

Macromolecular complexes and interactions

Macromolecular complexes

Structure of complexes

Prediction of 3D structures of complexes

Analysis of macromolecular complexes

Macromolecular complexes and interactions

What is a macromolecular complex?

Protein – small molecule 🗵

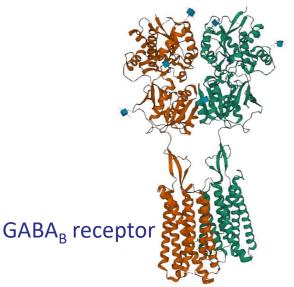
Protein – protein \square

Protein – nucleic acids ☑

Nucleic acids – small molecule 🗵

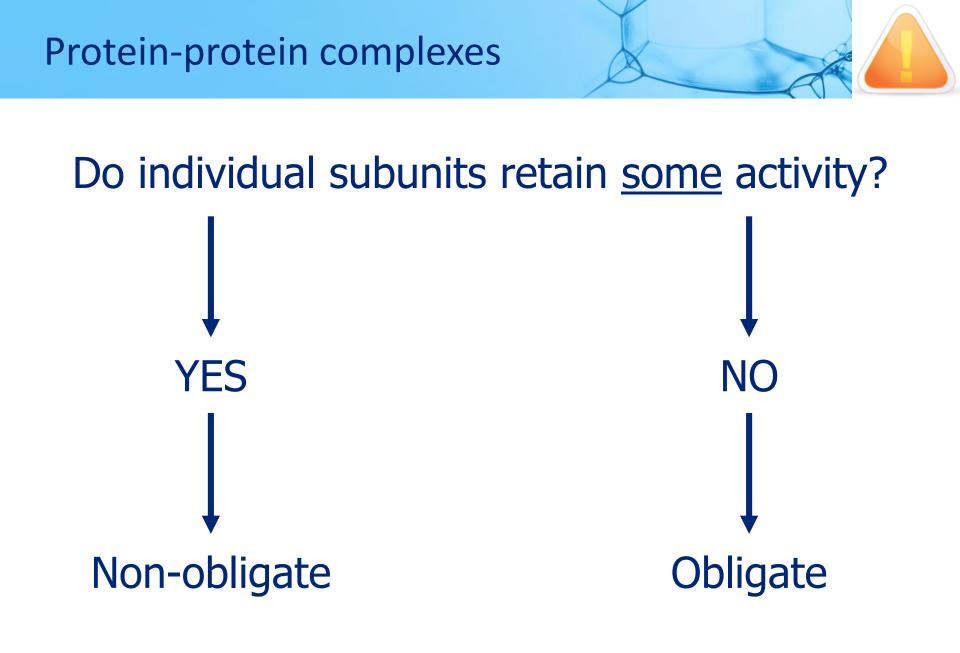
Macromolecular complexes

- Two or more polypeptide chains (protomers) may associate into an oligomer
- □ Protein-protein and protein-nucleic acid interactions are


essential for every cellular process

- Metabolism
- Transport
- Signal transduction
- Genetic activity (transcription, translation, replication, repair, ...)
- Membrane trafficking
- Mobility
- ...

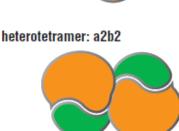
Protein-protein complexes


Obligate complexes

- Protomers (individual polypeptides) do not function as independent structures, only when associated
- Examples: GABA receptors, ATP synthase, many ion channels, ribosome, etc.

Non-obligate complexes

- Protomers can exist and be functional as independent structures
- Examples: hemoglobin, beta-2 adrenergic receptor, insulin receptor, etc.



Macromolecular complexes – protein-protein complexes

Protein oligomerization

- Oligomerization is common
 - 75 % of proteins in a cell are oligomers
 - Homo-oligomers are the most common
 - Some proteins exists solely in the oligomeric state
- Often symmetric
- Oligomerization interfaces are complementary
- □ Favored by evolution

heterodimer: ab

Why do proteins form oligomers?

Macromolecular complexes – protein-protein complexes

Advantages of oligomerization

Morphology

- More complex structures are often required for multiple functions
 - (e.g. membrane pores)

Cooperativity

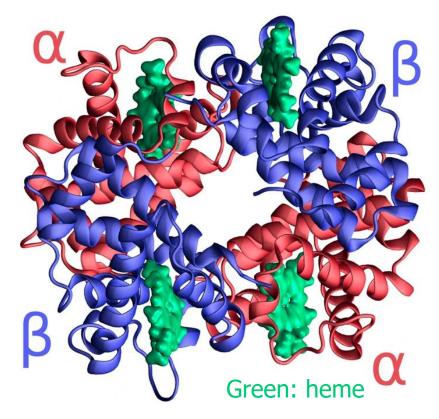
- Allostery (modulation of biological activity)
- Multivalent binding

Stability against denaturation

Smaller surface area

Redundancy and error control

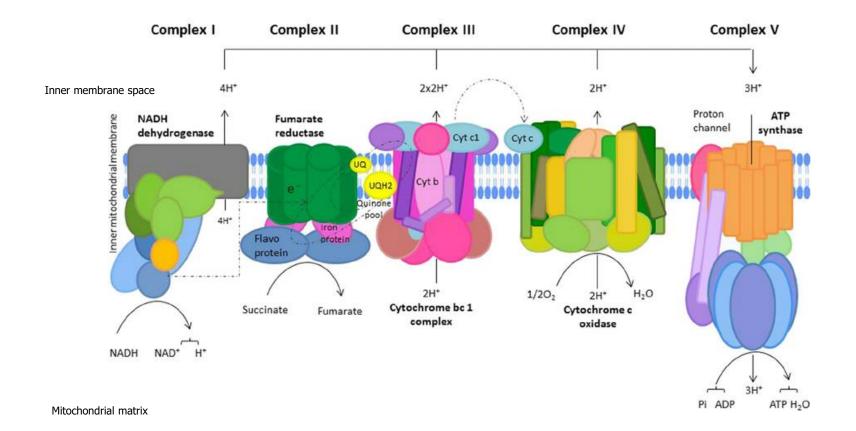
• E.g. protein translation control

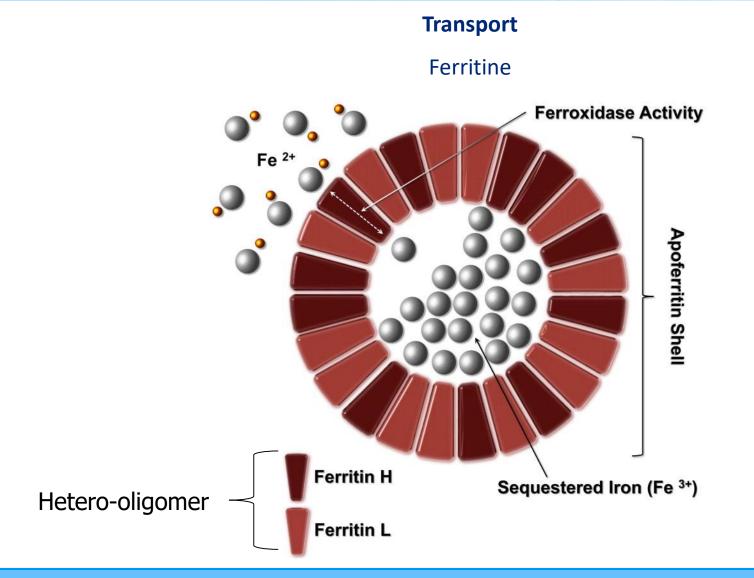

Oligomerization interface

Characteristics of oligomeric interface

- Large surface area (> 1400 Å²)
- Tendency to circular and planar shape (not for obligates)
- Some residues protrude from the surface
- More non-polar residues (about 2/3) than in other parts of surface
- More polar residues (about 1/5) than in protein cores
- About 1 H-bond per 200 Å²
- "Hot-spot" residues
 - Responsible for most of the oligomeric interactions
 - More evolutionary conserved than other surface residues
 - Frequently polar residues, located about the center of the interface

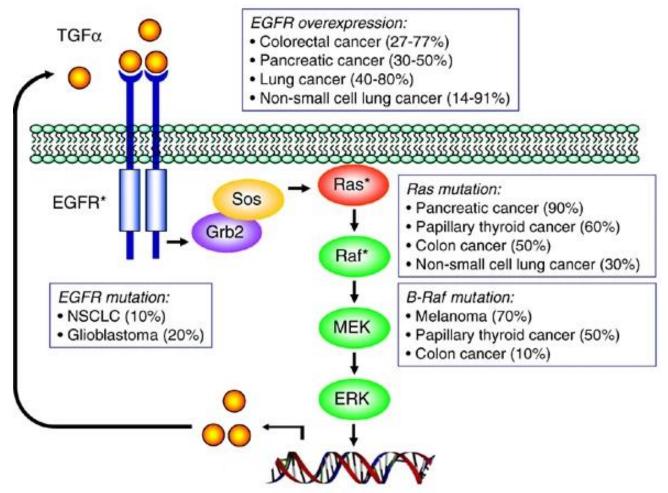
Metabolism

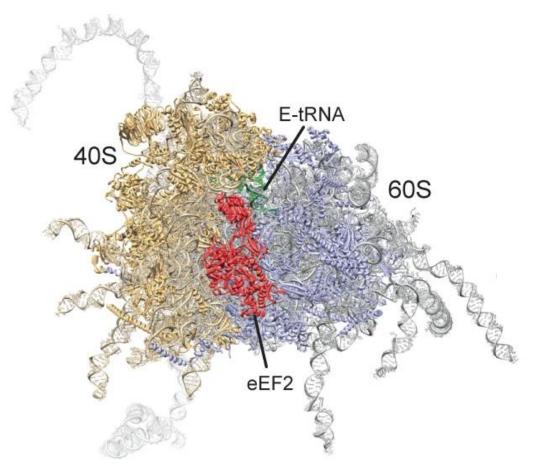

Hemoglobin



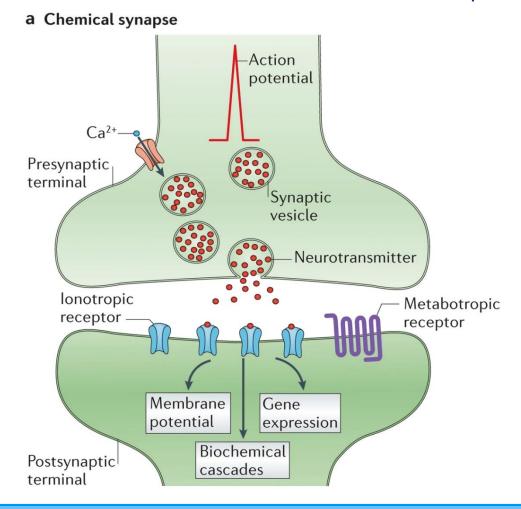
Tetramer made of 2*2 subunits (a and β)

Metabolism

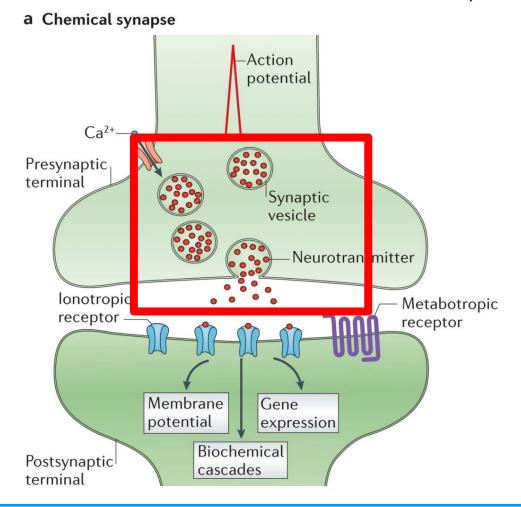

Oxidative phosphorylation complexes (mitochondria)

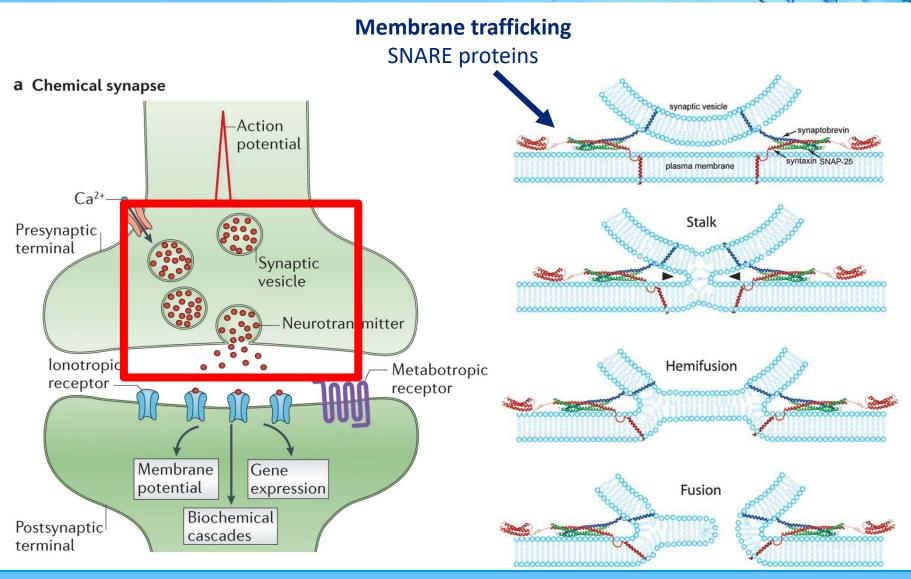

Signal transduction

EGFR/RAS/RAF/MEK/ERK pathway



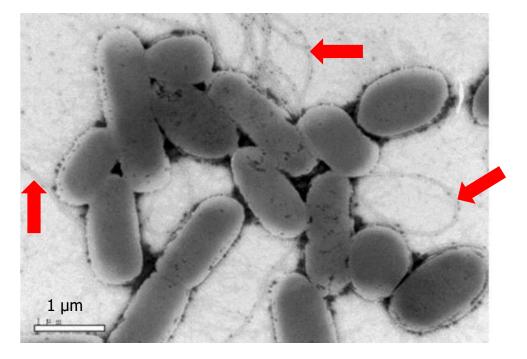
Genetic activity


Ribosome

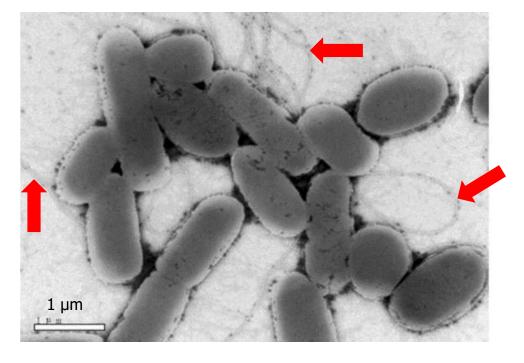


Membrane trafficking SNARE proteins

Membrane trafficking SNARE proteins



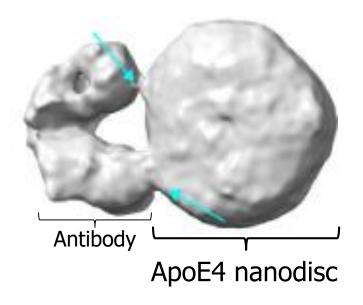
Palfreyman and Jorgensen, 2010, Molecular 18 mechanisms of Neurotransmitter Release


Mobility

Flagella (of Salmonella)

Mobility

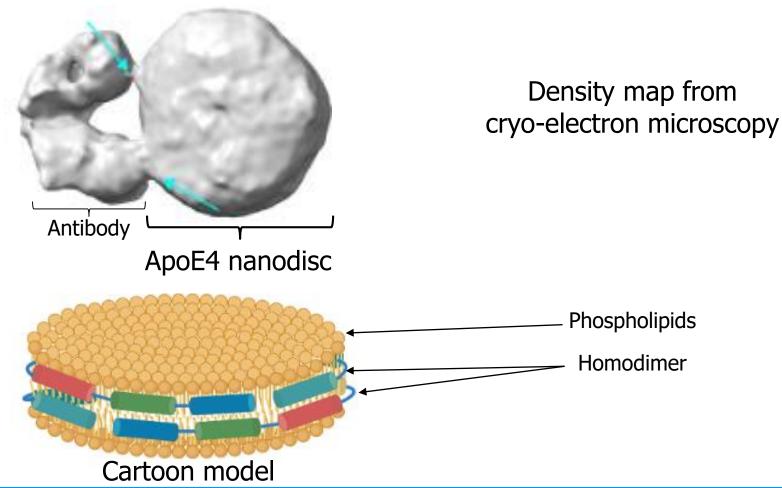
Flagella (of Salmonella)



Yang et al., 2019, AMB Express

Chevance and Hughes, 2008, Nature Reviews Microbiology

Protein-lipid nanoparticle


ApoE4

Density map from cryo-electron microscopy

Protein-lipid nanoparticle

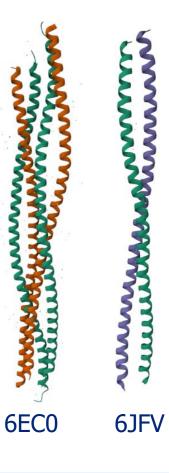
ApoE4

Oligomerization vs Aggregation

Oligomerization

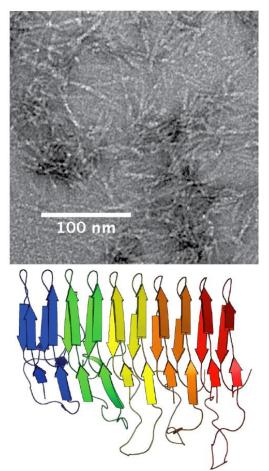
- Oligomers are soluble
- Precise fold
- Proteins are native (not denatured)
- Reversible (sometimes)

Aggregation


- Aggregates are insoluble
- Can be heterogenous
- Denatured proteins aggregate (temperature, pH, salt...)
- Irreversible

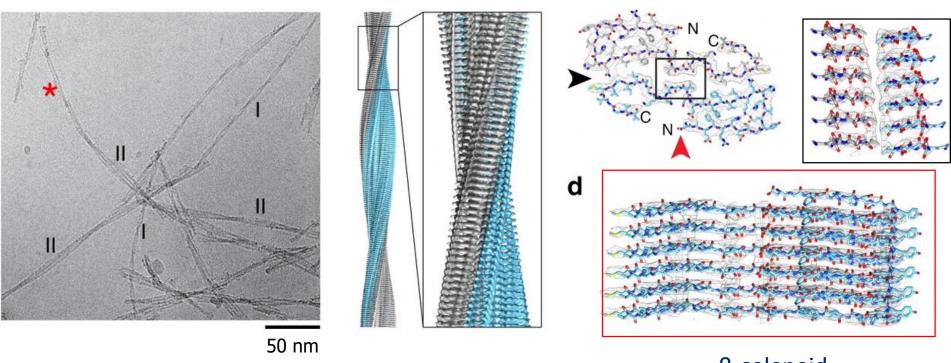
The function of some proteins **is** to aggregate.

Aggregates ≠ pathology


Non-pathological aggregates

Keratin filaments (hair, skin, nails)

PDB code:


HET-s (fungal reproduction and apoptosis)

Pathological aggregates

Amyloid β from human brain

(involved in Alzheimer's disease)

β-solenoid

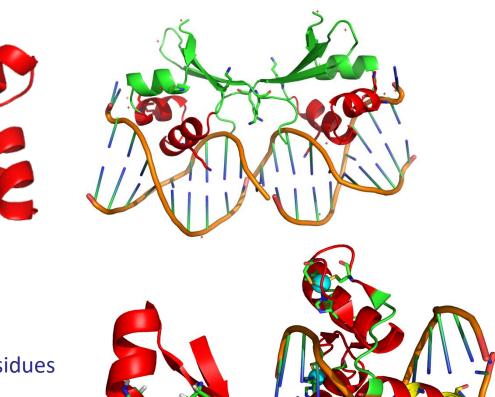
Two different morphologies (I and II) * Transition from I to II

Pathological aggregates

Amyloid β from human brain (involved in Alzheimer's disease)

Has non-pathological functions too!

- Blood-brain barrier maintenance
- □ Anti-microbial peptide
- □ Synapse function

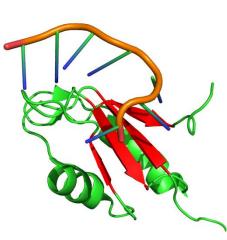

Protein-nucleic acids complexes

- Protein-nucleic acid interactions
 - Non-specific electrostatic interactions with negative charge on the backbone of nucleic acid -> Lys and Arg residues
 - Specific recognition of particular nucleotide sequences
 - Major groove B-DNA
 - Minor groove A-DNA or A-RNA
 - Single strand RNA
- Typical interfaces/motifs
 - DNA binding proteins
 - RNA binding proteins

Protein-nucleic acids complexes

DNA binding proteins

- Helix-turn-helix
- (+)-sidechains
- \approx perpendicular helices
- Recognises major groove




- <u>Zinc finger</u>
- Zn²⁺ stabilized by Cys and His residues
- Zn²⁺ is essential for folding
- Zn²⁺ mediates DNA binding

Protein-nucleic acids complexes

RNA binding proteins

- RRM: βαββαβ barrel-like arrangement, sequence-specific RNA recognition
- KH domain: ssRNA/DNA binding through H-bonds, electrostatic and shape complementarity
- PUF domain: each helix recognizes a single base

RNA recognition motif (RRM) K-homology (KH) domain

Pumilio repeat domain (PUF)

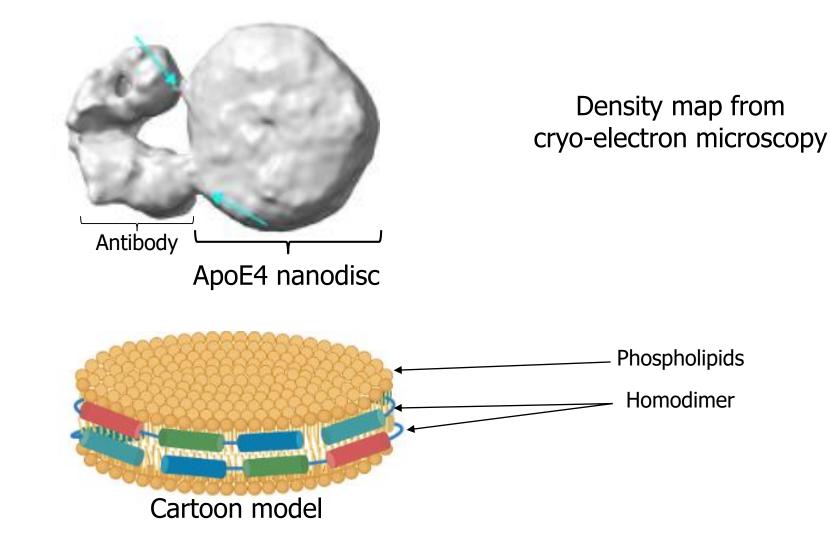
Macromolecular complexes – protein-nucleic acids complexes

How to detect macromolecular complexes?

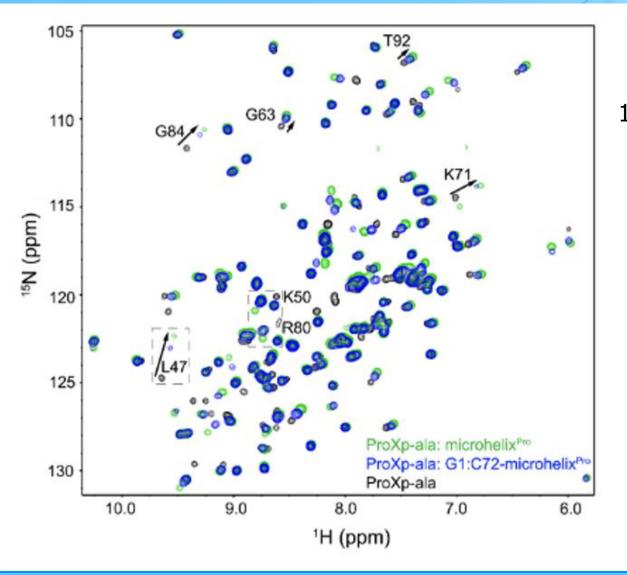
How to detect macromolecular complexes

- Physics-based methods
 - Size
 - Molecular mass
 - Binding to a surface containing immobilised partner
 - Temperature shift upon binding
 - Binding of a fluorescent indicator
- Complementation of biological activity
 - Each partner has one half of a protein
 - If both partners interact, both halves also interact
 - Restoration of activity (e.g. critical enzyme for organism growth, fluorescence)
- □ Imaging
 - Fluorescence (need fluorescent tag)
 - Atomic force microscopy
 - Electron microscopy

How to <u>resolve</u> macromolecular complexes?

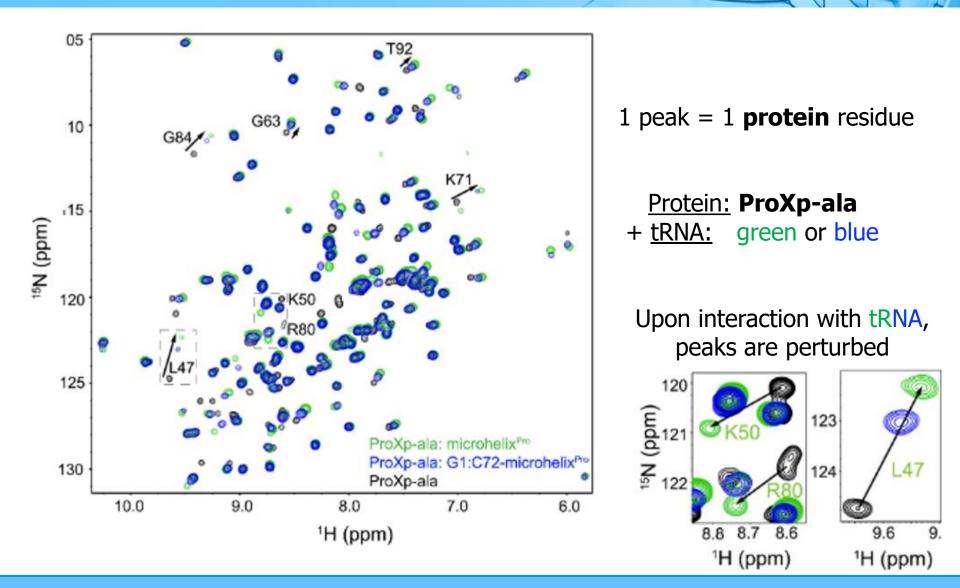

How to resolve macromolecular complexes

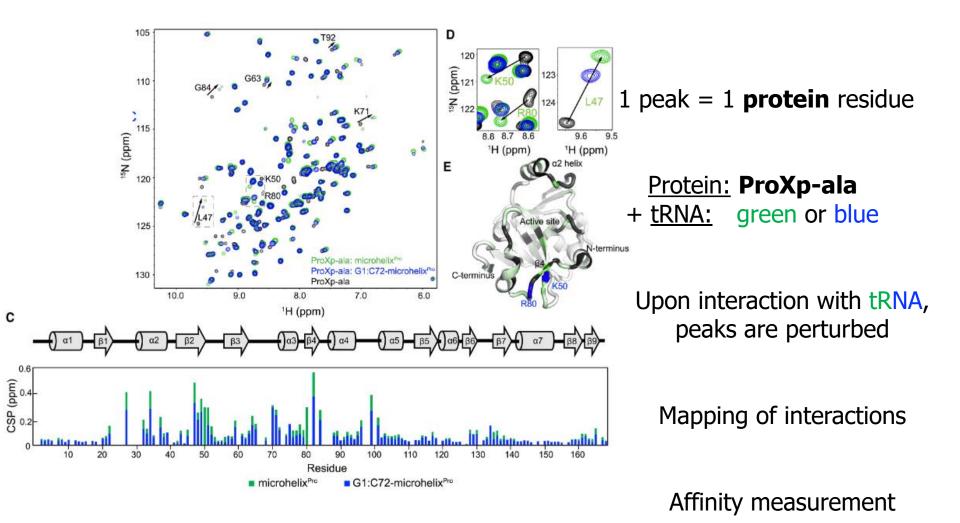
Electron microscopy


Nuclear magnetic resonance (NMR)

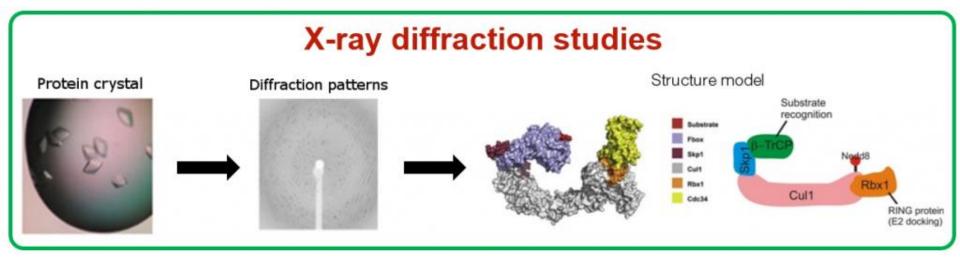
X-ray crystallography

Electron microscopy


NMR (Chemical Shift Perturbation, CSP)


1 peak = 1 **protein** residue

Protein: **ProXp-ala** + <u>tRNA:</u> green or blue

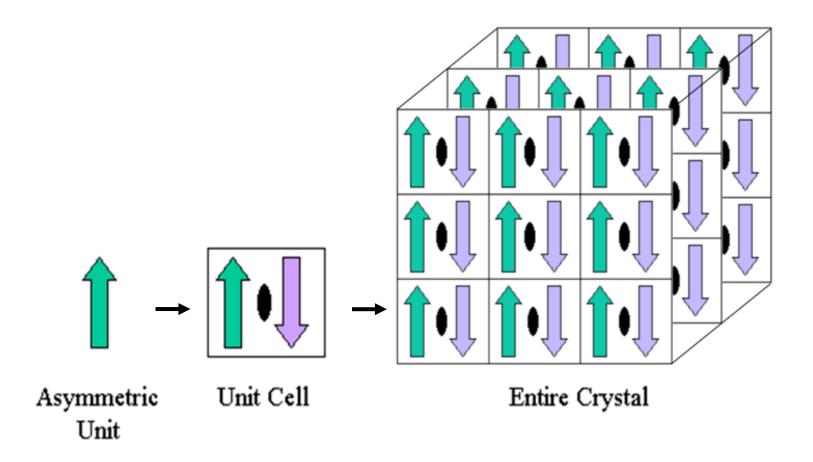

NMR (Chemical Shift Perturbation, CSP)

NMR (Chemical Shift Perturbation, CSP)

X-ray crystallography

In Protein Data Bank (PDB, rcsb.org), <u>83% of structures</u> come from <u>X-ray crystallography</u>.

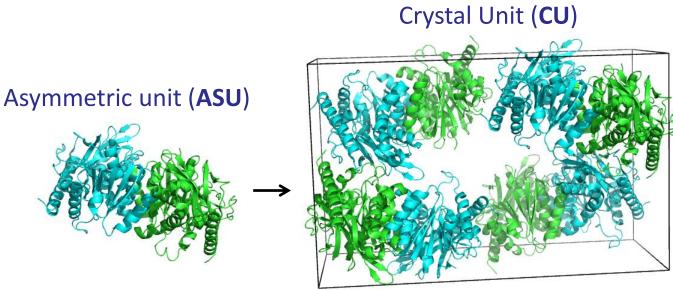
38


□ Asymmetric unit (ASU)

- Macromolecular structures from X-ray crystallography deposited to PDB as a single asymmetric unit
- The smallest portion of a crystal structure to which symmetry operations can be applied in order to generate the unit cell

Unit cell (crystal unit)

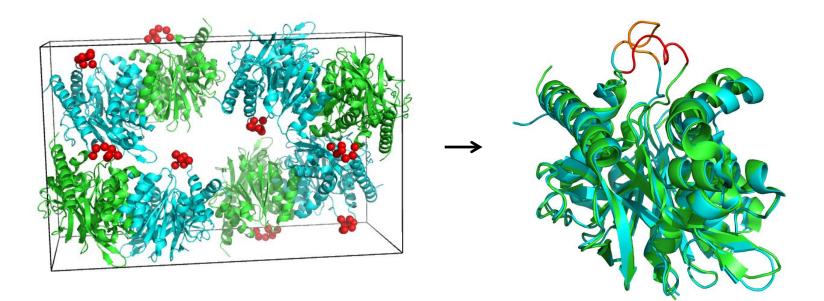
 The basic unit of a crystal that, when repeated in three dimensions, can generate the entire crystal


Quaternary structure in PDB database

Crystalline environment

Crystal contacts

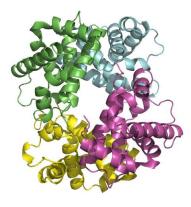
- Intermolecular contacts solely due to protein crystallization
 - Causes artifacts of crystallization
 - Crystal packing complicates identification of native quaternary structure



Crystalline environment

Artifacts of crystallization

- Concerns about conformation of some surface regions
- Often loops or side chains are affected
- Can complicate the evaluation of the effects of mutations



Quaternary structure in PDB database

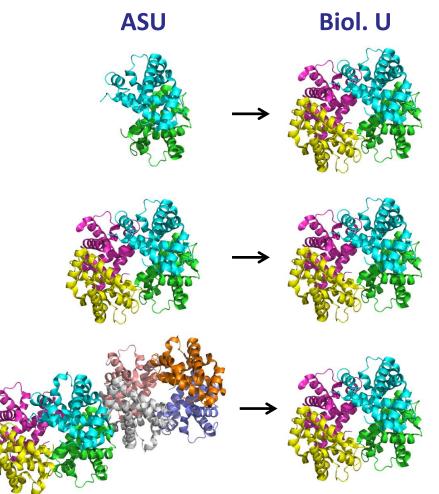
Biological unit

- The functional form of a protein in nature
- Also called: functional unit, biological assembly, quaternary structure
- Can depend on the environment, post-translational modifications

of proteins and their mutations

Hemoglobin heterotetramer

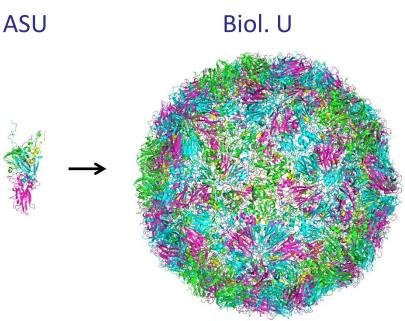
Structure of complexes – quaternary structure in PDB database

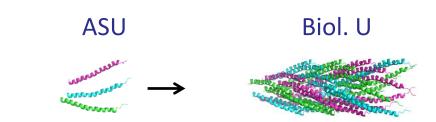

Biological versus asymmetric unit

Biological unit can consist of:

Multiple copies of the ASU

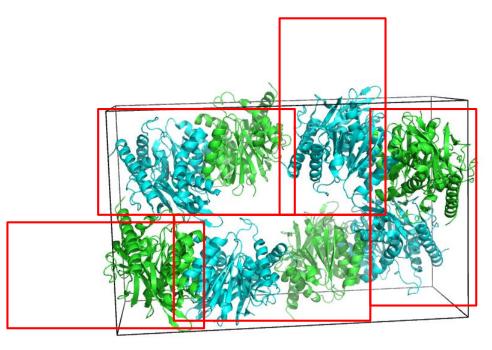
One copy of the ASU


• A portion of the ASU


Structure of complexes – quaternary structure in PDB database

Biological versus asymmetric unit

- □ Large assemblies
 - Viral capsid


Filamentous bacteriophage PF1

Complex or artifact?

D Problem

- Most proteins in the PDB have three or more crystal contacts that sum up to 30% of the protein solvent accessible surface area
- How to recognize biologically relevant contacts from crystal one?

Structure of complexes – complex or artifact?

Complex or artifact?

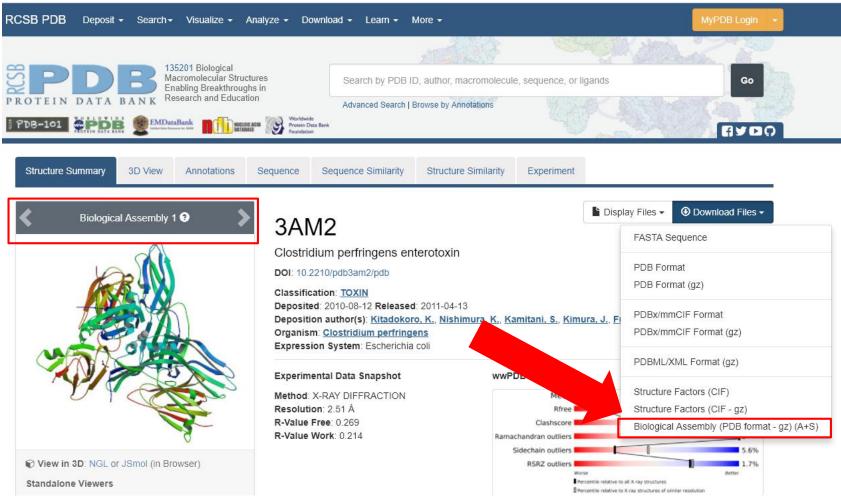
- Experimental knowledge of oligomeric state helps with
 - identifying of the structure of native complex
 - Search literature
 - Experimental methods
 - Gel filtration, static or dynamic light scattering, analytical ultracentrifugation, native electrophoresis, ...

How to get the structure of a biological unit?

- Author-specified assembly
- Databases
- Predictive tools

Author-specified assembly

REMARK 350 in headers of PDB file

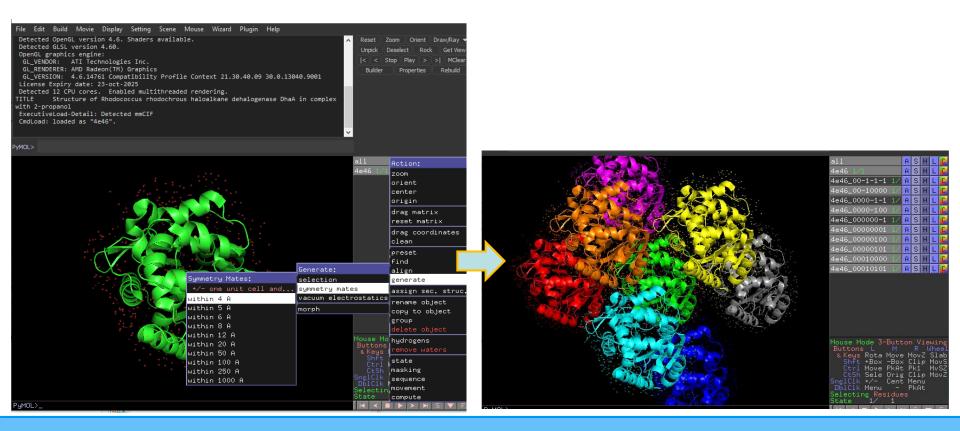

- Contains symmetry operations to reconstruct biological unit, but...
- → Verify author-proposed biological unit by other means
 - Sometimes the specific oligomers were not known at the time the ASU was published
 - Some authors may have failed to specify the biological unit even when it was known
 - Rarely, the specified biological unit might be incorrect

Employed by

RCSB PDB and other tools

Author-specified assembly

RCSB PDB



Structure of complexes – complex or artifact?

Crystal lattice

PyMOL

• Generate > Symmetry mates \rightarrow to visualize nearest partners

Structure of complexes – complex or artifact?

Discovering and characterising macromolecular complexes

requires <u>heavy experimentation</u>

How can we predict macromolecular complexes?

Prediction of 3D structure of complexes

Prediction of 3D structure of complexes

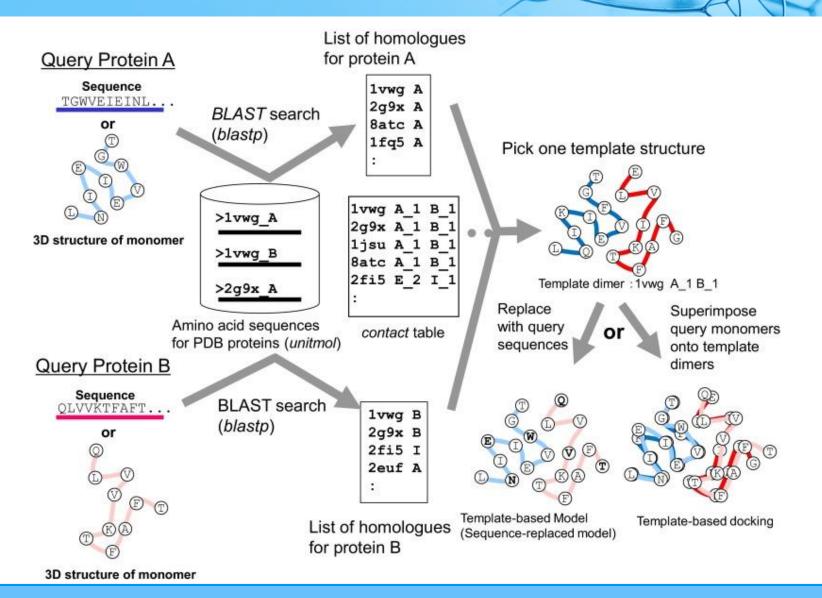
Homology-based predictions

Machine learning-based predictions

Macromolecular docking

Prediction of 3D structure of complexes

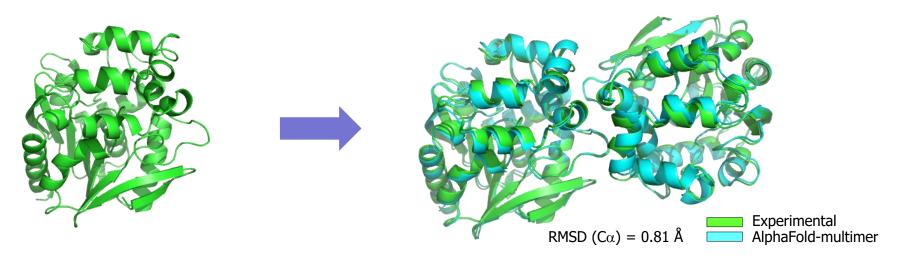
Homology based methods


- A protein complex is built based on a similar protein complex with a known 3D structure
- Assumes that the interaction information can be extrapolated from one complex structure to close homologs of interacting proteins
 - Close homologs (≥ 40% sequence identity) almost always interact in the same way (if they interact with the same partner)
 - Sequence similarity is only rarely associated with a similarity in interactions
- Limited applicability (low number of templates)

Homology based methods

HOMCOS (Homology Modeling of Complex Structure)

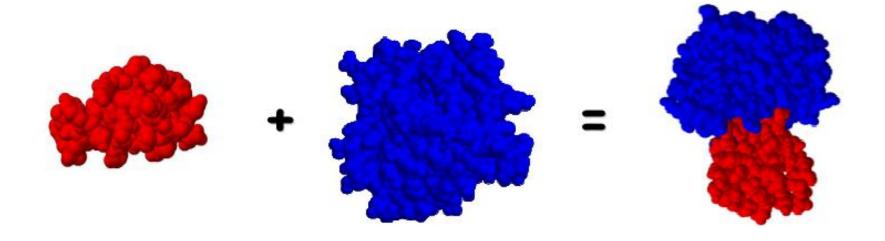
- https://homcos.pdbj.org/
- Predicts 3D structure of homodimers and heterodimers by homology modeling
- Optionally, identifies potentially interacting proteins
- Steps:
 - 1. BLAST search to identify homologous templates
 - 2. Evaluation of the model validity by combination of sequence similarity and knowledge-based contact potential energy
 - 3. Generation of a full atomic model by **MODELLER**


Homology based methods

Prediction of 3D structure of complexes – homology based methods

Machine learning-based predictions

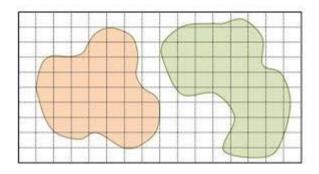
- AlphaFold-Multimer
 - Variant of AlphaFold 2
 - Predicts 3D structure of multimers


AlphaFold 3 equivalent just came out (Abramson et al., 2024, Nature)

Macromolecular docking

- Prediction of the best bound state for given 3D structures of two or more macromolecules
- Difficult task
 - Large search space many potential ways in which macromolecules can interact
 - Flexibility of the macromolecular surface and conformational changes upon binding
- □ Can be facilitated by prior knowledge
 - Ex: known binding site \rightarrow significant restriction of the search space
 - Distance constraints on some residues


Macromolecular docking


- □ 3 main parameters:
 - Macromolecule representation
 - Search algorithm
 - Scoring function

Macromolecule representation

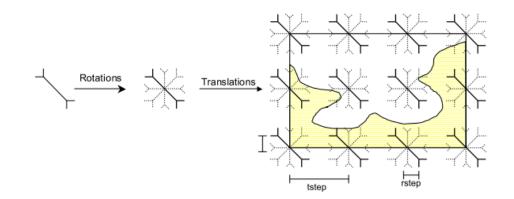
- Representation of the macromolecular surface (applicable to both receptor and ligand)
 - Geometrical descriptors of shape (set of spheres, surface normals, vectors radiating from the center of the molecule,...)
 - Discretization of space: grid representation

Macromolecule representation

- Macromolecule flexibility
 - Fully rigid approximation
 - Soft docking employs tolerant "soft" potential scoring functions to simulate plasticity of otherwise rigid molecule
 - Explicit side-chain flexibility optimization of residues by rotating part of their structure or rotation of whole side-chains using predefined rotamer libraries
 - Docking to molecular ensemble of protein structure composed from multiple crystal structures, from NMR structure determination or from trajectory produced by MD simulation

Macromolecule representation

- Macromolecule flexibility
 - Rigid body docking basic model that considers the two macromolecules as two rigid solid bodies
 - Semiflexible docking one of the molecules is rigid, and one is flexible (typically the smaller one)
 - Flexible docking both molecules are considered flexible


Macromolecular docking - search

- Generally based on the idea of complementarity between the interacting molecules (geometric, electrostatic or hydrophobic contacts)
- The main problem is the dimension of the conformational space to be explored:
 - Rigid docking: 6D (hard)
 - Flexible docking: 6D + N_{fb} (impossible!)
- Information on the rough location of the binding surface

(experimental or predicted) \rightarrow reduction of the search space

Macromolecular docking - search

- Exhaustive search
 - Full search of the conformational space: try every possible relative orientation of the two molecules
 - Computationally very expensive 6 degrees of freedom for rigid molecules (translations + rotations)
 - Grid approaches

Macromolecular docking - search

- Stochastic methods
 - Monte Carlo
 - Genetic algorithms
 - Brownian dynamics
 - ...

Macromolecular docking - scoring

- □ Scoring functions
 - Evaluation of a large number of putative solutions generated by the search algorithms

- Methods often use a two-stage ranking
 - Approximate and fast-to-compute function used to eliminate very unlikely solutions
 - More accurate function used to select the best among the remaining solutions

Macromolecular docking - scoring

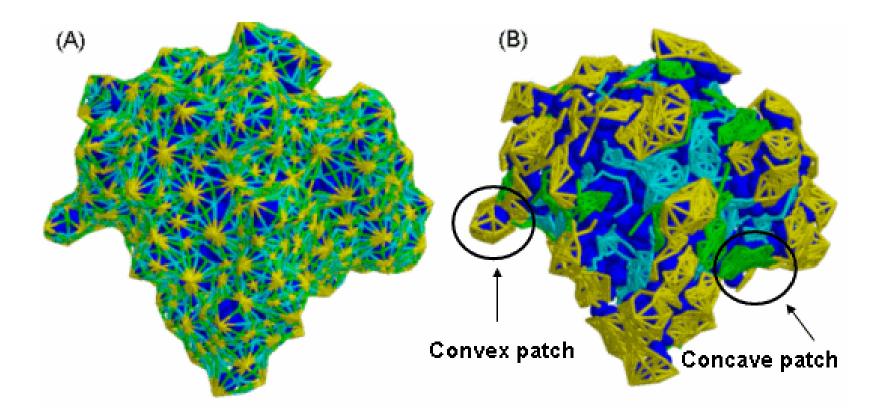
- Scoring functions
 - Empirical
 - Knowledge-based
 - Force field-based
 - Clustering-based the presence of many similar solutions is taken as an indication of correctness (all solutions are clustered, and the size of each cluster is used as a scoring parameter)

Macromolecular docking - scoring

- □ Good scores a combination of several parameters:
 - Low free energy or pseudo-energy based on force field functions
 - Large buried surface area
 - Good geometric complementarity
 - Many H-bonds
 - Good charge complementarity
 - Polar/polar contacts favored
 - Polar/non-polar contacts are disfavored
 - Many similar solutions (large clusters)
 - ...

Web server/software and link	Docking method	Filtering and refinement
BDOCK [I52] http://www.biotec.tudresden.de/~bhuang/ bdock/bdock.html	FFT correlation based on shape complementarity, degree of burial and conservation	Altering the docking solutions with a scoring function
ClusPro [II0] http://nrc.bu.edu/cluster/	FFT correlation using DOT [109]	Filtering with empirical potential and clustering, refinement by SmoothDock [III]
DOT [109] http://www.sdsc.edu/CCMS/DOT/	FFT correlation based on electrostatics and shape complementarity	Refinement by energy minimization
FireDock [I53] http://bioinfo3d.cs.tau.ac.il/FireDock/	None (refinement server)	Refinement using an energy function
GRAMMX [108] http://vakser.bioinformatics.ku.edu/ resources/gramm/grammx	FFT correlation based on shape complementarity, hydrophobicity and smoothed potentials	Clustering and knowledge-based scoring
HADDOCK [I54] http://www.nmr.chem.uu.nl/haddock/	Data-driven docking approach based on biochemical and/or biophysical interaction data	None
HEX [I55] http://www.csd.abdn.ac.uk/hex/	Spherical polar Fourier correlations	None
MolFit [I56] http://www.weizmann.ac.il/ Chemical.ResearchSupport//molfit/home.html	FFT correlation based on chemical and shape complementarity	Clustering of the predicted conformations
PatchDock [II4] http://bioinfo3d.cs.tau.ac.il/PatchDock/	Geometric hashing and pose-clustering	Ranking according to a geometric shape complementarity score
PyDock [I57] http://mmb.pcb.ub.es/PyDock/	FFT based on electrostatics and desolvation energy	Ranking using an energy function
RosettaDock [II5] http://rosettadock.graylab.jhu.edu/	Local docking by Monte Carlo search	Ranking using an energy function clustering
ZDOCK [107] http://zlab.bu.edu/zdock/index.shtml	FFT correlation based on shape complementarity, desolvation energy and electrostatics	Refinement by energy minimization
3D-Dock [I58] http://www.sbg.bio.ic.ac.uk/docking/	FFT correlation using FTDOCK [159]	Clustering, refinement of side- chains using Multidock [I59]

Prediction of 3D structure of complexes – macromolecular docking


□ ClusPro 2.0

- http://cluspro.bu.edu/
- Performs a global soft rigid-body search using PIPER docking program; employs knowledge-based potential
- The top 1,000 structures are retained and clustered to isolate highly populated low-energy binding modes
- A special mode for prediction of molecular assemblies of homo-oligomers

PatchDock

- http://bioinfo3d.cs.tau.ac.il/PatchDock/index.html
- Performs a geometry-based search for docking transformations that yield good molecular shape complementarity (driven by local feature matching rather than brute force searching of the 6D space):
 - 1. The molecular surface is divided into concave, convex and flat patches
 - 2. Complementary patches are matched \rightarrow candidate transformations
 - Evaluation of each docking candidate by a scoring function considering both geometric fit and atomic desolvation energy
 - 4. Clustering of the candidate solutions to discard redundant solutions
- Results can be redirected to FireDock for refinement and re-scoring

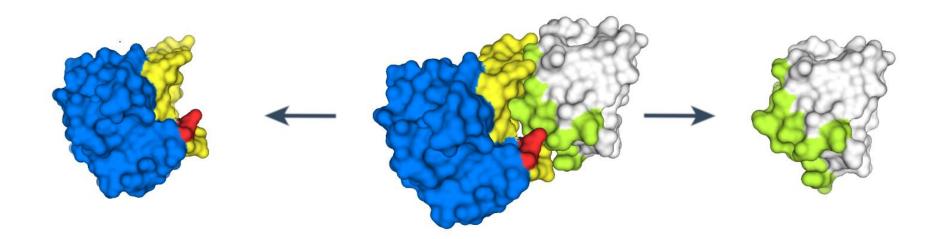
PatchDock

- □ FireDock
 - http://bioinfo3d.cs.tau.ac.il/FireDock/index.html
 - Refines and re-scores solutions produced by fast rigid-body docking algorithms
 - Optimizes the binding of each candidate by allowing flexibility in the side-chains and adjustments of the relative orientation of the molecules
 - Scoring of the refined candidates is based on softened van der Waals interactions, atomic contact energy, electrostatic, and additional binding free energy estimations

Analysis of macromolecular complexes

- □ Binding energy
- Macromolecular interface
- Interaction hot spots

Binding energy


- FastContact
 - http://structure.pitt.edu/servers/fastcontact/
 - Rapidly estimates the electrostatic and desolvation components of the binding free energy between two proteins
 - Additionally, evaluates the van der Waals interactions using
 CHARMM and reports contribution of individual residues and pairs

of residues to the free energy \rightarrow highlight the interaction hot spots

- SUMMARY ENERGIES ------Electrostatic (4r) Energy: -18.3684946 kcal/mol Desolvation Free Energy: 8.31365025 kcal/mol van der Waals (CHARMm19) : -1734.5 kcal/mol Top 20 Min & Max ligand residues contributing to the binding free energy -2.628 89 ASN -2.5866 LYS -2.2099 TYR -2.135 125 LEU -2.1142 PHE -1.832 45 ARG -1.68487 ASN

Analysis of macromolecular complexes – binding energy

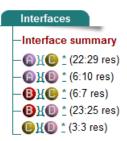
- The region where two protein chains or protein and nucleic acid chain come into contact
- Can be identified by the analysis of the 3D structure of the macromolecular complex

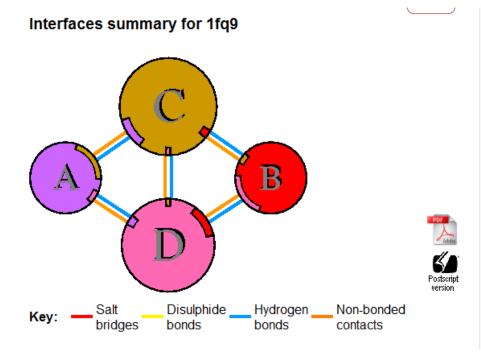
- Provides information about basic features of macromolecular complexes interactions (e.g., shape complementarity, chemical complementarity,...)
- Provides information about interface residues
- □ Acquired information is useful for a wide range of applications
 - Design of mutants for experimental verification of the interactions
 - Development of drugs targeting macromolecular interactions
 - Understanding the mechanism of the molecular recognition
 - Computational prediction of interfaces and complex 3D structures

•

Interface analysis

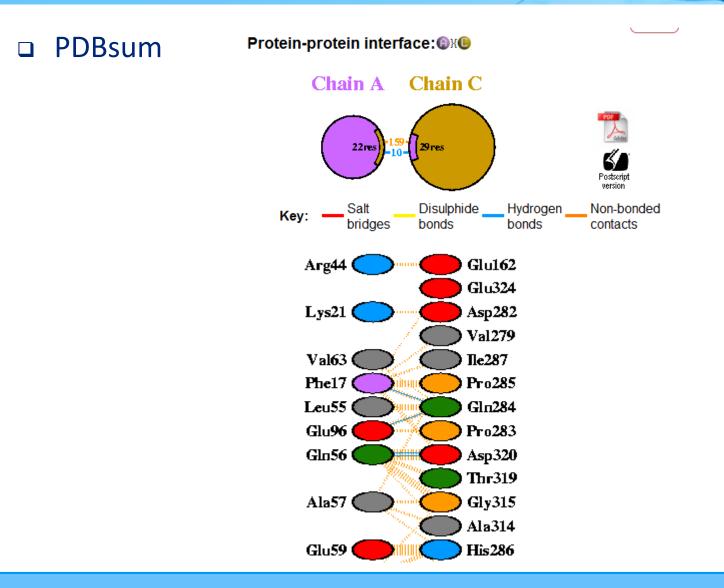
- □ Most common approaches for the definition of interfaces:
 - Methods based on the distance between interacting residues
 - Methods based on the change in the solvent accessible surface area (ASA) upon complex formation
 - Computational geometry methods (using Voronoi diagrams)
- □ All three approaches provide very similar results


Interface analysis - databases


- PDBsum (Pictorial database of 3D structures in the Protein Data Bank)
 - http://www.ebi.ac.uk/pdbsum/
 - Provides numerous structural analyses for all PDB structures and AlphaFold DB (human proteins), including information about protein-protein and protein-nucleic acid interfaces
 - Protein-protein interactions schematic diagrams of all proteinprotein interfaces and corresponding residue-residue interactions
 - Protein-nucleic acid interactions schematic diagrams of proteinnucleic acid interactions generated by NUCPLOT

Interface analysis - databases

□ PDBsum

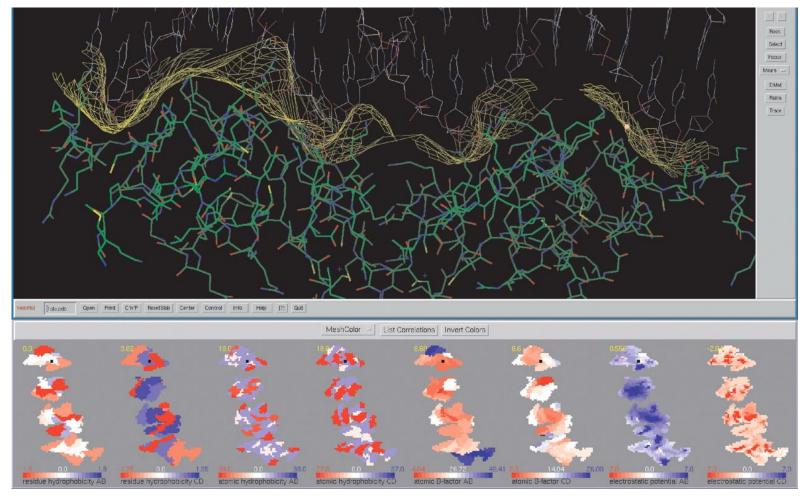


Interface statistics

Chains	No. of interface residues	Interface area (A ²)	No. of salt bridges	No. of disulphide bonds	No. of hydrogen bonds	No. of non-bonded contacts
BR	22:29	1344:1285	-	-	10	159
() X ()	6:10	389:409	-		1	34
BHO	6:7	340:363	-	-	1	28
BKD	23:25	1369:1313	-		10	159
BRD	3:3	189:182	-	-	2	18

Interface analysis - databases

Analysis of macromolecular complexes – interface analysis


- □ Analyze interface of a given macromolecular complex
 - PISA (Protein Interfaces, Surfaces and Assemblies)
 - Image: MolSurfer
 - Contact Map WebViewer
 - PIC (Protein Interaction Calculator)
 - ...

- PISA (Protein Interfaces, Surfaces and Assemblies)
 - www.pdbe.org/pisa
 - An interactive tool for the exploration of macromolecular interfaces (protein, DNA/RNA and ligands), prediction of probable quaternary structures, database searches of structurally similar interfaces and assemblies
 - Overview and detailed characteristics of all interfaces found within a given structure (including those generated by symmetry operations)
 - Provides interface area, ΔⁱG, potential hydrogen bonds and salt bridges, interface residues and atoms, ...

MolSurfer

- http://projects.villa-bosch.de/dbase/molsurfer/index.html
- Visualization of 2D projections of protein-protein and proteinnucleic acid interfaces as maps showing a distribution of interface properties (atomic and residue hydrophobicity, electrostatic potential, surface-surface distances, atomic distances,...)
- 2D maps are linked with the 3D view of a macromolecular complex
- Facilitates the study of intermolecular interaction properties and steric complementarity between macromolecules

MolSurfer

- Contact Map WebViewer
 - http://cmweb.enzim.hu/
 - Represents residue-residue contacts within a protein or between proteins in a complex in the form of a contact map

- □ PIC (Protein Interaction Calculator)
 - http://pic.mbu.iisc.ernet.in/
 - Identifies various interactions within a protein or between proteins in a complex

Interaction hotspots

- Hot spots: the residues contributing the most to the binding free energy of the complex
- □ Knowledge of hot spots has important implications to:
 - Understand the principles of protein interactions (an important step to understand recognition and binding processes)
 - Design of mutants for experimental verification of the interactions
 - Development of drugs targeting macromolecular interactions
 - ••••

Interaction hotspots

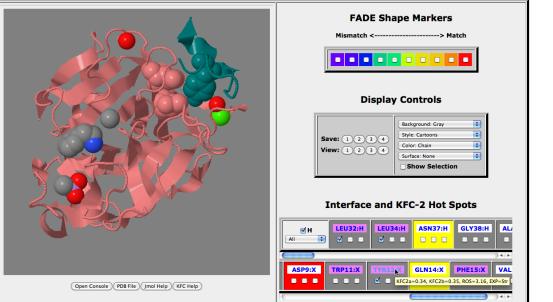
- Hot spots are usually conserved and appear to be clustered in tightly packed regions in the center of the interface
- □ Experimental identification by alanine scanning mutagenesis
 → if a residue has a significant drop in binding affinity when mutated to alanine it is labeled as a hot spot
- Experimental identification of hot spots is costly and cumbersome → the computational predictions of hot spots can help!

- Most of the available methods are based on the 3D structure of the complex
- Knowledge-based methods
 - Combination of several physicochemical features
 - Evolutionary conservation, ASA, residue propensity, structural location, hydrophobicity,...)
- Energy-based methods
 - Calculation of the change in the binding free energy ($\Delta\Delta G_{bind}$) of the complex upon *in silico* modification of a given residue to alanine

Robetta

- http://old.robetta.org/alascansubmit.jsp
- Energy-based method
- Performs *in silico* alanine scanning mutagenesis of protein-protein or protein-DNA interface residues
- 1. The side chain of each interface residue is mutated to alanine
- 2. All side chains within 5 Å radius sphere of the mutated residue are repacked; the rest of the protein remains unchanged
- 3. For each mutant, $\Delta\Delta G_{bind}$ is calculated (residues with predicted $\Delta\Delta G_{bind} \ge +1 \text{ kcal/mol} = \text{ hot spot}$)

Robetta


Tue Nov 6 00:20:55 PST 2012									
virtual alanine scanning, Minimized PfTPR1 23 1.alascan									
pdb#	chain	int id	res#	aa	DDG(complex)	DDG(complex,obs)	DG(partner)		
15	A	1	15	12	0.26	0.00	-0.11		
18	A	1	18	5	1.99	0.00	1.27		
45	А	0	45	16	-0.01	0.00	3.31		
46	А	1	46	12	1.53	0.00	-0.07		
53	А	1	53	16	-0.11	0.00	-0.57		
80	А	1	80	15	2.52	0.00	4.85		
83	А	1	83	2	-0.10	0.00	5.34		
86	А	1	86	7	0.29	0.00	0.34		
124	В	0	124	17	-0.02	0.00	0.60		
125	В	1	125	8	1.75	0.00	0.08		
126	В	1	126	4	-0.23	0.00	-0.41		
127	В	1	127	4	0.02	0.00	-0.60		
128	В	1	128	18	1.98	0.00	-0.45		
129	В	1	129	3	-0.29	0.00	-0.81		

- □ KFC2 (Knowledge-based FADE and Contacts)
 - https://mitchell-web.ornl.gov/KFC Server/
 - Knowledge-based method utilizing machine learning
 - Predicts hot spots in protein-protein interfaces by recognizing features of important binding contacts – solvent accessibility, residue position within the interface, packing density, residue size, flexibility and hydrophobicity of residues around the target residue
 - Optionally, user can provide data to improve the prediction (ConSurf conservation scores, Rosetta alanine scanning results or experimental data)

□ KFC2 (Knowledge-based FADE and Contacts)

KFC2 Hot Spot Prediction Server @mitchell-lab.org from Thu, 17 Mar 2011 12:18:45 CDT JobId: 3748 JobName: Demo_22_1dva_kfc2

Chain	Res	Num	KFC2-A Class	KFC2-A Conf	KFC2-B Class	KFC2-B Conf	ConSurf Class		Rosetta Class	Roset DDG	Exper Class	
Н	LEU	32		-0.75	Hotspot	0.10		2		0.41	Hotspot	Str
н	LEU	34		-0.71	Hotspot	0.11		2		1.25	Hotspot	Str
н	ASN	37		-1.79		-0.97		1		0.01		Ins
н	GLY	38		-0.15		-0.61		3				
н	ALA	39		-1.59		-0.87		1				
н	GLN	40		-1.53		-0.98		6		0.01		
н	ASP	60						1				
н	ILE	65		-0.77		-0.40		3		0.73		Ins
н	VAL	67		-0.30		-0.12		5		0.70		Ins
н	GLU	70		-1.28		-0.73	Conserv	7		1.02		
н	LEU	73	Hotspot	0.14	Hotspot	0.24		2		0.53		
н	SER	74		-1.20		-0.89		5		0.11		
н	GLU	75		-1.83		-0.98		1		0.00		
н	HIS	76		-0.95		-0.81		1		0.43		
н	GLU	80		-1.26		-0.65	Conserv	7		0.01		
н	GLN	81		-2.03		-0.98		2				
н	SER	82		-1.23		-0.86		1		-0.01		
	CER	400						~				

References I

- Liljas, A. *et al.* (2009). Textbook Of Structural Biology, World Scientific Publishing Company, Singapore.
- Goodsell, D. S. & Olson, A. J. (2000) Structural symmetry and protein function. *Annual Review of Biophysics and Biomolecular Structure* 29: 105-153.
- Demachenko, A. P. (2001). Recognition between flexible protein molecules: induced and assisted folding. *Journal of Molecular Recognition* 14: 42-61.
- Ali, M. H. & Imperiali, B. (2005) Protein oligomerization: How and why. *Bioorganic & Medicinal Chemistry* 13: 5013-5020.
- Jahn, T. R. & Radford, S. E. (2008) Folding versus aggregation: Polypeptide conformations on competing pathways. Archives of Biochemistry and Biophysics 469: 100-117.
- Csermely, P. *et al.* (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. *Trends in Biochemical Sciences* **35**: 539-546.

References II

- Bujnicki, J. (2009). Prediction of Protein Structures, Functions, and Interactions, John
 Wiley & Sons, Ltd., Chichester, p. 302.
- Tramontano, A. (2005). The Ten Most Wanted Solutions in Protein Bioinformatics, CRC
 Press UK, London, p. 186.
- Tuncbag, N., et al. (2009). A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. *Briefings in bioinformatics* 10: 217-232.
- Ezkurdia, I., *et al.* (2009). Progress and challenges in predicting protein-protein interaction sites. *Briefings in bioinformatics* **10**: 233-246.
- Fernández-Recio, J. (2011). Prediction of protein binding sites and hot spots.
 Computational molecular science 6: 680-698.
- Szilagyi, A., *et al.* (2005). Prediction of physical protein–protein interactions. *Physical biology* 2: S1-S16.
- Moreira, I. S., et al. (2010). Protein-protein docking dealing with the unknown. Journal of computational chemistry **31**:317-342

References