Bi9393 Analytical cytometry

Karel Souček, Ph.D.

Department of Cytokinetics Institute of Biophysics AVČR, vvi Královopolska 135 612 65 Brno

e-mail: ksoucek @ ibp.cz phone: 541 517 166

What is the problem with multicolor detection?

Fluorescence signal compensation

Spectral flow cytometry

SONY Sony Biotechnology Inc. Products > Resources > Support > About Us > Contact Us > Order Info > Search Site Q Overview Features Applications Specifications Literature

See Everything

The SP6800 Spectral Analyzer is Sony Biotechnology Inc.'s newest innovative life science system fundamentally expanding the way cell and biomarker analysis can be performed. This system incorporates a unique optical bench, Blu-ray™ disc technology, and advanced algorithms to deliver some of the most accurate and precise data available.

The SP6800 Spectral Analyzer also introduces new Flow Point technology to analyze core stream and sample event location within the flow cell. To improve accuracy of data, this system also provides unique functions to display and analyze cellular autofluorescence and allows the user to easily automatically remove.

Conventional vs. spectral analysis

Six-way sorting of deep immunophenotyping panel

This 38-color spectral panel characterizes and sorts deep lineages of T cell and NK cell subsets.

The panel includes BD Horizon RealYellow" and BD Horizon RealBlue" Dye technology, engineered to work in tandem with the BD FACSDiscover" S8 Cell Sorter for high-parameter spectral analysis to reveal biological information.

UV	1 2 3	BUV 395 FVS440UV	CD27 FVS440UV
UV	2	FVS440UV	FVS440UV
UV	3		
UV		BUV496	CD8
UV	4	BUV 563	CD16
	5	BUV615	CCR7 (CD197)
	6	BUV663	NKG2C
	7	BUV737	CCR5
	8	BUV805	CD161
Violet	9	BV421	PD1
	10	V450	CD7
	11	BV480	CD45RA
	12	BV510	CD15s
	13	BV570	CD57
	14	BV605	TCRgd
	15	BV650	TCR V-a24
	16	BV711	NKG2A
	17	BV750	NKG2D
	18	BV786	CD28
Blue	19	BB515	HLA-DR
	20	BB630	CD94
	21	BB660	CD194
	22	PerCP-Cv5.5	TCR Va9
	23	BB700	TCR Va7.2
	24	BB755	CD196
	25	RB780	CD95
	26	RB545	CD3
Yellow/Green	27	PE	CD25
	28	PE-Cv5	CD185
	29	PE-Cv7	CD38
	n 30	RY586	KLRG1
	31	PE-Fire 810	CD39
	32	PE-eFluor 610	TCR VD1
	33	PE-Fire 700	CD127
Red	34	APC	TCR VD2
	35	R718	CD183
	36	APC-H7	CD4
	37	SNIR-685	CD56
	38	APC-Fire 810	CD14 CD19

Recomendation

- Combine fluorochromes with appropriate brightness and low impact on resolution of other colors

- Avoid fluorochromes that are challanging to combine
- Assess the impact to biological resolution: bigger is not always better
- Optimize your protocol: controls, controls, controls (shortcuts don't work)

Applications of flow cytometry

NUCLEIC ACID ANALYSIS cell cycle and ploidy DNA break analysis incorporation of BrDU cyclin expression DNA denaturation analysis

CELL PHENOTYPE ANALYSIS immunophenotyping using CD antigens (detection of differentiation and tumor markers) detection of cytokine receptors

CYTOGENETICS

chromosome analysis

STUDY OF CELLULAR FUNCTIONS

viability determination of intracellular pH analysis of organelles and cytoskeleton determination of membrane potential oxidative flashover determination of intracellular Ca2+ determination of intracellular cytokines Natural Killer ligation of labelled cells analysis of reporter genes

Biological applications of flow cytometry

proliferation analysisfluorescent proteins

Cell cycle

Figure 17–16. Molecular Biology of the Cell, 4th Edition.

Figure 17–8. Molecular Biology of the Cell, 4th Edition.

What is important in sample preparation and marking...

- The sample preparation and labelling procedure cannot be generalised - it depends on the cell type and the specific analysis
 - suspension of single cells
 - vital signs
 - fixation (ethanol, formaldehyde)
 - permeabilization (detergents)
 - diffusion
 - active transport

Cell cycle analysis

- one of the oldest applications of flow cytometry, determination of the cell cycle phase by the amount of DNA
- flow cytometry is a suitable method for rapid and accurate cell cycle determination
- in a simple way, the DNA is stained with a fluorescent dye specific for DNA.
- Propidium iodide
 - 4',6-diamidino-2-phenylindole (DAPI)
 - dramatically increase fluorescence upon binding to DNA. Permeabilization of the cytoplasmic membrane is required.
- <u>Hoechst 33342</u>
- <u>Vybrant® DyeCycle™</u>
- <u>DRAQ5</u>
- Quaternary benzo[c]phenanthridine alkaloids (QBAs)
- I. Slaninova, J. Slanina and E. Taborska, "Quaternary benzo[c]phenanthridine alkaloids--novel cell permeant and red fluorescing DNA probes," *Cytometry A*, vol. 71, no. 9, pp. 700-708, 2007.
 - can be used to label viable cells

Purdue University Cytometry Laboratories

Cell cycle histogram analysis

- conventional analysis using histogram segments (regions) is not used
- it is necessary to use special software to model the distribution analysis of each phase

An impressive new version of the industry standard.

MultiCycle for Windows

Advanced DNA Cell Cycle Analysis Program

MultiCycle AV fits 6 different cell cycle models automatically. The variability in results is one aid to assessing confidence in S and G2 phase estimates. Display of statistics is optional.

Cell cycle histogram: gating strategy

VybrantDCV_CellCycleSorting

File analyzed: SAMPLE2.FCS Date analysed: 16-Oct-2006 Model: 2DA0n_DSD_ASD Analysis type: Automatic analysis

Diploid: 57.22 % Dip G1: 70.35 % at 75.05 Dip G2: 5.60 % at 150.10 Dip S: 24.05 % G2/G1: 2.00 %CV: 3.02

Aneuploid 1: 42.78 % An1 G1: 83.63 % at 100.15 An1 G2: 5.87 % at 200.30 An1 S: 10.50 % G2/G1: 2.00 %CV: 5.02 DI: 1.33

Total Aneuploid S-Phase: 10.50% Total S-Phase: 18.25 % Total B.A.D.: 11.22 %

Debris: 19.13 % Aggregates: 3.96 % Modeled events: 31253 All cycle events: 24037 Cycle events per channel: 190 RCS: 0.842

Cell cycle analysis- limitations

Analysis of BrdU incorporation

- bromodeoxyuridine is incorporated into DNA instead of thymidine during S-phase
- after fixation and partial denaturation of DNA, BrdU can be detected using a specific fluorochromelabeled antibody
- in the last step we can stain the DNA

Analysis of BrdU incorporation

File:	HL	60	K	/24h
-------	----	----	---	------

Region	% Gated		
R1	100.00		
R2	35.48		
R3	10.25		
R4	47.87		
R5	1.32		

💩 invitrogen[®]

Click-IT app (Invitrogen)

Multiplex imaging with Click-iT® RNA assays.

NIH3T3 cells were incubated with 1 mM EU, formaldehyde-fixed, and permeabilized with Triton® X-100. EU incorporated into newly synthesized RNA (red) in some cells was detected using the Click-iT® RNA Alexa Fluor® 594 Imaging Kit. Tubulin (green) was detected with anti-tubulin mouse IgG9 and visualized with Alexa Fluor® 488 goat anti-mouse IgG. Nuclei (blue) were stained with Hoechst 33342.

Click-IT app (Invitrogen)

DNA synthesis analysis (proliferation)

³H-thymidine

Tritiated (3H)thymidine

³H-thymidine

- Original method for measuring cell proliferation
- Radioactive
- Not compatible for multiplexed analyses

BrdU

BrdU (5-bromo-2'-deoxyuridine)

BrdU

Acid or DNase

Br

Rı

Br

BrdU

- Non-radioactive
- Multiplex compatible *but*, strand separation requirement for anti-BrdU access, can affect:
 - Ability for other antibodies to bind
 - Morphology
 - Ability for dyes that require dsDNA to bind efficiently, i.e., cell cycle dyes

Click-iT™ EdU

EdU (5-ethynyl-2'-deoxyuridine)

Click-iT™ Edu

- Non-radioactive
- No DNA denaturation required
- Simplified protocol
- Small molecule detection
- Multiplex compatible, including
 - Other antibodies
 - Dyes for cell cycle analysis

DNA and RNA analysis

- Pyronin Y vs. Hoechst 33342
- Pyronin interacts with ds RNA and DNA but its binding to DNA is inhibited by the presence of Hoechst 33342
- Acridine orange
- emits red light when interacting with RNA and green light when interacting with DNA

Current Protocols in Cytometry

Detection of intracellular proteins in combination with DNA detection

Current Protocols in Cytometry

Detection of mitotic cells

- Histone H3 is specifically phosphorylated during mitosis (Ser10, Ser28, Thr11)
- DNA double labelling vs. H3-P identifies the cell population in M-phase

IMMUNOPHENOTYPING

Ermann , J. *et al.* (2015) Immune cell profiling to guide therapeutic decisions in rheumatic diseases *Nat. Roar. Rheumatol*. doi:10.1038/nrrheum.2015.71 **Principle:** cells are stained with monoclonal antibodies conjugated to various fluorescent dyes and analyzed using flow cytometry

Pros: simple, standard, broad spectrum of tested reagents, multiplexing

Cons: not every epitope is fixable, compensation, possible artefacts from dying cells, dissociation of solid tissue may affect results

VIABILITY using LIVE/DEAD fixable stains

Principle: reaction of a fluorescent reactive dye with cellular amines, in necrotic cells react with free amines both in the interior and on the cell = intense staining, live cells stained on surface only = dim signal

Pros: simple, wide spectrum of dyes, fixable, The ArC ™ Amine Reactive Compensation Bead Kit

Cons: live cells have signal, stain only in buffers w/o BSA or serum, Tris or azide

CELL CYCLE

Principle: DNA content measurement by fluorescent nucleic-acid-binding dyes

Pros: simple, wide spectrum of dyes, in both native and fixed samples

Cons: doublets > G2/M , single parameter≠ DNA synthesis, > CV if not fixed by organic solvents

DNA SYNTHESIS using click azide /alkyne

Principle: direct measurement of DNA synthesis via visualization of incorporation of nucleoside analogue

Pros: no DNA denaturation required, simplified protocol, small molecule detection, multiplex compatible

Cons: high concentration of Cu in reaction = not compatible with all fluorochromes

DNA DAMAGE using γ H2A.X

PI fluorescence (DNA content)

Huang X, Darzynkiewicz Z: Cytometric Assessment of Histone H2AX Phosphorylation. In DNA Repair Protocols: Mammalian Systems. Edited by Henderson DS. Totowa, NJ: Humana Press; 2006: 73-80 **Principle:** Phosphorylation of the Ser-139 residue of the histone variant H2A.X, forming γH2A.X, is an early cellular response to the induction of DNA doublestrand breaks

Pros: in theory simple immuno-staining after fix&perm

Cons: DSBs can also be intrinsic, occurring in healthy, untreated cells, DSBs are formed in the course of DNA fragmentation in apoptotic cells

APOPTOSIS detected via PARP cleavage or caspase-3 activation

Principle: Cleaved Caspase-3 (Asp175) Antibody detects endogenous levels of the large fragment (17/19 kDa) of activated caspase-3. Cleaved PARP (Asp214) detects endogenous levels of the large fragment (89 kDa) PARP1 protein produced by caspase cleavage.

Pros: simple immunostaining after fix&perm , validated antibodies available

Cons: not every cell type or signal necessary activates cp-3 or leads to PARP cleavage, timing

DNA stain

- Violet laser DAPI, Hoechst 33342
 FxCycle Violet, ...
- Blue laser Selected Dyes , PI, ...
- Red laser FxCycle Far Red 7-AAD
 - Broad spectrum of the dyes

Problem with: High concentration of dye, no wash Spillover & Compensations

Compensation

Antibody conjugates:

- anti-rat and anti-hamster Igκ /negative control compensation beads (BD Biosciences),
- Sphero [™] Biotin Polystyrene Particles (Spherotech, Lake Forest, IL, USA)

Live/Dead fixable dyes:

• ArcTM Amine Reactive Compensation Bead Kit beads (Thermo Fisher Scientific)

DNA stain:

• fixed and permeabilized cells with/without appropriately diluted DNA probe

<u>Isotype controls</u> were recorded for all samples. Gates were set according to isotype controls and control untreated cells (for yH2AX and cleaved caspase-3)

<u>Gating strategy</u> included viability, discrimination of doublets (FSC-H vs. FSC-A) and debris (FSC vs. SSC). In samples with DNA marker, doublets we further discriminated using DNA marker (PO-PRO-1 A vs. PO-PRO-1 W).

In the process of protocol optimization, <u>FMO controls</u> were measured and revealed DNA dye spillover.

Detection of the number of cell divisions

bioluminescence resonance energy transfer (BRET)

- Aequorea victoria a jellyfish that lives in the waters off the coast of North America.
- is capable of blue luminescence (bioluminescence). Ca²⁺ interacts with the photoprotein aequorin.
- blue light excites green fluorescent protein.

Renilla reniformis - coral living in the waters off the north coast of Florida.

luminescence is produced by degradation of coelenterazine under the catalytic action of luciferase.

- blue light excites green fluorescent protein.

Aequorea victoria 'Crystal jelly'

http://www.mbayaq.org/efc/living_species/default.asp?hOri=1&inhab=440

Renilla reniformis 'Sea Pansy'

http://www.whitney.ufl.edu/species/seapansy.htm

Osamu Shimomura

- 1961 discovered GFP and aequorin

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP2.htm

Douglas PrasherMartin Chalfie

Sci. 1994 Feb 11;263(5148):

Green fluorescent protein as a marker for gene expression.

Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC.

Department of Biological Sciences, Columbia University, New York, NY 10027.

A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP2.htm

in vivo molecular visualisation

KODAK X-SIGHT 640 LSS Dyes *in vivo* with x-ray overlay

KODAK X-SIGHT 650 and 761 Nanospheres, KODAK In-Vivo Multispectral Imaging System

Hasegawa, S., Yang, M., Chishima, T., Miyagi, Y., Shimada, H., Moossa, A. R., and Hoffman, R. M. In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis. Cancer Gene Ther, *7:* 1336-1340, 2000.

Sergey A. Lukyanov

Discovers "GFP-like" proteins luminous corals

🟁 © 1999 Nature America Inc. • http://biotech.nature.com

RESEARCH

Fluorescent proteins from nonbioluminescent Anthozoa species

Mikhail V. Matz, Arkady F. Fradkov, Yulii A. Labas¹, Aleksandr P. Savitsky², Andrey G. Zaraisky, Mikhail L. Markelov, and Sergey A. Lukyanov^{*}

Institute of Bioorganic Chemistry, Russian Acadmy of Science, 117871 Moscow, Russia. ¹Institute of Ecology and Evolution, and ²Institute of Biochemistry Russian Academy of Science, 17071 Moscow, Russia. *Corresponding author (e-mail: luk@ibch.siobc.ras.ru).

Received 28 May 1999; accepted 18 July 1999

Roger Tsien

 ~ 2002 - mutation FP = colour spectrum
 http://www.tsienlab.ucsd.edu/

CREATING NEW FLUORESCENT PROBES FOR CELL BIOLOGY

Jin Zhang*, Robert E. Campbell*, Alice Y. Ting** and Roger Y. Tsien*5

NATURE REVIEWS | MOLECULAR CELL BIOLOGY

Class	Protein	Source laboratory (references)	Excitation ^c (nm)	Emission ^d (nm)	Brightness ^e	Photostability ^f	рКа	Oligomerization
Far-red	mPlum ^g	Tsien (5)	590	64 9	4.1	53	<4.5	Monomer
Red	mCherry ^g	Tsien (4)	587	610	16	96	<4.5	Monomer
	tdTomato ^g	Tsien (4)	554	581	95	98	4.7	Tandem dimer
	mStrawberry ^g	Tsien (4)	574	596	26	15	<4.5	Monomer
	J-Red ^h	Evrogen	584	610	8.8*	13	5.0	Dimer
	DsRed-monomer ^h	Clontech	556	586	3.5	16	4.5	Monomer
Orange	mOrange ^g	Tsien (4)	548	562	49	9.0	6.5	Monomer
	mKO	MBL Intl. (10)	548	55 9	31*	122	5.0	Monomer
Yellow-green	mCitrine ⁱ	Tsien (16,23)	516	52 9	59	49	5.7	Monomer
	Venus	Miyawaki (1)	515	528	53*	15	6.0	Weak dimer ^j
	YPet ^g	Daugherty (2)	517	530	80*	49	5.6	Weak dimer ^j
	EYFP	Invitrogen (18)	514	527	51	60	6.9	Weak dimer ^j
Green	Emerald ^g	Invitrogen (18)	487	50 9	39	0.69 ^k	6.0	Weak dimer ^j
	EGFP	Clontech ^l	488	507	34	174	6.0	Weak dimer ^j
Cyan	CyPet	Daugherty (2)	435	477	18*	59	5.0	Weak dimer ^j
	mCFPm ^m	Tsien (23)	433	475	13	64	4.7	Monomer
	Cerulean ^g	Piston (3)	433	475	27*	36	4.7	Weak dimer ^j
UV-excitable green	T-Sapphire ^g	Griesbeck (6)	399	511	26*	25	4.9	Weak dimer ^j

^aAn expanded version of this table, including a list of other commercially available FPs, is available as Supplementary Table 1. ^bThe mutations of all common AFPs relative to the wild-type protein are available in Supplementary Table 3. Major excitation peak. Major emission peak. Product of extinction coefficient and quantum yield at pH 7.4 measured or confirmed (indicated by *) in our laboratory under ideal maturation conditions, in (mM • cm)-1 (for comparison, free fluorescein at pH 7.4 has a brightness of about 69 (mM • cm)-1). Time for bleaching from an initial emission rate of 1,000 photons/s down to 500 photons/s (t_{1/2}; for comparison, fluorescein at pH 8.4 has t_{1/2} of 5.2 s); data are not indicative of photostability under focused laser illumination. ⁴Brightest in spectral class. ^hNot recommended (dim with poor folding at 37 °C). ¹Citrine YFP with A206K mutation; spectroscopic properties equivalent to Citrine. ¹Can be made monomeric with A206K mutation. ^kEmerald has a pronounced fast bleaching component that leads to a very short time to 50% bleach. Its photostability after the initial few seconds, however, is comparable to that of EGFP. Formerly sold by Clontech, no longer commercially available. mECFP with A206K mutation; spectroscopic properties equivalent to ECFP.

A guide to choosing fluorescent proteins

Nathan C Shaner^{1,2}, Paul A Steinbach^{1,3} & Roger Y Tsien^{1,3,4}

Licensing control by Cdt1 and geminin

J Cell Sci 2012 125: 2436-2445; doi: 10.1242/jcs.100883

Fucci

(fluorescent <u>ubiquitination-based</u> cell cycle indicator) cells

Chemistry & Biology 15, February 2008 ©2008 Elsevier Ltd

Ubiquitin E3 ligase complexes

G1 - APC^{Cdh1}

substrate: **Geminin**, an inhibitor of DNA replication inhibits Cdt1

S, G2, M- SCF^{Skp2}

substrate: DNA replication factor**Cdt1** - key licensing factor

<u>Fucci sensors - 1st generation</u>, coral FP monomeric Kusabira orange 2 - hCdt1 (30/120) Monomeric Azami -Green – hGeminine (1/110)

Fucci sensors - 2nd generation, Aequorea FP

red monomeric fluorescent protein - mCherry -hCdt1 (30/120)

yellowish green monomeric variant of GFP -mVenus – hGeminin (1/110)

Fucci

Resource

Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression

Asako Sakaue-Sawano,^{1,3} Hiroshi Kurokawa,^{1,4} Toshifumi Morimura,² Aki Hanyu,⁵ Hiroshi Hama,¹ Hatsuki Osawa,¹ Saori Kashiwagi,² Kiyoko Fukami,⁴ Takaki Miyata,⁶ Hiroyuki Miyoshi,⁷ Takeshi Imamura,⁵ Masaharu Ogawa,² Hisao Masai,⁸ and Atsushi Miyawaki^{1,3,*}

¹Laboratory for Cell Function and Dynamics

²Laboratory for Cell Culture Development

Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan 3Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan

⁴School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan ⁵Departments of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan

⁶Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Syowa-ku, Nagoya, Aichi 466-8550, Japan

⁷Subteam for Manipulation of Cell Fate, BioResource Center, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan ⁸Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan *Correspondence: matsushi@brain.riken.jp

DOI 10.1016/j.cell.2007.12.033

http://cfds.brain.riken.jp/Fucci.html

42

So.

GEMCITABINE

CONTROL

SCH900776

...lot of questions, but how to answer them?

- How many times cells divided?
- What is a length of cell cycle phases?
- Is there a difference in time between first and second division?
- How it is all affected by my drugs?

Branches (dvisions) analysis

02_02_01_01

REVIEW

The Fluorescent Toolbox for Assessing **Protein Location and Function**

Ben N. G. Giepmans, 1,2 Stephen R. Adams, 2 Mark H. Ellisman, 1 Roger Y. Tsien 2,3*

Structure:	nuclei	microtubules	golgi	stress fibers	mitochondria
Target:	DNA	α-tubulin	giantin	β-actin	Cytochrome c
Targeting:	direct affinity	genetic	immuno	genetic	immuno
Fluorophore:	Hoechst	GFP	QD565	ReAsH	Cy5
Emission (nm):	410-490	500-530	555-565	580-620	>660

The Fluorescent Toolbox for Assessing Protein Location and Function Ben N. G. Giepmans^{1,2} Stephen R. Adams² Mark H. Ellisman³ Roger Y. Tsien^{2,3*}

SCIENCE VOL 312 14 APRIL 2006

Summary of the lecture

- Compensation
- Quality control, principles
- proliferation analysis
- fluorescent proteins

At the end of today's lecture, you should:

- 1. What are the basic principles of multispectral and mass cytometry
- 2. to know how the cell cycle can be analyzed.
- 3. be able to design another parameter that can be combined with DNA analysis.
- 4. know examples of cellular functions that can be analysed on a flow cytometer.
- 5. know what fluorescent proteins are and what are the advantages of their use in cell biology.
- 6. what click-IT is.

Vital analysis of cellular functions

- Flow cytometry enables multi-colour vital analysis of cells
 - intracellular ion concentration,
 - pH,
 - production of reactive groups,
 - Lifetime

Viability detection

- one of the simplest analyses
- works on the principle
 - detection of membrane integrity impenetrability of some fluorescent markers through the cytoplasmic membrane of living cells - propidium iodide, ethidium bromide, 7-amino actinomycin D
 - detection of the physiological state of cells use of fluorescent markers staining only living cells - Rhodamine-123, Calcein-AM
- ethidium monoazide can be used to stain dead cells and then fixed
- With LDS-751 (laser dye styryl-751) it is possible to distinguish dead cells even after fixation
- LIVE/DEAD® Fixable Dead Cell Stain Kits

invitrogen[®]

Reactive dye	Excitation source	Ex*	Em*			
blue fluorescent reactive dye (L23105)	UV	350	450			
violet fluorescent reactive dye (L34955)	405 nm	416	451			
aqua fluorescent reactive dye (L34957)	405 nm	367	526			
yellow fluorescent reactive dye (L34959)	405 nm	400	575			
green fluorescent reactive dye (L23101)	488 nm	495	520			
red fluorescent reactive dye (L23102)	488 nm	595	615			
far red fluorescent reactive dye (L10120)	633/635 nm	650	665			
near-IR fluorescent reactive dye (L10119)	633/635 nm	750	775			
*Approximate fluorescence excitation (Ex) and emission (Em) maxima, in nm.						

Viability detection

Current Protocols in Cytometry

VIABILITY using LIVE/DEAD fixable stains

Principle: reaction of a fluorescent reactive dye with cellular amines, in necrotic cells react with free amines both in the interior and on the cell = intense staining, live cells stained on surface only = dim signal

Pros: simple, wide spectrum of dyes, fixable, The ArC[™] Amine Reactive Compensation Bead Kit

Cons: live cells have signal, stain only in buffers w/o BSA or serum, Tris or azide

Signal transmission via Ca²⁺

Cytosol (concentration - "resting" 100 nM vs. 1-10 μM activated)
 [Ca²⁺]_c activates protein kinase C
 interacts with "Ca²⁺ - binding proteins"

Ensuring suitable conditions for detection [Ca²⁺]_i

- standardisation of staining and calibration
- •Tempering of the sample throughout the measurement period

standardization of the inductor addition method

- improved solubility of AM ester modified indicators (BSA, Pluronic ® -127)
- inhibition of active secretion of the indicator by the cell (Probecid)

- chelator modified AM esters (BAPTA-AM) suitable for calibration

Fluo-3 (Kd ~ 400 nM, 22°C; 864 nM, 37°C) $F_{min} = 1.25 \times F_{MnCl2} - 0.25 \times F_{max}$

Intracellular pH detection

 Fluorescent markers that change fluorescence intensity as a function of pH
 SNARF-1, BCECF

Intracellular pH detection

Calibration with potassium buffers and ionophore (nigericin) required

Detection of reactive oxygen species

- Reactive oxygen species play a key role in a wide range of biological processes
 - post-translational modification of proteins
 - transcription regulation
 - regulation of chromatin structure
 - signal transmission
 - immune system function
 - physical and metabolic stress
 - neurodegeneration, aging

4 e⁻ reduction to water

Unreactive at STP, but a *great* electron acceptor Biological activation via radicals, transition metals Generally, radical intermediates are enzymebound

Reacts with virtually any molecule at diffusion-limited rates The molecule that makes ionizing radiation toxic

Actually, a chemical *reductant* Not so terribly reactive with most biomolecules Mitochondrial superoxide the major source of active oxygen Maintained at very low concentration Superoxide dismutases

Not so terribly reactive with most biomolecules Maintained at very low concentration Catalases, peroxidases, GSH, etc...

© J. P. Robinson, Purdue University

© J. P. Robinson, Purdue University

Oxidative Burst

- DHR-123

- DCFH-DA

- HE

Fluorescent proteins

bioluminescence resonance energy transfer (BRET)

- Aequorea victoria a jellyfish that lives in the waters off the coast of North America.
- is capable of blue luminescence (bioluminescence). Ca²⁺ interacts with the photoprotein aequorin.
- blue light excites green fluorescent protein.

Renilla reniformis - coral living in the waters off the north coast of Florida.

luminescence is produced by degradation of coelenterazine under the catalytic action of luciferase.

- blue light excites green fluorescent protein.

Aequorea victoria 'Crystal jelly'

http://www.mbayaq.org/efc/living_species/default.asp?hOri=1&inhab=440

Renilla reniformis 'Sea Pansy'

http://www.whitney.ufl.edu/species/seapansy.htm

Fluorescent proteins

http://www.conncoll.edu/ccacad/zimmer/GFP-ww/GFP2.htm

Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells

Rosario Rizzuto, Marisa Brini, Paola Pizzo, Marta Murgia and Tullio Pozzan

Department of Biomedical Sciences and CNR Center for the Study of Mitochondrial Physiology, University of Padova, Via Trieste 75, 35121 Padova, Italy.

Current Biology 1995, 5:635-642

Fluorescent sensors for detection of H₂ O₂

Ratiometric images of the group of HeLa cells before (A), 20 sec after (B), and 600 sec after (C) addition of 180 ul of H_2O_2 . Images were pseudocolored using "ratio" lookup table of NIH ImageJ software: blue-green-red-white colors represent lowest-intermediate-high-highest level of H_2O_2 .

HyPer excitation (blue line) and emission (green line) spectra.

Changes in the excitation spectrum of isolated HyPer in response to H_2O_2 addition. Emission was measured at 530 nm.

evrogen

Variants & fusions

pHyPer-cyto vector

pHyPer-dMito vector

 Duplicated mitochondrial targeting sequence (MTS) is fused to the HyPer N-terminus. MTS was derived from the subunit VIII of human cytochrome C oxidase [Rizzuto et al., 1989; Rizzuto et al., 1995].

pHyPer-nuc vector

 Three copies of the nuclear localization signal (NLS) fused to the HyPer C-terminus provide for efficient translocation of HyPer to the nuclei of mammalian cells [Fischer-Fantuzzi and Vesco, 1988]

Stably transfected HeLa cells expressing mitochondria-targeted HyPer.

Image from Dr. Christian Petzelt (Marinpharm).

evrogen

Dynamics of intracellular H_2O_2 production in a HeLa cell undergoing Apo2L/TRAILinduced apoptosis.

A-C — confocal images of HeLa cells expressing cytosolic HyPer in 176 min (A), 200 min (B) and 240 min (C) after Apo2L/TRAIL addition; D — Intensities of HyPer (green) and TMRM (red) fluorescence in the cell.

Chromosome analysis and sorting

Proc. Natl. Acad. Sci. USA Vol. 76, No. 3, pp. 1382–1384, March 1979 Genetics

Measurement and purification of human chromosomes by flow cytometry and sorting

(isolated chromosomes/DNA cytophotometry/flow microfluorometer)

A. V. CARRANO, J. W. GRAY, R. G. LANGLOIS, K. J. BURKHART-SCHULTZ, AND M. A. VAN DILLA Biomedical Sciences Division, L-452, Lawrence Livermore Laboratory, Livermore, California 94550 Communicated by Donald A. Glaser, December 18, 1978

Chromosome analysis and sorting

- synchronization of cells gain of metaphase chromosomes (colcemid, hydroxyurea)
- chromosome isolation
- DAPI or Hoechst labelling vs. chromomycin A3 (CA3) or mithramycin

http://www.scienceclarified.com/Ca-Ch/Chromosome.html

= total DNA vs. G/C-rich regions

Chromosome analysis and sorting

National Laboratory Gene Library Project.⁷ Lawrence Livermore National Laboratory, Biomedical Sciences Division, University of California, P.O. Box 5507 L452, Livermore, California 494550, ⁷ Los Alamos National Laboratory, Life Sciences Division, University of California, Los Alamos, New Mexico 87545, ⁻⁷ To whom correspondence should be directed.

npg © 1986 Nature Publishing Group http://www.nature.com/naturebiotechnology

HUMAN CHROMOSOME-SPECIFIC DNA LIBRARIES: CONSTRUCTION AND AVAILABILITY

M.A. Van Dilla^{*D}, L.L. Deaven^{†D},K.L. Albright[†], N.A.Allen^{*}, M.R. Aubuchon^{*}, M.F.Bartholdi[†], N.C.Brown[†], E.W.Campbell[†], A.V.Carrano^{*}, L.M.Clark[†], L.S.Cram[†], B.D.Crawford[†], J.C.Fuscoe^{*}, J.W.Gray^{*}, C.E.Hildebrand[†], P.J.Jackson[†], J.H.Jett[†], J.L.Longmire[†], C.R.Lozes^{*}, M.L.Luedemann[†], J.C.Martin[†], J.S.McNinch^{*}, L.J.Meincke[†], M.L.Mendelsohn^{*}, J.Meyne[†], R.K. Moyzis[†], A.C.Munk[†], J.Perlman^{*}, D.C.Peters^{*}, A.J.Silva^{*}, and B.J.Trask^{*}.

National Laboratory Gene Library Project. * Lawrence Livermore National Laboratory, Biomedical Sciences Division, University of California, P.O. Box 5507 L-452, Livermore, California 494550. * Los Alamos National Laboratory, Life Sciences Division, University of California, Los Alamos, New Mexico 87545, - T on Mono correspondence should be directed.

CONSTRUCTION OF A PHASE I CHROMOSOME-SPECIFIC (#18) HUMAN GENE LIBRARY IN CHARON 21A USING HIND III (LLNL)

e!

"Flow karyotype"

http://www.sanger.ac.uk/HGP/Cytogenetics/

The Preparation of Human Chromosomes for Flow Cytometry

DEREK DAVIES

FACS Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX Vol. 33/2 Proceedings RMS June 1998

Sorting chromosomes

Pisum sativum

Published online 6 September 2007; doi:10.1038/nprot.2007.310

Sorting chromosomes

Physical and Cytogenetic Mapping

Cytogenetic and Genome Research

Cytogenet Genome Res 2010;129:211–223 DOI: 10.1159/000313072 Published online: May 26, 2010

Development of Chromosome-Specific BAC Resources for Genomics of Bread Wheat

J. Šafář H. Šimková M. Kubaláková J. Číhalíková P. Suchánková J. Bartoš J. Doležel

Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic

The Plant Journal (2004) 39, 960-968

doi: 10.1111/j.1365-313X.2004.02179.x

TECHNICAL ADVANCE

Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat

Jan Šafář¹, Jan Bartoš¹, Jaroslav Janda¹, Arnaud Bellec², Marie Kubaláková^{1,3}, Miroslav Valárik¹, Stéphanie Pateyron², Jitka Weiserová¹, Radka Tušková¹, Jarmila Číhalíková^{1,3}, Jan Vrána¹, Hana Šimková¹, Patricia Faivre-Rampant², Pierre Sourdille⁴, Michel Caboche², Michel Bernard⁴, Jaroslav Doležel^{1,3} and Boulos Chalhoub^{2,*}

¹Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic,

²Laboratory of Genome organization, Unité de Recherches en Génomique Végétale (INRA-URGV), 2 rue Gaston Crémieux, CP 5708, F-91057 Évry Cedex, France,

³Department of Cell Biology and Genetics, Palacký University, Šlechtitelů 11, Olomouc, Czech Republic, and ⁴Génétique Moléculaire des Céréales, UMR INRA-UBP, Domaine de Crouelle, 234 Avenue du Brézet, F-63039 Clermont-Ferrand Cedex 2, France

Received 1 February 2004; revised 5 May 2004; accepted 11 May 2004. *For correspondence (fax 33 1 60874549; e-mail chalhoub@evry.inra.fr).

RESEARCH

RESEARCH ARTICLE

WHEAT GENOME

Shifting the limits in wheat research and breeding using a fully annotated reference genome

International Wheat Genome Sequencing Consortium (IWGSC)*

An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

heat (*Triticum aestivum* L.), the most widely cultivated crop on Earth, contributes about a fifth of the total calories consumed by humans and provides more protein than any other food source (1, 2). Breeders strive to develop improved varieties by fine-tuning genetically complex yield and enduse quality parameters while maintaining yield stability and regional adaptation to specific biotic and abiotic stresses (3). These efforts are limited, however, by insufficient knowledge and understanding of the molecular basis of key the wheat genome through gene loss, gain, and duplication (6). The lack of global sequence contiguity and incomplete coverage (only 10 Gb were assembled), however, did not provide the wider regulatory genomic context of genes. Subsequent whole-genome assemblies improved contiguity (7-9) but lacked full annotation and did not resolve the intergenic space or present the genome in the correct physical order.

Here we report an ordered and annotated assembly (IWGSC RefSeq v1.0) of the 21 chromosomes of the allohexaploid wheat cultivar CS. rla a uncia curomosome (DrC)-based sequence assemblies. Finally, IWGSC RefSeq V1.0 was assessed with independent data derived from coding and noncoding sequences, revealing that 99 and 98% of the previously known coding exons (6) and transposable element (TE)-derived (ISBP) markers (table S9), respectively, were present in the assembly. The approximate 1-Gb size difference between IWGSC RefSeq v1.0 and the new genome size estimates of 15.4 to 15.8 Gb (14) can be accounted for by collapsed or unassembled sequences of highly repeated clusters, such as ribosomal RNA coding regions and telomeric sequences.

The tragic ripples of

an epic fraud a sus

S

ti 2: a:

a: 0

U oi cl

g W

ti Fa

0

g ei

ir

S

ir

eı

ir

tv

A key feature distinguishing the IWGSC RefSeq v1.0 from previous draft wheat assemblies (6-9) is the long-range organization, with 90% of the genome represented in superscaffolds larger than 4.1 Mb and with each chromosome represented, Photoredox activation

Insect pest profits from

maize defenses 10.642 A 694

Ecologyfood industry

http://www.cyto.purdue.edu/flowcyt/research/micrflow/

Relative Size Ratios for Bacteria, Yeast, and Eukaryotes				
Measurement	Bacteria	Yeast	Eukaryote	
Diameter	0.5-5	3-5	10-30	
Surface area	3-12	30-75	300-3000	
Volume	0.3-3	20-125	500-1500	
Dry cell mass	1	10	300-3000	

Current Protocols in Cytometry

- viability
- metabolic functions
- sorting
- Aerosol analysis (Fluorescence Aerodynamic Particle Sizer (Flaps))

Sorting

 EPICS +
 Autoclone®
 module

showing sort grid

Current Protocols in Cytometry

Automated flow cytometer for online monitoring of bacteria in water

BactoSense™

Fast	Results available within 20 minutes, analyses up to 48 samples in 24h
Safe	No handling of chemicals, all components are in a sealed and recyclable cartridge
Accurate	Flow cytometry technology allows precise detection of more than 99.9% of microbial cells
Secure	24/7 monitoring: set a threshold value to get an alarm in time to act accordingly
Reliable	Self-check routines, factory calibration and low maintenance

200

For your PROCESS

In the FIELD

In the LAB

Measuring principle

Light source

Optical detection		
Lower size detection limit		
Measuring range		
Detection limit		
Accuracy		
Automatic measuring interval		
Microbial parameters		

Laser diode 488nm
Fluorescence: 535/43 (FL1), 715 LP (FL2), Side scatter 488/10 (SSC)
0.1 µm
1'000 - 2 Million cells/ml
100 - 5 Million cells/ml
< 5 % relative
Minimum 30 minutes, maximum 6 hours
TCC/ml, ICC/ml, LNA/ml, HNA/ml, HNAP(%)

Sampling

Sample volume	
flow rate (online)	20
chlorine concentration	m
turbidity	1
pH-value	5
temperature range	5.
conductivity	0

0 - 100'000 µs/cm à 20°C

Flow cytometry

Instrument

Display
Data storage
Protection level enclosure
Dimensions (WxDxH)
Weight
Power supply
Power consumption
Ambient temperature
Relative humidity
Cartridge

Factory calibrated Touchscreen 32 GB IP 65 350 × 240 × 373 mm 14.5 kg 100 - 240 VAC, 50/60 Hz, 1.4 A, IP 67 20 W 5..30°C 10 - 90% RH Hermetically sealed enclosure for reagents, cleaning liquids and waste

Max. 1'000 measurements, 9 months validity

Digital and analogue

4 × digital, freely configurable

4 × digital, freely configurable

 $2 \times 0/4$.. 20 mA, galvanically isolated

Sealed USB, Ethernet connections, Modbus

Interface

Inputs Outputs analogue Outputs digital Digital interfaces

Cartridge capacity

Online or manual
260 µl sampled, 90 µl for analysis
200 - 400 ml/min
max. 3 mg/l
1 - 10 FTU
5 - 12
540°C

Dotplots showing TCC and ICC

Online sampler / manual sampler

Cartridge

IO hov

Graph showing TCC and HNAP measurements over one week

Graph showing TCC and ICC measurements every 3 hours

Yeast flow cytometry

- cell division
- viability
- membrane potential
- respiration
- H production₂ O_2
- sensitivity to antibiotics
- separation

http://www.sbs.utexas.edu/mycology/sza images SEM.htm Saccharomyces cerevisiae 1000 a haploid conjugation budding 500 a/α budding spore diploid а budding haploid 0 20 30 50 60 70 10 40 0

Relative fluorescence

http://en.wikipedia.org/wiki/Image:Budding yeast Lifecycle.png

80

Yeast flow cytometry

Yeast Cell Cycle During Fermentation and Beer Quality

Masahito Muro,¹ Kenichiro Izumi, Takeo Imai, Yutaka Ogawa, and Motoo Ohkochi, Research Laboratories for Brewing, Kirin Brewery Co., Ltd., 1-17-1, Namamugi, Tsurumi-ku, Yokohama, 230-8628 Japan

J. Am. Soc. Brew. Chem. 64(3):151-154, 2006

- study of pico- and nanophytoplankton (< 20 μM)
- analysis of plankton metabolic functions
- pigmentation study (chlorophyll and phycoerythrin analysis

© 2001 Wiley-Liss, Inc.

Cytometry 44:236-246 (2001)

Monitoring Phytoplankton, Bacterioplankton, and Virioplankton in a Coastal Inlet (Bedford Basin) by Flow Cytometry

W.K.W. Li* and P.M. Dickie

Biological Oceanography Section, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

Received 4 October 2000; Revision Received 2 May 2001; Accepted 2 May 2001

© 1989 Alan R. Liss, Inc.

Cytometry 10:659-669 (1989)

Using Phytoplankton and Flow Cytometry to Analyze Grazing by Marine Organisms

Terry L. Cucci, Sandra E. Shumway, Wendy S. Brown, and Carter R. Newell Department of Marine Resources (S.E.S.) and Bigelow Laboratory for Ocean Sciences (T.L.C., S.E.S.), West Boothbay Harbor, Maine 04575; Chemistry Department, Bowdoin College (W.S.B.), Brunswick, Maine 04011; Great Eastern Mussel Farms (C.R.N.), Tenants Harbor, Maine 04857

Received for publication November 2, 1988; accepted April 17, 1989

http://planktonnet.awi.de/portal.php?pagetitle=assetfactsheet&asset_id=15127

waverengun (nun) (Excitation-417 nu, quantum vield=0.

http://www.cyto.purdue.edu/flowcyt/research/micrflow/sieracki/sierack2.htm

http://omlc.ogi.edu/spectra/PhotochemCAD/html/chl orophyll-a(MeOH).html

Available online at www.sciencedirect.com

Journal of Environmental Sciences 2012, 24(9) 1709-1716

JOURNAL OF ENVIRONMENTAL SCIENCES ISSN 1001-0742 CN 11-2629/X

www.jesc.ac.cn

A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (*Microcystis*) in lake sediments

Quan Zhou^{1,2}, Wei Chen¹, Huiyong Zhang³, Liang Peng¹, Liming Liu¹, Zhiguo Han³, Neng Wan⁴, Lin Li¹, Lirong Song^{1,*}

 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. E-mail: quanzhou1985@yahoo.com.cn
 Graduate School of Chinese Academy of Sciences, Beijing 100039, China
 Zealquest Laboratory for Ecological Research, Zealquest Scientific Technology Co., Ltd., Shanghai 200333, China
 Changshu Institute of Technology, Changshu 215500, China

Received 06 November 2011; revised 20 March 2012; accepted 28 April 2012

Flow cytometry assessment of bacterioplankton in tropical marine environments

L. Andrade^a, A.M. Gonzalez^a, F.V. Araujo^{a,b}, R. Paranhos^{a,*}

^a Department of Marine Biology, Institute of Biology, University of Brazil, Prédio do CCS, bloco A, sala A1-071-Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ 21944-970, Brazil ^b Faculty of Teacher Formation, University of the State of Rio de Janeiro-UERJ, Brazil

Flow cytometry of invertebrates

- common methodological approaches and fluorescent markers can be applied
- Application examples:
 - cell cycle
 - Cytotoxicity
 - apoptosis

Invertebrate Survival Journal

ISJ 2: 32-40, 2005

ISSN 1824-307X

Review

Flow cytometry as a tool for analysing invertebrate cells

A Cossarizza¹, M Pinti¹, L Troiano¹, EL Cooper²

¹Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy ²Department of Neurobiology, UCLA School of Medicine, Los Angeles, CA, USA

http://www.icms.qmul.ac.uk/flowcytometry/uses/insects/index.html

Figure 5. Representative flow-cytometry scatter plot of hemocytes from 25 oysters.

Rebelo MdF, Figueiredo EdS, Mariante RM, Nóbrega A, et al. (2013) New Insights from the Oyster Crassostrea rhizophorae on Bivalve Circulating Hemocytes. PLoS ONE 8(2): e57384. doi:10.1371/journal.pone.0057384 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0057384

Figure 6. Proposed model for hemocyte maturation, as seen by flow cytometry.

Rebelo MdF, Figueiredo EdS, Mariante RM, Nóbrega A, et al. (2013) New Insights from the Oyster Crassostrea rhizophorae on Bivalve Circulating Hemocytes. PLoS ONE 8(2): e57384. doi:10.1371/journal.pone.0057384 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0057384

Corresponding Object Profiles:

Dispensed

Object

Images:

https://www.union bio.com/copas/

Suraj Kannan. Circulation Research. Large Particle Fluorescence-Activated Cell Sorting Enables High-Quality Single-Cell RNA Sequencing and Functional Analysis of Adult Cardiomyocytes, Volume: 125, Issue: 5, Pages: 567-569, DOI: (10.1161/CIRCRESAHA.119.315493)

© 2019 American Heart Association, Inc.

"High Throughput Flow Cytometry"

- automation + robotics = faster and more efficient data collection (measuring dozens of samples per hour with minimal operator intervention)
- using the principle of multicolour analysis

Automated sample measurement systems

Automated "microsampler" system

CRAI

11

K. Souček Bi9393 Analytical cytometry

https://www.youtube.com/watch?v=7MFmbtIb8xA

https://www.synbiobeta.com/read/one-lab-in-germany-is-using-robots-to-advance-computer-aided-synthetic-biology

Incorporating Automation into a Flow Cytometry Workflow for Antibody Discovery

https://www.youtube.com/watch?v=ERDtmYddNkQ

© 2002 Wiley-Liss, Inc.

Mixing Small Volumes for Continuous High-Throughput Flow Cytometry: Performance of a Mixing Y and Peristaltic Sample Delivery

W. Coyt Jackson,¹ F. Kuckuck,¹ B.S. Edwards,¹ A. Mammoli,² C.M. Gallegos,² G.P. Lopez,³ T. Buranda,¹ and L.A. Sklar^{1*}

¹Department of Pathology and Cancer Research Facility, University of New Mexico Health Sciences Center, Albuquerque, New Mexico

²Department of Mechanical Engineering, University of New Mexico College of Engineering, Albuquerque, New Mexico ³Department of Chemical and Nuclear Engineering,University of New Mexico College of Engineering, Albuquerque, New Mexico

Received 26 July 2001; Revision received 13 December 2001; Accepted 18 December 2001

© 2001 Wiley-Liss, Inc.

Cytometry 44:83-90 (2001)

High Throughput Flow Cytometry

Frederick W. Kuckuck,¹ Bruce S. Edwards,^{1,2*} and Larry A. Sklar^{1,2*}

¹Cytometry, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
²Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico

Received 18 September 2000; Revision Received 4 January 2001; Accepted 13 January 2001

FIG. 1. High throughput flow cytometry. A: Schematic view of the flow cytometer, autosampler, and peristaltic pump. B: Adjacent samples of latex microspheres separated by air in the 0.02-in (254-µm) ID tubing between the peristaltic pump and the flow cytometer.

The steps in a high-throughput fluorescence-microscopy experiment.

e Data mining and modelling

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

Analysis

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

Table 1. Comparison of the Key Attributes of High-Throughput Flow Cytometry and High-Content Microscopy				
Key Attributes	HT Flow Cytometry	High Content Microscopy		
Cell types	Optimal for suspension cells; adherent cells need to be detached before sampling.	Optimal for adherent cells; suspension cells need to be immobilized before analysis.		
Plate requirements	Standard multiwell round-, v-, or flat-bottom plates can be used.	Optically clear plastic or glass bottom plates; uniform flat bottom required.		
Bead assays	Optimal technique for performing multiplex bead-based assays	Limited use-beads must be localized to bottom of well.		
Label-free measurements	Forward scatter (size) and side scatter (granularity) measurements are standard.	Brightfield microscopy is offered on some instruments.		
Cell throughput	Tens of thousands of cells per second	Tens to hundreds of cells per second		
Typical 96-well plate read time	<5 min; independent of the number of fluorescent parameters	5-60 min; dependent on the number of fluorescent parameters		
Dynamic range	High dynamic range; very faint to very bright signals can be detected in the same sample.	Lower dynamic range		
Spatial measurements	No	Yes		
Typical data file size	1 to 100 MB per plate	100 to 1,000 MB per plate		

Fig. 1. The HTFC Screening System (IntelliCyt Corporation). **(a)** 2-laser, 4-color flow cytometer; **(b)** an x, y, z autosampler; **(c)** a low pulsation peristaltic pump; **(d)** orbital plate shaker that accommodates 96- and 384-well plates; **(e)** system computer with HyperView installed to set up experiments and process plate data.

Fig. 4. Screenshot from HyperView showing an example of the Well Identification process. Data from the 384-well plate is collected in to a single flow cytometry standard file, which is shown in the main window. The data are deconvolved by the software algorithm to identify each peak with a well address on the plate. One row is expanded to show temporally spaced individual peaks.

May 2006 | volume 3 | number 5

nature methods Techniques for life scientists and chemists

Garry Nolan

Peter Krutzik

"Fluorescent cell barcoding"

- High-throughput flow cytometry
 Measuring rapid neuronal firing
 Cell patterning in 3D
- Live-cell imaging of RNAi screens
- A review of force spectroscopy

http://www.stanford.edu/group/nolan/

<u>Krutzik PO, Nolan</u> Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods. 2006 May;3(5):361-8.

<u>Krutzik PO, Nolan</u> Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods. 2006 May;3(5):361-8.
Get the best out of your model

FACS-based surface screen:

- validated antibodies in 96w plates
- several comercially available possibilities, we have gone for...

- LEGENDScreen HUMAN332 PE conjugated antibodies + ISOs

- LEGENDScreen MOUSE 252 PE conjugated antibodies + ISOs

- there are XY vials in LN
- price of kit ≈ 1000 € (27k Kc)

How to get the best of it all?

Final workflow

The optimal concentration issue

CellTrace CFSE

CellTrace DDAO

CellTrace Violet

HOW TO TEST IT: 10x serial dilution

REQUIREMENTS:

optimal resolutioncompatibility w/ PE

Sample results

Sample result

BCSC

Chapter 9

High-Throughput, Parallel Flow Cytometry Screening of Hundreds of Cell Surface Antigens Using Fluorescent Barcoding

Stanislav Drápela, Radek Fedr, Ondřej Vacek, Ján Remšík, and Karel Souček

Abstract

Multicolor flow cytometry allows for analysis of tens of cellular parameters in millions of cells at a single-cell resolution within minutes. The lack of technologies that would facilitate feasible and relatively cheap profiling of such a number of cells with an antibody-based approach led us to the development of a high-throughput cytometry-based platform for surface profiling. We coupled the fluorescent cell barcoding with preexisting, commercially available screening tools to analyze cell surface fingerprint at a large scale. This powerful approach will help to identify novel biomarkers and druggable targets and facilitate the discovery of new concepts in immunology, oncology, and developmental biology.

Key words Multicolor flow cytometry, Fluorescent cell barcoding, Cell surface phenotyping, Highthroughput screening Methods in Molecular Biology 2543

Springer Protocols

Hugo Barcenilla · David Diaz Editors

Apoptosis and Cancer

Methods and Protocols

MOREMEDIA 🜔

💥 Humana Press

Cytometric bead array (CBA)

 Multiplexed Bead-Based Immunoassays
flow cytometry application that allows users to quantify multiple proteins simultaneously

Multiplex microsphere-based flow cytometric platforms for protein analysis and their application in clinical proteomics - from assays to results

ELECTROPHORESIS

<u>Volume 30, Issue 23, pages 4008-4019, 3 DEC 2009 DOI: 10.1002/elps.200900211</u> http://onlinelibrary.wiley.com/doi/10.1002/elps.200900211/full#fig1 D.A.A. Vignali / Journal of Immunological Methods 243 (2000) 243-255

CBA

CBA

- multiplexing capabilities
- speed
- incorporation of multiple assay formats
- rapid assay development and reasonable cost
- automation

ex vivo flow cytometry - limitations

- Influence of some cell properties (morphology, expression of traits);
- does not allow longer-term studies of cell metabolism and cellular interactions (communication, adhesion) in the natural tissue microenvironment;
- Next:
 - low sensitivity for detection of rare cell subpopulations (1-10 cells/ml ~ 5000 50000 cells in 5 litres of adult blood);
 - time-consuming sample preparation (hours, days);
 - discontinuity of sampling.

- Imaging of cells directly in the blood or lymphatic system.
- Visualization using a CCD or CMOS camera after irradiation with a conventional microscope lamp or lasers.
- Detection of absorption, fluorescence, Raman spectra, photothermal or photoacoustic signals.

Therma

vaves

Transmittance

Scattering

Fluorescer

Rama

Abnormal cel

in vivo flow cytometry

Cytometry part A 79A: 737-745, 2011

in vivo flow cytometry - without labelling

- Record video using a high-speed, high-resolution CCD or CMOS camera in pass-through or bounce mode.
- Example: high-speed transmittance digital microscopy (TDM)
- Limits: tissue depth.
- TDM can be used to guide radiation sources to a designated area for further analysis.

photoacoustic and photothermal imaging

The photoacoustic effect was first discovered by Alexander Graham Bell in his search for a means of wireless communication.1 Bell succeeded in transmitting sound with an invention he called the "photophone," which carried a vocal signal with a beam of sunlight that was reflected by a vocally modulated mirror. The sound could be recovered with an ordinary telephone receiver connected to a **selenium cell** illuminated by the light. Bell published the results in a presentation to the American Association for the Advancement of Science in **1880**.

The Photoacoustic Effect Benjamin T. Spike Physics 325 April 21, 2006

Schematic illustration of photoacoustic imaging

Cytometry part A 79A: 737-745, 2011

In Vivo Molecular Photoacoustic Tomography of Melanomas Targeted by

Bioconjugated Gold Nanocages

Chulhong Kim,^{†,5} Eun Chul Cho,^{†,5} Jingyi Chen,[†] Kwang Hyun Song,[†] Leslie Au,[†] Christopher Favazza,[†] Qiang Zhang,[†] Claire M. Cobley,[†] Feng Gao,[†] Younan Xia,^{†,*} and Lihong V. Wang^{†,*}

¹Department of Biomedical Engineering, Washington University in St. Louis, Campus box 1097, One Brookings Drive, St. Louis, Missouri 63130 and ¹Division of Biostatistics, Washington University School of Medicine, Campus box 8067, 660 South Euclid Avenue, St. Louis, Missouri 63110. ⁹These authors contributed equally to this work.

In vivo flow cytometry - detection of specific signals

Detection of photoacoustic and photothermal phenomena

in vivo flow cytometry - applications

а

а

Summary of the lecture

- Examples of functional analyses
- "High-throughput" flow cytometry ...
- ... and the application of multicolour detection and beads array
- chromosome sorting
- applications in microbiology, hydrobiology and invertebrate studies
- *in vivo* flow cytometry

At the end of today's lecture, you should:

- 1. to know how the cell cycle can be analyzed.
- 2. be able to design another parameter that can be combined with DNA analysis.
- 3. know examples of cellular functions that can be analysed on a flow cytometer.
- 4. know what fluorescent proteins are and what are the advantages of their use in cell biology.
- 5. know what "high-throughput" flow cytometry is ...and how the principle of multi-colour marking can be applied.
- 6. know the basic principles of measuring and sorting chromosomes using a flow cytometer;
- 7. have an idea of the possible applications of flow cytometry in microbiology, hydrobiology and invertebrate studies;
- 8. understand the limits and principles of *in vivo* flow cytometry.