accessions	
Family & Domains	Primary accession	D4Z2G1
	Secondary accessions	P51698
Sequence	Proteome	
Similar Proteins	Identifier	UP000007753
	Component	Chromosome 1

Function	Names & Taxonomy				
	Protein names				
Names & Taxonomy	Recommended name	Haloalkane dehalogenase 1 Automatic Annotation 1 Publication			
Subcellular Location	EC number Alternative names	3.8.1.5 I Automatic Annotation 1,3,4,6-tetrachloro-1,4-cyclohexadiene halidohydrolase I Publication (1,4-TCDN halidohydrolase I Publication			
Phenotypes	Gene names				
PTM/Processing	Name Ordered locus names	IinB 2 Publications SJA_C1-19590 Imported			
Expression	Organism names				
Interaction	Organism Taxonomic identifier Taxonomic lineage	Sphingobium japonicum (strain DSM 16413 / CCM 7287 / MTCC 6362 / UT26 / NBRC 101211 / UT26S) 452662 NCBI B Destroise Destroise Alabamatica Cabineen and alama Cab			
Structure	Accessions	Bacteria > Proteobacteria > Alphaproteobacteria > Sphingomonadales > Sphingomonadaceae > Sphingobium			
Family & Domains	Primary accession Secondary accessions	Serialized for sequence variants (<i>later</i>)			
Sequence		D4Z2G1 · LINB_SPHJU			
Similar Proteins	Ider Hy	loalkane dehalogenase · Sphingobium japonicum (strain DSM 16413 / CCM 7287 / MTCC 6362 / UT26 / NBRC 101211 / UT26S) · EC mber: 3.8.1.5 · Gene: linB · 296 amino acids · Evidence at protein level · 5/5 /drolase#Detoxification			
	Compo 1 do	main • 3 active sites • 16 3D structures • 14 reviewed publications			

3-Binf DB & Str. Pred -> protein seq. databases

Feedback

Function	Subcellular Location
Names & Taxonomy	UniProt Annotation GO Annotation
Subcellular Location	Periplasm 📕 1 Publication
Phenotypes	
PTM/Processing	
Expression	
Interaction	CTON SOUTH
Structure	
Family & Domains	
Sequence	O SIB
Similar Proteins	Keywords
	Cellular component #Periplasm

F	i.	n	c	ti	0	n
	ч		C	L	v	

Names & Taxonomy

Subcellular Location

Phenotypes

PTM/Processing

Expression

Interaction

Structure

Family & Domains

Sequence

Similar Proteins

Phe	enotypes												
eatu	res												
howing	features for mutagenesis	j.											
ର୍ କ୍	(Ale												
	20	40	60	80	100	120	140 160	180	200	220	240	260	280
								•					
	TYPE			ID	POSITIONS		DESCRIPT	ION					
	TYPE Select *			ID	POSITIONS		DESCRIPT	ION					
•				ID	POSITIONS 38-38			ION vity. 💌 1 Publication					
• •	Select v			ID			Loss of act						
> >	Select × Mutagenesis			ID	38-38		Loss of act	vity. 📕 1 Publication					
•	Select * Mutagenesis Mutagenesis			ID	38-38 108-108		Loss of act Loss of act 58% of wil	vity. 💌 1 Publication	blication				

Describe the effect of *mutations* in the activity of the protein Mutations mapped on the protein sequence

Function	PTM/Processing			
Names & Taxonomy	Features Showing features for Initiator methionine, chain.			
	⊖, @, @ ¢	150 120 140	160 180 20	່າວ <u>2</u> ່ວ ລະຍ ລະຍ ສະຍ ??
Subcellular Location	•	ĂŬĨŎĔŦĨŎĂĿĬĸĂĿĔĿ <mark>ŊŊ</mark> ŦŸĿŦŸŦĬŎĬĔĿĔĊĔŎĬŔŔĬĸĬĔŦŸĊĔĬŔŦĬĬĔŔĬĔŦĬĔŦĔŎĔŦĔĊĔŎĔĿĔĿĔ	orfrigatelylsonyfysolispletrarratefersog	
Phenotypes	TYPE Select *	ID	POSITIONS	DESCRIPTION
	Initiator methionine		1-1	Removed Z Publications
PTM/Processing	▶ Chain	PRO_0000216778	2-296	Haloalkane dehalogenase

Expression	Describe post-translational modifications and other
Interaction	processing of the protein (i.e. cleaving for activation).
Structure	Positions mapped on the protein sequence.
Family & Domains	
Sequence	

Similar Proteins

Function

Names & Taxonomy

Subcellular Location

Phenotypes

PTM/Processing

Expression

Interaction

Structure

Family & Domains

Sequence

Similar Proteins

Induction

Constitutively expressed.

Interaction

Subunit

Monomer. 📕 1 Publication

Protein-protein interaction databases

STRING 452662.SJA_C1-19590 🗗

Expression:

- Describe the expression conditions of the protein
 Interaction:
- Refers to the **quaternary structure** of the protein
- Describes its native oligomeric state, and
- Lists interactions with other proteins

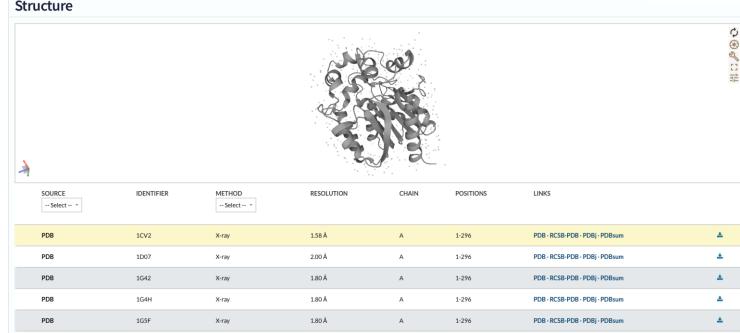
Names & Taxonomy

Subcellular Location

Phenotypes

PTM/Processing

Expression


Interaction

Structure

Family & Domains

Sequence

Similar Proteins

Displays available tertiary structures (experimentally determined) for the protein.
Links to AlphaFold predictions if available (*cover later*)
Describes secondary structure content mapped to seq.
Links to databases with 3D structure models

3-Binf DB & Str. Pred -> protein seq. databases

Function	Structure											
Names & Taxonomy												
Subcellular Location												
Phonotypos												
Phenotypes	SOURCE IDENTIFIER METHOD RESOLUTION CHAIN POSITIONS LINKS											
PTM/Processing	Select * Features											
Expression	Showing features for beta strand, helix, turn.											
Interaction	TYPE ID POSITIONS DESCRIPTION											
Structure	Select * Betastrand 12-16 Combined Sources											
Family & Domains	Beta strand 19-27 Combined Sources Beta strand 29-35 Combined Sources											
Sequence	Helix 42-45 Combined Sources Turn 46-48 Combined Sources											
Similar Proteins	3D structure databases SMR D4Z2G1 d PD8e-KB Search d											
Similar Proteins	ModBase Search t3											

3-Binf DB & Str. Pred -> protein seq. databases

E	Family & Dom	ains									
Function	Features Showing features for domain.										
Names & Taxonomy		1 1 40 60	1 1 80 100	1 1 120 140	1 150 1 180	200 220 230 260 260 20					
Subcellular Location	TYPE	raaraataa ay ka	POSITI		DESCRIPTION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Phenotypes	► Domain		31-155		AB hydrolase-1 👘 1 Automatic A	nnotation					
	Similarity										
PTM/Processing	Belongs to the haloalkane dehalogenase family. Type 2 subfamily. 1 Automatic Annotation. Phylogenomic databases										
		CLU_020336_13_3_5 @			eggNOG	COG0596 🖒 Bacteria					
Expression	ОМА	TLFCQDW 🖻									
	Family and domain d	latabases									
Interaction	Gene3D	3.40.50.1820 월 1 hit			Pfam	View protein in Pfam 🛙					
Interaction	НАМАР	MF_01231 B Haloalk_dehal_type2 1 h	hit		CUDEAM	PF00561 @ Abhydrolase_1 1 hit SSF53474 @ SSF53474 1 hit					
	InterPro	View protein in InterPro C IPR029058 C AB_hydrolase				Serch t					
Structure		IPR000073 C AB_hydrolase_1 IPR000639 C Epox_hydrolase-like IPR023594 C Haloalkane_dehalogena	ase_2	ProtoNet Search							
	PRINTS	PR00412 C EPOXHYDRLASE									
Family & Domains											

Sequence

Similar Proteins

Cross-references to **motifs and profiles databases** Convenient to find other proteins that share one particular sequence feature.

Function

Phenotypes

Expression

Interaction

Structure

Sequence

PTM/Processing

Family & Domains

Similar Proteins

Names & Taxonomy

Subcellular Location

Sequence

Length 296 Last updated 2010-06-15 v1 Mass (Da) 33,108 Checksum 6EEE011B157DBAE1									
10 MSLGAKPFGE	20 KKFIEIKGRR	30 MAYIDEGTGD	40 PILFQHGNPT		60 HCAGLGRLIA	70 CDLIGMGDSD	80 KLDPSGPERY	90 AYAEHRDYLD	Coodbook
100 ALWEALDLGD	110 RVVLVVHDWG	120 SALGFDWARR	130 HRERVQGIAY		150 ADFPEQDRDL	160 FQAFRSQAGE	170 ELVLQDNVFV	180 EQVLPGLILR	
190 PLSEAEMAAY	200 REPFLAAGEA	210 RRPTLSWPRQ	220 IPIAGTPADV	230 VAIARDYAGW	240 LSESPIPKLF	250 INAEPGALTT	260 GRMRDFCRTW	270 PNQTEITVAG	
280 AHETOEDSPD	290 EIGAAIAAFV	RRLRPA							

When multiple *isoforms* are avaliable due to *alternative splicing* the different sequences are available here, with serialized accession codes (i.e. P21397-1, P21397-2)

Function	Sequence											
Names & Taxonomy	Tools 🔻 土 Download 🏠 Add Highlight 🔻 Copy FASTA											
Subcellular Location	Length 296 Last updated 2010-06-15 v1 Mass (Da) 33,108 Checksum 6EEE011B157DBAE1											
Phenotypes	10 20 30 40 50 60 70 80 90 MSLGAKPFGE KKFIEIKGRR MAYIDEGTGD PILFQHGNPT SSYLWRNIMP HCAGLGRLIA CDLIGMGDSD KLDPSGPERY AYAEHRDYLD 100 110 120 130 140 150 160 170 180											
PTM/Processing	100 110 120 130 140 150 160 170 180 ALWEALDLGD RVVLVVHDWG SALGFDWARR HRERVQGIAY MEAIAMPIEW ADFPEQDRDL FQAFRSQAGE ELVLQDNVFV EQVLPGLILR											
Expression	190 200 210 220 230 240 250 260 270 PLSEAEMAAY REPFLAAGEA RRPTLSWPRQ IPIAGTPADV VAIARDYAGW LSESPIPKLF INAEPGALTT GRMRDFCRTW PNQTEITVAG											
Interaction	280 290 AHFIQEDSPD EIGAAIAAFV RRLRPA											
Structure	Keywords Genome annotation databases											
	Technical term#3D-structureEnsemblBacteriaBAI96793 I2SJA_C1-19590 I2											
Family & Domains	#Direct protein sequencing KEGG sjp:SJA_C1-19590 ☑ #Reference proteome #Reference proteome											
Sequence	EMBL (EMBL © GenBank © DDBJ ©) D14594 © Genomic DNA Translation: BAA03443.2 © (EMBL © GenBank © DDBJ ©) AP010803 © Genomic DNA Translation: BAI96793.1 ©											
Similar Proteins	PIR A49896 ☑ A49896											
	RefSeq WP_013040256.1 L3 NC_014006.1											

3-Binf DB & Str. Pred -> protein seq. databases

Function

Names & Taxonomy

Subcellular Location

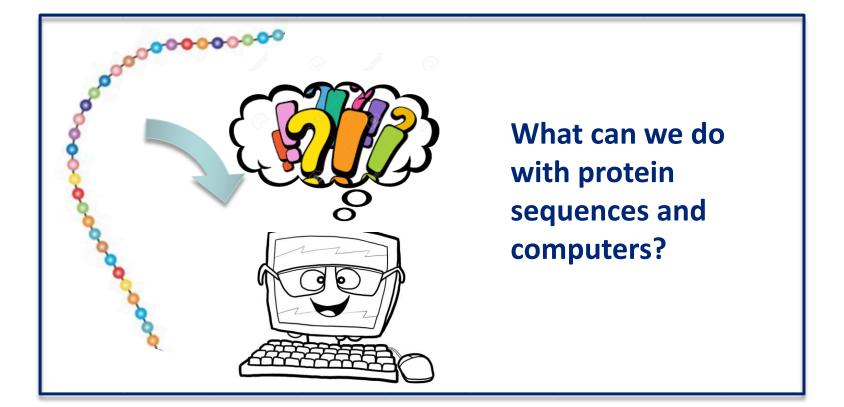
Phenotypes

PTM/Processing

Expression

100% identity 90% identity	ty 50% identity			
LINB_SPHJU				
UniRef100_D4Z2G1				
Accession		Protein name	Organism	Length
A0A258B056	h	Haloalkane dehalogenase	Sphingopyxis lindanitolerans	296
A8CFB7		Haloalkane dehalogenase	Sphingobium indicum	296
A8CFC8	h	Haloalkane dehalogenase	Sphingobium sp. SS04-4	296
2 more				

InteractionRetrieve groups of proteins thatStructureare 100%, up to 90%, or up toFamily & Domains50% identical



Similar Proteins

Sequence

Similar Drotoing

Uses for protein sequences

Bioinformatics databases & Structure prediction

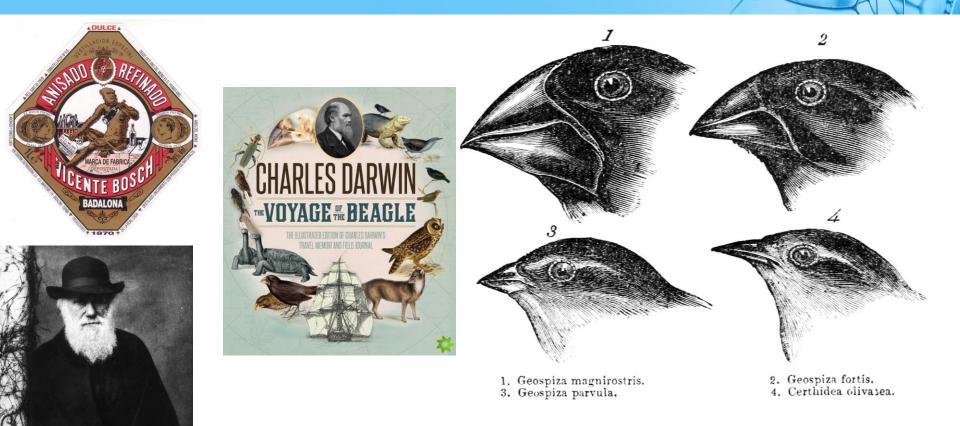
Summary of 1D predictions

Different protein properties or characteristics can be predicted from its primary sequence:

- Secondary structure
- Solvent accessibility
- Solubility/expressability
- Transmembrane regions

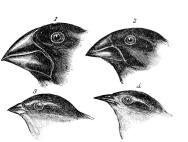
The methods that do such predictions improve if they consider *evolutionary information*

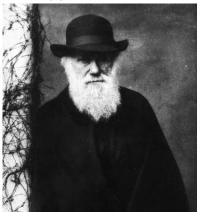
Introduction to sequence alignment



Protein sequences can also be directly "compared" among them. Their similarities or differences can be assessed..

Alignments are models that aim to pair the most similar parts among different proteins. If the model considers *evolutionary information* (and biologically relevant protein alignments do), evolutionary relationships (*homology*) can be inferred from sequence similarity.


A few words on evolution


"[...] one might really fancy that from an original paucity of birds in this archipelago, one species had been taken and modified for different ends."

A few words on evolution

. Geospiza magnirostris. . Geospiza parvula.

Darwinian ideas on evolution:

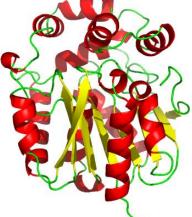
All *species* of organisms arise and develop through the *natural selection* of *small, inherited variations* that *increase* the *individual's ability* to <u>compete,</u> <u>survive, and reproduce</u> (*biological fitness*).

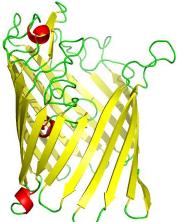
Inter-individual differences need to be:

- Small
- Inheritable

There exists a natural selective pressure.

Variations that make an individual fitter (**improve its functions**) to the conditions of the selective pressure are more likely to be transmitted to next generations.

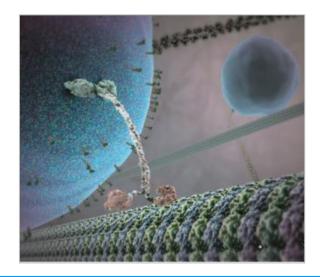

Accumulation of variation causes speciation.


Improved function on a given environment (**adaptation**) is a key concept in evolution.

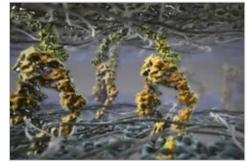
How does this apply to proteins?

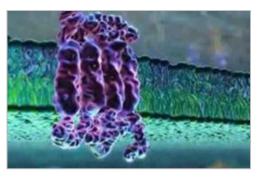
How do proteins function?

Molecular Catalyst [gift box]

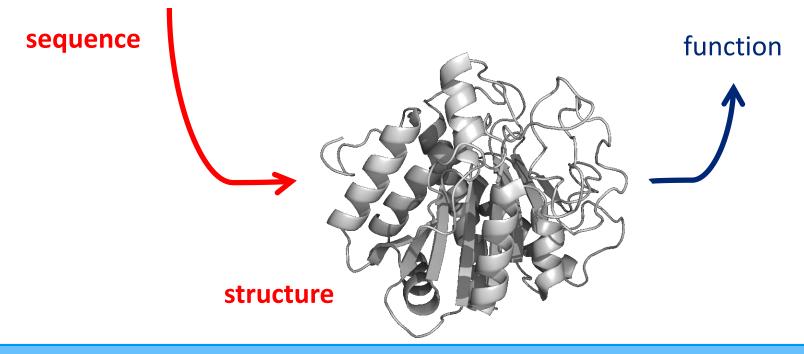

Molecular Pore [tube]

Function is dictated by shape (3D structure)


Improved function on a given environment (**adaptation**) is a key concept in evolution.


How does this apply to proteins? How do proteins function?

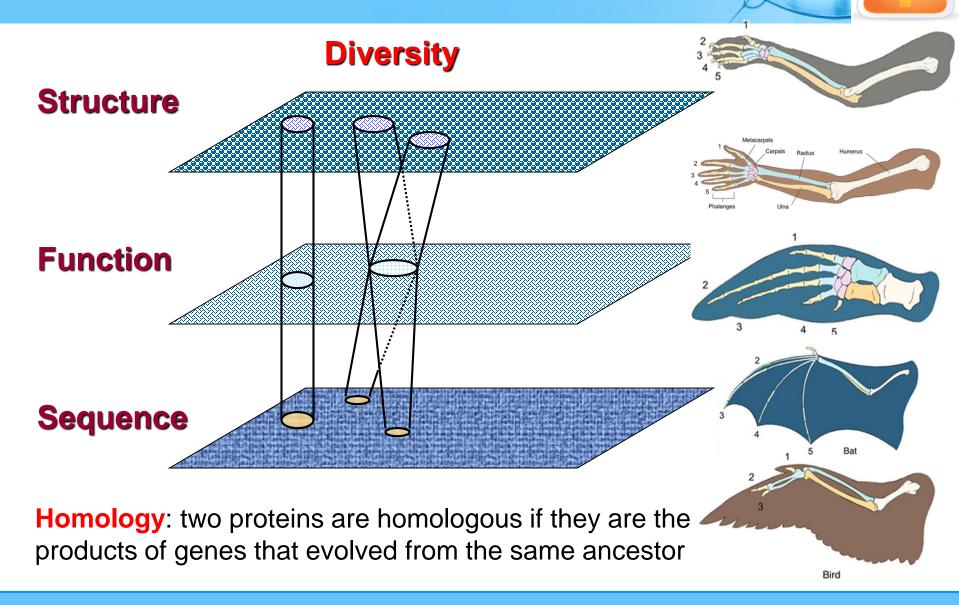
Structure is determined by sequence. Function is dictated by shape (3D structure)

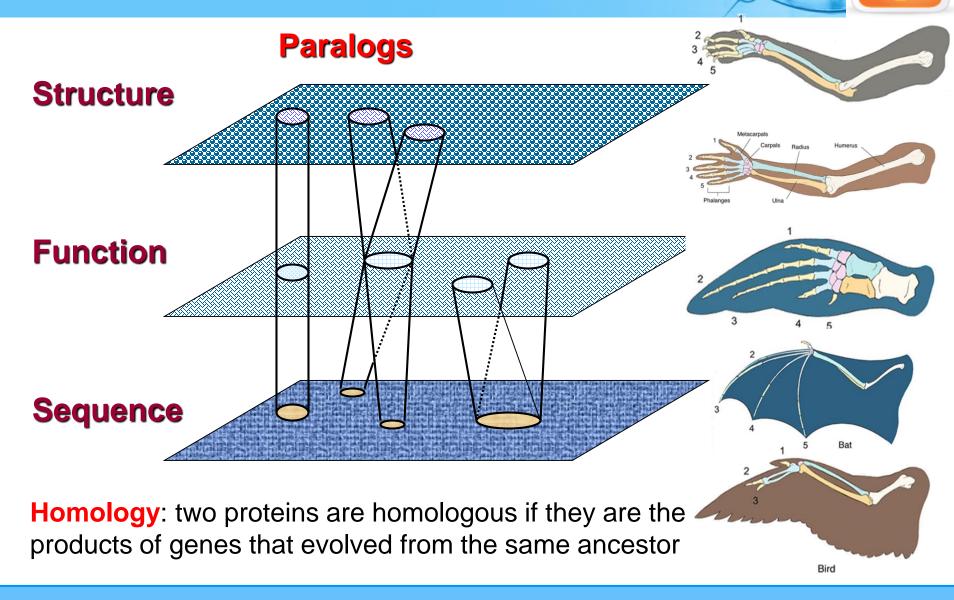


3-Binf DB & Str. Pred -> Seq align -> Seq/Str/Function Paradigm

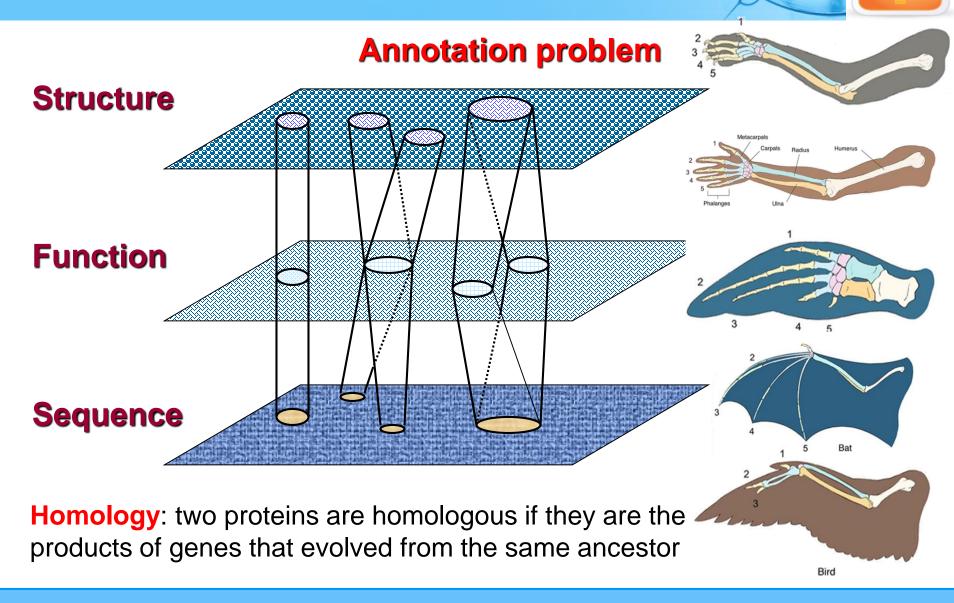
Sequence, Structure, Function Paradigm

- **D** 3D structure is determined by the sequence
- Function is dictated by 3D structure


MSLGAKPFGEKKFIEIKGRRMAYIDEGTGDPILFQHGNPTSSYLWRNIMPHCA GLGRLIACDLIGMGDSDKLDPSGPERYAYAEHRDYLDALWEALDLGDRVVLVV HDWGSALGFDWARRHRERVQGIAYMEAIAMPIEWADFPEQDRDLFQAFRS QAGEELVLQD


3-Binf DB & Str. Pred -> Seq align -> Seq/Str/Function Paradigm

- □ <u>Innovation</u> happens at the <u>sequence level</u>
 - Mutations (*small changes*) introduced in DNA (*inheritable*)
 - Subsequently transcribed, processed, and translated into polypeptidic chains (proteins)
- □ *Selective pressure* operates at the function level
 - Proteins working *better* in their environments *make individuals fitter*, adaptation occurred in human lineage
 Schaffner S. & Sabeti P (2008) Evolutionary adaptation in human lineage. Nature


Education 1:14.

3-Binf DB & Str. Pred -> Seq align -> Evolution of proteins

3-Binf DB & Str. Pred -> Seq align -> Evolution of proteins

3-Binf DB & Str. Pred -> Seq align -> Evolution of proteins

Alignments are models that aim to pair the most similar parts among different proteins.

Global alignments: consider similarity across the entire sequence

Local alignments: consider similarity across sequence fragments

Pairwise alignments: two sequences compared Multiple sequence alignments: multiple

Alignments are models that aim to pair the most similar parts among different proteins.

Pairwise alignment techniques

- DotPlot methods
- Dynamic programming algorithm
 - Needelman & Wunsch (Global)
 - Smith & Waterman (Local)
- Word methods

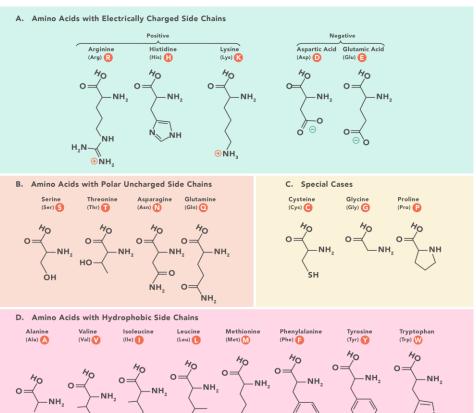
Multiple sequence alignment techniques:

- Dynamic programming
- Progressive methods
- Iterative methods

Analysis Tools

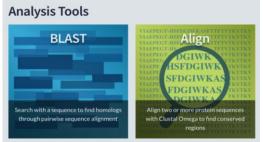
Alignments are models that aim to pair the most similar parts among different proteins.

How can similarity among different parts of proteins be measured?


3-Binf DB & Str. Pred -> Seq align -> Alignments \rightarrow Substitution Models

Analysis Tools

Similitude in between amino-acids:



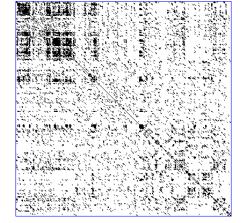
3-Binf DB & Str. Pred -> Seq align -> Alignments \rightarrow Substitution Models

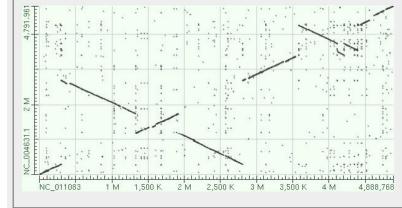
>NH₂

How can similarity among different parts of proteins be measured?

Assessing similarity in pairs of Amino-acids:

- Each possible pair of amino-acids is given a substitution score (substitution matrix)
- Amino-acids from the (two) sequences should be paired such as the total alignment score is optimized.
- Sometimes no good pairing can be found and a *gap* needs to be introduced.
- Gaps require a special penalty (negative score) in order to force longer and biologically meaningful alignments.




Analysis Tools

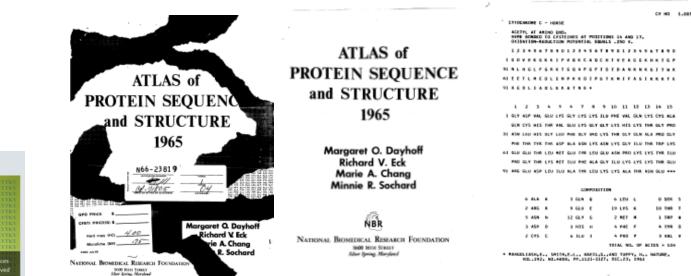
How can similarity among different parts of proteins be measured?

- Identity matrix (Dot-matrix plots):
 - 1 if same amino-acid
 - 0 otherwise
 - → Limited model: forces the introduction of too many gaps.

3-Binf DB & Str. Pred -> Seq align -> Alignments → Substitution Models

How can similarity among different parts of proteins be measured?

- Identity matrix (Dot-matrix plots):
 - 1 if same amino-acid
 - 0 otherwise
 - → Limited model: forces the introduction of too many gaps.
- Substitution models:
 - Score depending on the probability of observing a substitution (mutation) of one particular Aa for another (i.e. Arg → Lys should score better than Arg → Glu)


Analysis Tools

Substitution models include evolutionary information

Margaret Dayhoff Atlas of protein sequence and structure

3-Binf DB & Str. Pred -> Seq align -> Alignments \rightarrow Substitution Models

Substitution models include evolutionary information

Dayhoff Mutation Data Matrix

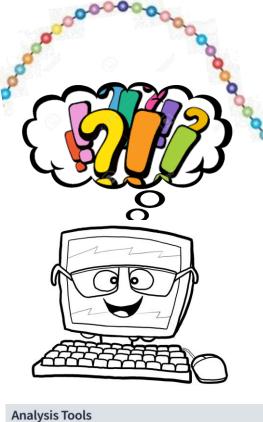
- Score is based on the concept of Point Accepted Mutation (PAM)
- Evolutionary distance 1 PAM = time in which 1/100 amino acids are expected to mutate.
- Higher evolutionary times inferred from a Markov chain model: PAM matrix product.
- 250 PAM matrix targets the limit where is safe to infer homology in proteins (*twilight*).
- Limitation: derived from 1572 observed mutations in (manual) alignment of sequences >85% identical

with Clustal Omega to find conserve

Substitution models include evolutionaryinformationPAM250

_				ORIGINAL AMINO ACID																		
ſ			A	R	R	D	C	Q	Ε	G	н	I	L	к	м	F	P	S	Т	W	Y	V
			A1 a	Arg	Asn	Asp	Cys	61 n	61 u	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val
	A	Ala	13	6	9	à	5	8	9	12	5	8	6	7	7	4	11	11	11	2	4	9
	R	Arg	3	17	4	3	2	5	3	2	6	3	2	9	4	1	4	4	3	7	2	2
	N	Asn	4	4	6	7	2	5	5	4	6	3	2	5	3	2	4	5	4	2	3	3
	D	Asp	5	4	8	11	1	7	10	5	6	3	2	5	3	1	4	5	5	1	2	3
	С	Cys	2	ī	1	1	52	1	1	2	2	2	1	1	1	1	2	3	2	1	4	2
	Q	Gln	3.	5	5	6	1	10	7	3	7	z	3	5	3	1	4	3	3	1	2	3
	Ε	Glu	5	4	7	11	1	ġ	12	5	6	3	2	5	3	1	4	5	5	1	2	3
8	G	Gly	12	5	10	10	4	7	9	27	5	5	4	6	5	3	8	11	ò	2	3	7
AMINO ACID	н	His	2	5	5	4	2	7	4	2	15	2	2	3	2	2	3	3	2	2	3	2
AMI	I	Ile.	3	2	2	2	2	2	2	2	2	10	6	2	6	5	2	3	4	1	3	9
MENT	L	Leu	6	4	4	3	2	6	4	3	5	15	34	4	20	13	5	4	6	6	7	13
REPLACEMENT	к	Lys	6	18	10	8	2	10	8	5	8	5	4	24	, ô	2	6	8	8	4	3	5
REP	M	Met	1	1	1	1	0	1	1	1	1	2	3	2	6	2	1	1	1	1	1	2
	F	Phe	2	1	2	1	1	1	1	1	3	5	6	1	4	32	1	2	2	4	20	3
	P	Pro	7	5	5	4	3	5	4	5	5	3	3	4	3	2	20	6	5	1	2	4
	Ś	Ser	9	5	8	7	7	6	7	ò	6	5	4	7	5	3	9	10	9	4	4	6
i	T	Thr	8	5	6	6	4	5	5	5	4	6	4	6	5	3	6	8	11	2	3	6
	W	Trp	0	2	0	0	0	0	0	C	1	0	1	0	0	1	D	1	0	55	1	0
	Y	Tyr	1	1	2	1	3	1	1	1	3	2	2	1	Z	15	1	2	2	3	31	2
	V	Va]	7	4	4	4	4	4	4	5	4	15	10	4	10	5	5	5	7	2	4	17

3-Binf DB & Str. Pred -> Seq align -> Alignments \rightarrow Substitution Models



Substitution models include evolutionary information

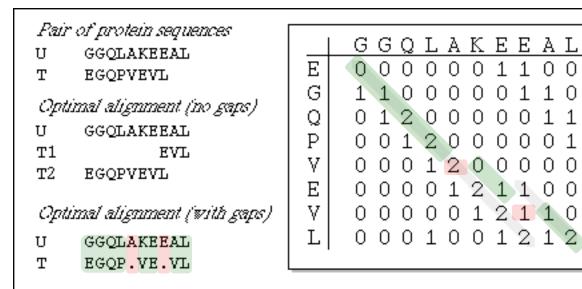
BLOSSUM matrices

- **BLOcks SUbstitution Matrix**
- Derived from blocks of aligned sequences in BLOCKS database – implicitly represents distant relationships.
- bias from identical sequences is removed by clustering at a sequence identity threshold
- BLOSUM62 = matrix derived from sequences clustered at 62% or greater identity

PAM	BLOSUM
Similar proteins compared as whole	Conserved BLOKS (fragments) compared
PAM1 corresponds to $1 \neq$ residue in 100 \rightarrow 99% ID	BLOSUM1 corresponds to 1% ID
Other PAM matrices extrapolated from PAM1	Each matrix based on observed alignments
Higher numbers, more evolutionary distance	Higher numbers, more similarity (less evolutionary distance)
100	90
120	80
160	62
200	50
250	45

3-Binf DB & Str. Pred -> Seq align -> Alignments → Substitution Models

Dynamic Programing Algorithm


Matrix:

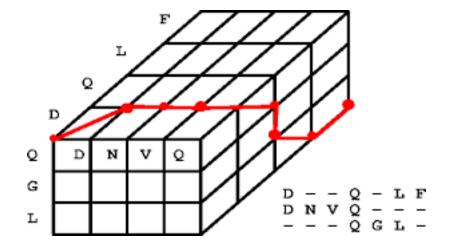
- Each dimension corresponds to one of the proteins to be aligned.
- Each cell contains the score value from the substitution model corresponding to the residue pair.
- Diagonal transitions represent aligned positions
- Vertical and horizontal transitions represent gaps and are penalized.
- The final alignment corresponds to the path in the matrix that maximizes the score.

Dynamic Programing Algorithm

Back-trace from bottom-right
Global: Needelman & Wunsch. From the corner
Local: Smith & Waterman. From any position.
② DETERMINISTIC
③ Comp. expensive

Word methods

- Short non-overlapping sequence stretches (ktuples or *words*) are identified in the *query* sequence and matched in *target* sequence(s).
- Relative positions of the matching region define an *offset* (subtraction)
- Multiple words matching with similar offset define a region prone to alignment.
- Alignments are subsequently extended in alingment-prone regions.
- 😕 **HEURISTIC**, optimal align not guaranteed.
- ③ Efficient for database searches.
- BLAST, FASTA.



Analysis Tools

Multiple sequence alignments

• Dynamic programming algorithm (Ndimensional matrix)

Analysis Tools BLAST BLAST BLAST Build a sequence to find homologs through pairwise sequence alignment

Multiple sequence alignments

- Dynamic programming algorithm
- Progressive methods
 - First align the most similar pair
 - Subsequently add less similar sequences
 - Sensitive to similarity inaccuracy (i.e. due to differences in sequence length)
 - CLUSTAL
 - Additional info considered: T-Coffee (slow)
- Iterative methods

Multiple sequence alignments

- Dynamic programming algorithm
- Progressive methods
- Iterative methods
 - Initial global alignment
 - Objective function (based on score) to optimise similarity assessment. Chose best.
 - All possible remaining sequence subsets realigned and re-scored
 - Best subset included in the alignment/iter.
 - Typically slower, more accurate
 - MUSCLE, MAFT.

Sequence alignments

Align

BLAST

Beyond pure sequences: patterns and models

- Aligned sequences can be used to define patterns, that can then be used to perform searches in databases.
- Position Specific Scoring Matrices
- Hidden Markov Models

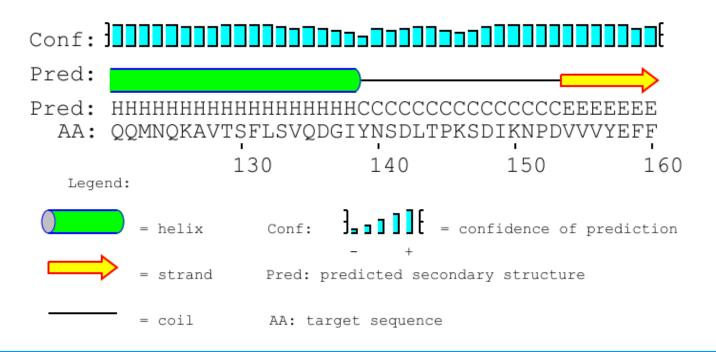
Summary of 1D predictions

Different protein properties or characteristics can be predicted from its primary sequence:

- Secondary structure
- Solvent accessibility
- Solubility/expressability
- Transmembrane regions

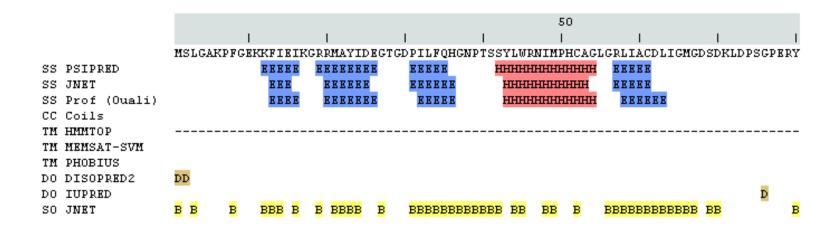
The methods that do such predictions improve if they consider *evolutionary information*

Secondary structure prediction


- prediction of the conformational state of each amino acid
 (AA) residue of a protein sequence as one of the possible states:
 - helix (H)
 - strand (S)
 - coil (C)

Secondary structure prediction

- amino acid propensities derived from known 3D structures
 - probability of a particular AA for a particular secondary structure state
 - first-generation methods low accuracy
- propensities of segments of adjacent residues
 - local environment of residues considered (3-51 consecutive residues)
 - second-generation methods accuracy ~ 60 % 65 %
- evolutionary information combined with machine learning
 - training set sequence profiles associated with a particular secondary structure arrangement (based on known 3D structures)
 - sequence profiles derived from family sequence alignments
 - state-of-the-art methods accuracy ~ 70 % 80 %

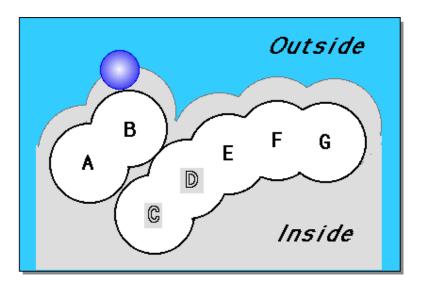

Secondary structure prediction programs

- □ PSI-PRED
 - http://bioinf.cs.ucl.ac.uk/psipred/
 - combination of PSI-BLAST profiles and neural networks
 - careful selection of sequences used for profile construction

Secondary structure prediction programs

- Quick2D (MPI toolkit)
 - https://toolkit.tuebingen.mpg.de/tools/quick2d
 - overview of secondary structure features (α-helices, extended βstrands, coiled coils, transmembrane helices, disorder regions)
 - predictions by PSI-PRED, JNET, Prof, Coils, MEMSAT2, HMMTOP,...

3-Binf DB & Str. Pred -> Properties prediction -> Secondary Structure


Secondary structure prediction programs

- GeneSilico metaserver
 - https://genesilico.pl/meta2/
 - meta-server for protein structure prediction, including secondary structure prediction

STRUCTURE Second	
PREDICTION	MTISADISLHHRAVLGSTMAYRETGRSDAPHVLFLHGNPTSSYIWRNIMPLVAPVGHCIAPDLIG
sspro4	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
cdm	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
psipred	EEEEEEEEEEEEEEEEEEEEEEEE
fdm	HHEEEEEEE-EEEEEEEEEEEEEEEEEEEEEEEE
jnet	EEEEEEEEEEEEEEEEEEEEEEEEEEE
porter	
sable	EEEEEEEEEEEEEEEEEEEEEEE
prof	EEEEEEEEEEEEEEEEEEE
gor	EEEEEEEEEEEEEEE <u>HHHHHHHH</u>
consensus	5EEEEEEEEEEEEEEEEEE

Solvent accessibility prediction

- prediction of the extent to which a residue embedded in a protein structure is accessible to solvent
 - comparison of accessibility of different amino acids relative values (actual area as percentage of maximally accessible area)
 - simplified two state description buried vs. exposed residues

Solvent accessibility prediction

- **residue hydrophobicity**
 - very hydrophobic stretches are predicted as buried
- propensities of single residues or segments of residues to be
 - solvent accessible
 - superior to simple hydrophobicity analyses
- evolutionary information
 - solvent accessibility at each position of protein structure is evolutionary conserved within sequence families → methods using multiple sequence alignment information
 - prediction accuracy above 75%

Solvent accessibility prediction programs

D PHD

- http://www.predictprotein.org/
- combination of evolutionary information with neural network
- PROFphd
 - http://www.predictprotein.org/
 - improved version of PHD
 - combination of evolutionary information and secondary structure prediction with neural network
 - trained only on high resolution structures

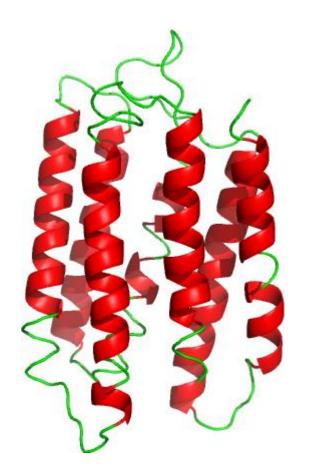
Solvent accessibility prediction programs

□ SABLE2

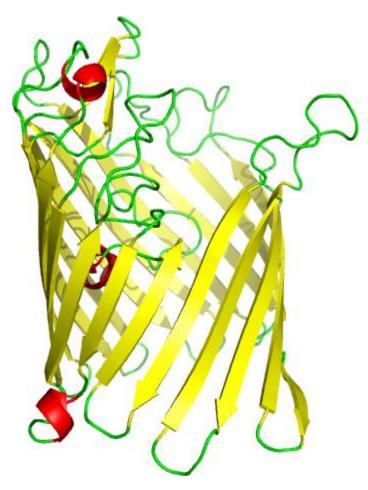
- http://sable.cchmc.org/
- combines solvent accessibility and secondary structure predictions
- GeneSilico metaserver
 - https://genesilico.pl/meta2/
 - meta-server for structure prediction, including solvent accessibility

Protein Solvation 🖻 🖻 🐵	1
	MAIRRPEDFKHYEVQLPDVKIHYVREGAGPTLLLLHGWPGFWWEWSKVIGPLAE
netsurfp_sol25	BBBB-B-B-B-BBBBBBBBBBBBBB
soprano_sol25	BBBB-B-B-BBBBBBB-B-BBBBBBBBBB
sable_acc	BBBBB-BBBB-BBBBBBBBBB-BBBBBBBBBB
spine_sol25	BBB-B-B-B-BBBBBBBBBBBBBBBB
spineX_sol25	BBBB-B-B-B-BBBBBBBBBBBBBB
paleale_sol25	BBB-B-B-BBBBBBBBBBBBBBBBB
accpro_sol25	BB-B-B-B-B-BBBBBBBBBBBBBBBBBBB
jnet_sol25	BBBBB-BBBB-BBBBBBBB-BBBBBBBBBB
paleale_sol5	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

- Complicated definition of the property
- Prediction of the extent to which a given sequence will

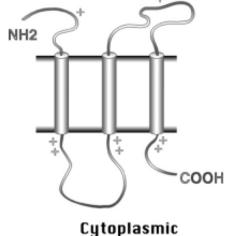

produce a soluble protein in a given expression system or

- Prediction of aggregation propensity
- Methods heavily rely on machine learning.


Solubility and expressability prediction

- Methods based on:
 - Plain protein sequences
 - Evolutionary information implicit in the learning data
 - SOLpro <u>http://scratch.proteomics.ics.uci.edu</u>
 - ESPRESSO <u>http://mbs.cbrc.jp/ESPRESSO</u>
 - SoluProt <u>https://loschmidt.chemi.muni.cz/soluprot/</u>
 - Sequence profiles
 - Evolutionary Information implicit in the profile
 - AGGRESCAN <u>http://bioinf.uab.es/aggrescan/</u>
 - TANGO <u>http://tango.crg.es</u>
 - PASTA <u>http://protein.cribi.unipd.it/pasta/</u>

- □ transmembrane (TM) proteins challenge for experimental determination of 3D structure → structure prediction needed even more than for globular water-soluble proteins
- two major classes of integral membrane proteins
 - transmembrane helices (TMH)
 - transmembrane beta-strand barrels (TMB)



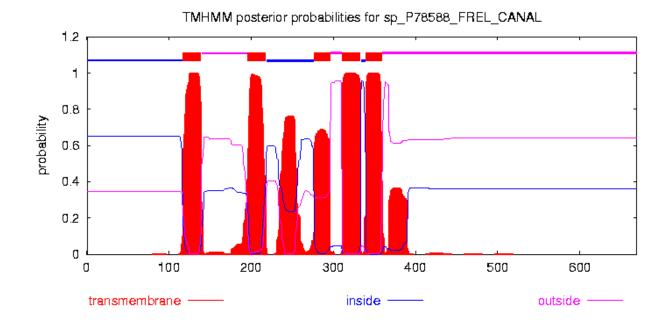
TMH: bacteriorhodopsin (PDB-ID 1ap9)

TMB: matrix porin (PDB-ID 2omf)

- prediction of TMH simplified by strong environmental constraints – lipid bilayer of the membrane
 - TMHs are predominantly apolar and 12-35 residues long (hydrophobicity)
 - specific distribution of Arg and Lys (positively charged)
 → connecting loop regions at the inside
 of the membrane have more positive
 charges than loop regions at the outside
 - = positive-inside rule

- □ prediction of TMB
 - transmembrane beta-strands contain 10 25 residues
 - only every second residue faces the lipid bilayers and is hydrophobic,
 other residues face the pore of the β-barrel and are more hydrophilic
 - \rightarrow analysis of hydrophobicity NOT useful for TMB prediction

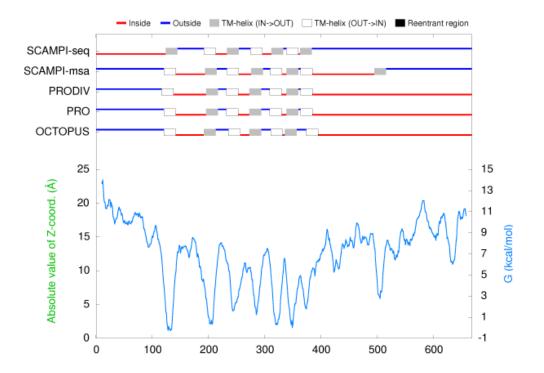
- hydrophobicity-based methods (for TMH)
 - hydrophobicity along the sequence, hydrophobic moment or other membrane-specific amino acid preferences
 - averaging hydrophobicity values over windows of adjacent residues
 - prediction of orientation of TMH using positive-inside rule
- evolutionary information combined with machine learning or


hidden Markov models (for TMH)

- superior to methods based solely on hydrophobicity
- evolutionary information combined with machine learning or hidden Markov models (for TMB)

- no appropriate estimate of performance available
 - insufficient number of high-resolution structures (needed for a statistically significant analysis)
 - in the papers, accuracy of methods usually largely overestimated methods perform much better on proteins for which they were developed than on new proteins
 - the best methods for TMH estimated to have ~70% accuracy

TMHMM 2.0


- http://www.cbs.dtu.dk/services/TMHMM/
- a number of statistical preferences and rules embedded in hidden
 Markov model → localization and orientation of TMH

3-Binf DB & Str. Pred -> Properties prediction -> Transmembrane region

□ TOPCONS

- http://topcons.cbr.su.se/
- consensus prediction of TMHs

□ TBBpred

- http://www.imtech.res.in/raghava/tbbpred/
- prediction of TMB using machine learning

PROFtmb

- http://www.predictprotein.org/
- profile-based hidden Markov model
- prediction of bacterial TMB
- **.**...

References

- Gu, J. & Bourne, P. E. (2009). Structural Bioinformatics, 2nd Edition,
 Wiley-Blackwell, Hoboken, p. 1067.
- Xiong, J. (2006). Essential Bioinformatics. Cambridge University Press, New York, p. 352.
- Schwede, T. & Peitsch, M. C. (2008). Computational Structural Biology: Methods and Applications, World Scientific Publishing Company, Singapore, p. 700.