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Abstract: Structural bioinformatics can be described as an approach that will help decipher biological insights
from protein structures. As an important component of structural biology, this area promises to provide a high
resolution understanding of biology by assisting comprehension and interpretation of a large amount of structural
data. Biological function of protein molecules can be inferred from their three-dimensional structures by comparing
structures, classifying them and transferring function from a related protein or family. It is well known now that
the structure space of protein molecules is more conserved than the sequence space, making it important to seek
functional associations at the structural level. An added advantage of structural bioinformatics over simpler
sequence-based methods is that the former also provides ultimate insights into the mechanisms by which various
biological events take place. A bird’s eye-view of the different aspects of structural bioinformatics is given here
along with various recent advances in the area including how knowledge obtained from structural bioinformatics
can be applied in drug discovery.
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1 Introduction

Deciphering complete genome sequences of several
organisms including that of the human genome, has
been marking defining moment in the history of biology
(Fleischmann et al., 1995; Forster and Church, 2006;
Venter et al., 2001). With the architectural blue-print
of life of several different organisms in hand, the next
step is to comprehend the huge pool of data (Kyrpides,
1999; Liolios et al., 2008), identify and understand the
function of the individual gene products.

In biology, knowledge available for one system heav-
ily influences understanding of a related system. It is
quite understandable therefore, why recognizing simi-
larities and deriving relationships are crucial for all fur-
ther knowledge, making bioinformatics an integral and
important component of modern biology. This need is
not only heightened, but is also rendered with the large
number of genomes sequenced in the last few years.
Where available, protein structures provide much bet-
ter functional insight than their sequences alone. The
reasons are that: as compared to the sequences, two-
fold structures provide (a) a much higher resolution
of information about the protein molecules and (b) a
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much more sensitive approach for detecting similarities
among proteins. This is because protein structures are
seen to cluster only into certain regions of the entire
fold space suggesting that the same fold is repeatedly
sampled in nature (Holm and Sander, 1996; Russell et
al., 1997).

The need to navigate and comprehend this large re-
source of experimental and theoretical structural data,
has automatically led to genesis of a new discipline
called structural bioinformatics (Burley, 2000; Bourne
and Weissig, 2008), which has become well established
in the last decade. Structural Bioinformatics is prob-
ably the best thought of as the discipline, which ra-
tionalizes and classifies information contained in the
three-dimensional structures of molecules, in terms of
their functional capabilities. This ultimately helps us
to understand at atomic-level detail, how biological or-
ganisms encode, make use of, and pass on information.
The main advantages these methods have over simpler
sequence-based methods are that they help associate a
molecule with a function, and also provide ultimate in-
sights into the mechanisms by which various biological
events take place.

In principle, the term ‘structural bioinformatics’
could encompass all biological macromolecules, but
is used here predominantly in the context of protein
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molecules, given the focus of this review. Comparing
proteins, deriving structural patterns, correlating with
function and ultimately utilizing such patterns of pre-
diction are all integral components of structural bioin-
formatics. Given the complexities involved in solving
new X-Ray or NMR structures of protein molecules,
structure determination might often feel like a success-
ful end to a long effort, but in reality a structure of
a protein molecule is just the beginning of a journey
to understand the function of protein molecule. Struc-
tural bioinformatics is an important area that serves as
a bridge in transforming protein structures into biolog-
ical insights.

2 Generation of structural data

Protein structural data is growing rapidly, with the
current holdings going beyond 64,000 entries in the Pro-
tein Data Bank (Berman et al., 2000), as illustrated in
Fig. 1. Various structural genomics projects are also
underway to obtain structural data on a genome-wide
scale (Lesley et al., 2002; Goulding et al., 2003; Mars-
den et al., 2007). Although the focus of this work is
structural bioinformatics, a brief overview of structure
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determination, highlighting the importance of experi-
mental structure determination is included here. Struc-
tural bioinformatics takes these structures as input and
provides that crucial link between structure and func-
tion.
2.1 X-ray crystallography

Protein crystallography, which is essentially a form
of very high-resolution microscopy, facilitates visualiza-
tion of protein structures at the atomic level (Fig. 2(a)).
This technique is now used routinely to determine the
structures of protein molecules. It is also used com-
monly to understand how natural ligands, inhibitors
and drugs bind to different proteins, as well as to
derive guidelines for designing novel drugs or ratio-
nally engineering enzymes with enhanced capabilities
(Chen, 2001). The main requirement for employing
this method is to obtain diffraction quality single crys-
tals from the pure form of the protein sample. Follow-
ing data collection and processing, structures are solved
using an appropriate method such as multiple isomor-
phous replacement or molecular replacement (Ilari and
Savino, 2008). The structures are then refined, checked
and analyzed.
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Fig. 1 Growth of sequence and structural data in the past two decades. About 580,000 unique protein sequences are available
in Uniprot (shown in the lighter shade), but the numbers of structures in PDB are only about 64000 (shown in dark
shade). The huge gap between sequence and structure is evident from this graph. The bottom panel shows the
number of sequences and structures in the databases, whereas the top panel indicates the number of unique folds
(filled bars) that the structures in PDB belong to. The numbers of folds in the recent years have remained about
the same, which is illustrative of the fact that very few novel folds are now being found
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2.2 Nuclear magnetic resonance

The nearest competing method for solving protein
structures is nuclear magnetic resonance (NMR) spec-
troscopy (Fig. 2(b)), which has produced more than
7800 structures, so far as seen in PDB (Berman et al.,
2000). Purified protein is taken in a solution form, res-
onances are assigned, restraints are generated and a
structure is calculated and validated, an example of
a structure is shown in Fig. 2 (Wuthrich, 2003; Mc-
Dermott, 2004; Baldus, 2006; Hong, 2006). Difficul-
ties arise, typically at the resonance and Nuclear Over-
hauser Effect (NOE) assignment steps, hence leading
to the development of a number of methods to simplify
the task (Tzakos et al., 2006). NMR spectroscopy has
been useful in solving the structures of proteins (e.g.,
membrane proteins) that may not be readily amenable
for investigation through crystallography. A limitation
of this technique is that it can only be used easily for
small proteins.
2.3 Electron microscopy

To understand biological phenomenon at high reso-
lution, it is important to progress from studying in-
dividual domains or proteins towards studying multi-
domain proteins and larger assemblies. Advances in
electron microscopic technologies have enabled the vi-
sualization of the structure and dynamics of a range
of biological assemblies at resolution varying from 2-
3nm to 0.3nm (Chiu et al., 2005; Jiang and Ludtke,
2005; Lucic et al., 2005; Frey et al., 2006; Renault et
al., 2006). Biological samples are usually studied at
cryo-temperatures to reduce the thermal fluctuations.
This technique can help in studying large macromolec-
ular complexes, larger assemblies (Fig. 2(c)), providing
a comprehensive picture including cellular localization
and interaction, thus tending towards merging cell bi-
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ology and molecular biophysical processes.
2.4 Homology modeling

Millions of gene sequences translated quite confi-
dently into their corresponding protein sequences are
now available. Determining three-dimensional struc-
tural data on the other hand is much harder, requir-
ing large quantities of purified protein in hand, be-
sides being amenable to individual structure determi-
nation methods. To bridge the wide gap between se-
quence and structure, various computational methods
that can predict the structure of a protein molecule
with high confidence in many cases have emerged (Sun,
1993; Sanchez and Sali, 1997; Pillardy et al., 2001;
Unger, 2004; Jones, 2005). Of these, homology mod-
eling seeks to predict the structure of a protein by us-
ing a structural template of a homologous sequence,
in cases where such a template is available (Sénchez
and Sali, 1997). This is based on the premise that
two sequences that are homologous also share the same
structural fold. Energy minimization that uses molecu-
lar mechanics based force fields and in some cases also
molecular dynamics simulations, are then used to re-
fine the initial models obtained by using the templates.
This methodology is well established now and is begin-
ning to be used in a high-throughput manner (Pieper
et al., 2004) (http://salilab.org/modbase/) to model
entire proteomes (Peitsch, 1997). The different meth-
ods vary mainly in terms of positioning of side chains,
loop building, treatment of neighborhoods, force-field
parameters, and model refinement techniques (Sénchez
and Sali, 1997). The success seen at the popular CASP
experiments conducted once every two years stand tes-
timony to the advances in this area and to the confi-
dence one can have in built models built (Moult et al.,
1995; Moult et al., 2007).

Fig. 2 An illustration to indicate three methods of structure determination. The crystal structure of a part of human
insulin (3E7Y) along with its electron density is shown in (a). Spruce bud form antifreeze protein structure ensemble
consisting of 20 models (1IEWW) determined by solution NMR is shown in (b), where ascryo electron microscopy
structure of GROES-ADP7-GROEL-ATP7 complex along with its electron density map is shown in (c)
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2.5 Structure verification

One of the first structural bioinformatics analyses to
be carried out, although not called by that name at that
time, is the computation of the Ramachandran map
(Ramachandran et al., 1963), which provides a rational
basis for describing stereochemically allowed structures
of polypeptides. In this, the ’structure space’ of protein
chains is reduced to two-dimensions, by representing a
structure in terms of the torsion angles of the protein
backbone. Today, this map is used as an integral part of
structure determination, in order to estimate the qual-
ity of protein structures. As a conceptual extension

Table 1
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to this analysis, analysis of side chain conformations
in proteins (Bhat et al., 1979), design of rotamer li-
braries for use in molecular modelling (Dunbrack and
Karplus, 1994), and structure validation and several
other analyses, are used quite routinely in crystal struc-
ture refinement and for quality estimation (Laskowski
et al., 1993). Table 1 lists some of the commonly used
databases as well as web-servers hosting software tools
for structural bioinformatics.

Numerous examples of molecular models of proteins

can be seen in the literature, where they have been used
for obtaining a variety of biological insights (Jackson,

A list of important resources for structural bioinformatics. The URLs of the various web-servers

hosting the databases and the software tools, along with their associated publications are also

shown
Description

Protein Data Bank (PDB)
Repository containing all the 3D structures of the biological molecules

The Macromolecular Structure Database (MSD)
Also known as PDBe, is a European project for collection, management
and distribution of data regarding biological macromolecules

Fold Classification based on structure-structure assignments (FSSP)
Families of Structurally Similar Proteins superimposed and generated
using DALI algorithm.

MSDChem: Ligand Chemistry
Provides access to ligands and small molecule dictionary, this repository
defines the link between proteins and chemistry.

Structural classification of proteins (SCOP)
Database containing the protein structural domains largely classified
manually depending upon similarities of sequences and 3D structures.

Class architecture topology and hierarchical classification of proteins
(CATH)
Semiautomatic hierarchical classification of protein domains

Protein Function Prediction ProFunc
Web server for predicting the likely function of proteins whose 3D struc-
tures are known.

PDB-Ligand
Database of small molecular ligands that are bound to macromolecular
structures in PDB.

PubChem

Database of chemical molecules maintained by NCBI containing infor-
mation about bioassay, bioactivity and results from high-throughput
screening as well.

ChemBank
Public web-based informatics environment created by Broads Institute
storing informations of small molecues and biomedically relevant assays.

LigASite
Database of biologically relevant binding sites

Structural motif databases (MALISAM)
A database of structurally analogous motifs in proteins.

PINTS
Database for detection of local structural patterns in proteins.

MegaMotifBase
Database of structural motifs in protein families and superfamilies.

SURFACE
Database of annotated and compared protein surface regions.

URL

http://www.pdb.org

http://www.ebi.ac.uk/msd/

http://ekhidna.biocenter.helsinki.fi
/dali server/

http://www.ebi.ac.uk/msd-
srv/chempdb/

http://scop.mre-lmb.cam.ac.uk/scop/

http://www.cathdb.info

http://www.ebi.ac.uk/thornton-
srv/databases/ProFunc/

http://www.idrtech.com/PDB-Ligand/

http://pubchem.ncbi.nlm.nih.gov/

http://chembank.broad.harvard.edu/

http://www.bigre.ulb.ac.be/Users
/benoit/LigASite/

http://prodata.swmed.edu/malisam/
http://www.russell.embl.de/pints/
http://caps.ncbs.res.in/MegaMotifbase

/index.html
http://cbm.bio.uniroma2.it/surface/

Reference

(Berman et
al., 2000)

(Tagari et al.,
2006)

(Holm and
Sander, 1998)

(Dimitropoulos
et al., 2006)

(Murzin et
al., 1995)

(Orengo et
al., 1997)

(Laskowski et
al., 2005)

(Shin and
Cho, 2005)

(Wang et
al., 2009)

(Seiler et
al., 2008)

(Dessailly et
al., 2008)

(Cheng et al.,
2008)

(Stark and
Russell, 2003)

(Pugalenthi
et al., 2008)

(Ferre et al.,
2004)
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1991; Wallace, 1993; Lee et al., 2007). An example of
the use of this technique, is the molecular modelling of
the closed conformation of a ternary complex of phos-
phoglycerate kinase. (Chandra et al., 1998), which in-
dicated that upon substrate binding a large conforma-
tional change would be essential to facilitate catalysis,
a prediction that was validated by a crystal structure
of the closed form of the enzyme from T. brucei (Bern-
stein et al., 1998). Another example is the molecular
model of the assembly of the chromatosome particle,
which has led to an understanding of the nature of in-
teraction of the globular domain and the functional role
of the C-terminal domain of the linker histone, provid-
ing clues to certain important factors in chromatin for-
mation (Bharath et al., 2003). There are also a num-
ber of examples in literature where molecular models
have been used in drug discovery, either at the lead de-
sign or at the lead optimization stage (Tanrikulu and
Schneider, 2008). An early notable example is the de-
sign of ‘captopril’, an anti-hypertensive drug that in-
hibits angiotensin converting enzyme (ACE), based on
structural clues obtained from functionally analogous
carboxypeptidase (Ondetti et al., 1977). With the com-
plete sequencing of several genomes, as comparative
genomics becomes feasible, direct clues about sets of
proteins are obtained, leading to rational target iden-
tification and rational design of lead compounds, both
critical steps in drug discovery (Raman et al., 2008).
Models of a number of G-protein coupled receptors, ion
channel and voltage gated channel proteins have been
built and utilized for guiding lead identification and ra-
tional design of new lead compounds (Hillisch et al.,
2004).
2.6 Fold recognition

Some relationships among proteins at the fold level
are readily identified due to the sequence similarities
among them. However, in many cases the sequence
similarities are very low and thus such relationships are
not obvious. It is now well accepted that conservation
at the structure level is higher and thus more detectable
than at the sequence level (e.g., 1IB3A and 1TVX have
low sequence identity but high structural similarity (Lo
et al., 2007). In a different context, this issue can be
debated to determine whether such molecules are the
result of convergent evolution or actually products of
divergent evolution but the divergence is so high that
they cannot be recognized. Nevertheless, many more
structures can be predicted by recognizing with which
of the known folds a given sequence is most compati-
ble. One of the first methods reported for this purpose,
is popularly known as threading works by winding the
query sequence on to the fold of a template backbone
from a database of folds and evaluating the feasibility of
the threaded structure in terms of geometric and chem-
ical compatibility through measurement of all pair-wise
interaction potentials of the individual residues (Jones
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et al., 1992; Rost et al., 1997). Profile-based methods
have also been commonly used, which simultaneously
compare multiple features of a protein that captures
structural environment of each residue, using dynamic
programming methods and are complementary to the
threading methods (Bowie et al., 1991). They have
been applied in a variety of cases, which have led to
understanding aspects such as the functional family, a
protein belongs to or the ligand the given protein is
most likely to recognize. Although structure prediction
by threading is conceptually very appealing and works
well in a number of cases, it has also witnessed fail-
ures in some other cases (Moult et al., 2007). With
development of newer methods to overcome the exist-
ing limitations, structure prediction by recognizing the
appropriate template can be envisaged to be utilized
more extensively. Another category of modeling is that
of ab initio structure prediction, which can be achieved
without any structural templates, since it is based on
the premise that the native conformation of the protein
will have a global minimal energy and hence appropri-
ate computational methods should be able to find that
conformation through a thorough search (Pillardy et
al., 2001). This approach however has many practical
difficulties due to the combinatorial nature of the pos-
sible arrangements of each residue, three dimensions as
well as the difficulty in discriminating real structures
from the decoys, and thus it cannot as yet be used as a
routine technique (Moult, 2005; Cozzetto et al., 2009).

3 Molecular visualization and struc-
tural analysis

Visualization of protein structures has undergone
tremendous transformation, starting from brass mod-
els of the first crystal structures (Kendrew et al., 1958)
followed by physical wireframe models, the first car-
toon representations on the computer, to 3D interactive
graphics and the more emerging virtual reality repre-
sentations (Richardson and Richardson, 1992). A vari-
ety of programs are available for visualizing of proteins,
which are used routinely, some examples being Rasmol,
Pymol, DeepView, Mage, VMD, UCSF-Chimera and
the web-based tools such as Jmol, Chime and WebMol.

Computer graphics tools have enabled routine use of
wireframe, space filling, ball and stick, cartoon, ribbon,
and surface representations (Fig. 3). Visualization of
molecules in the chosen representations is often critical
for obtaining insights into various aspects on the mo-
tifs present, how the molecule compares in the fold or in
the selected regions with other proteins an investigator
may be interested in, often also in appreciating confor-
mational changes in the protein in its different states,
thus forming an important step in understanding func-
tion. Various properties such as the electrostatic po-
tential, solvent accessible surface area or volume can
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Fig. 3 Different modes of visualization of protein structures. The protein shown here is sperm whale myoglobin (1A6N).
The structures can be rendered in a variety of ways, ranging from cartoon representation as shown in (a), wireframes
in (b), ball and stick representation in (c), CPK in (d) and columbic surface representation showing the charge
distribution on the surface of the protein in (e). The protophyrin IX-containing Fe atom bound to protein is shown

as sticks in all types of rendering

be computed for the whole protein or the individual
amino acid residues that can also be visualized. Devel-
opment of new methods and new algorithms for molec-
ular visualization is an active area of research, which
can be expected to result in new ways of representing
different molecular properties, real time visualization of
results of complex computations and highly interactive
graphical systems (Richardson and Richardson, 1992;
O’Donoghue et al., 2010).

4 Structural comparison of protein
structures and algorithms

An essential pre-requisite for inferring function from
structures is to compare them and use appropriate met-
rics to describe structural similarity. While compar-
ing protein molecules through their sequences has now
become a well-established routine task in most cases,
structural comparison of protein molecules still remains
a challenge. Matching 3D objects in any field is a
non-trivial matter. For proteins, additional complexity
arises from the need to compare molecules of different
sizes, need to consider insertions and deletions, com-
monly known as ‘indels’ as well as non-topological simi-

larities. Many protein structure comparison algorithms
have been proposed for estimating the extent of simi-
larity between two proteins. A majority of them con-
sider backbones corresponding to each of the proteins
and align them by defining a set of equivalences be-
tween pairs of atoms between the two proteins. Equiva-
lences between methods can be derived at by any of the
strategies - dynamic programming, distance matrices,
fragment matching, geometric hashing, maximal com-
mon sub-graph detection or local geometry matching.
For example, DALI (Holm and Sander, 1993) uses dis-
tance matrices, CE (Shindyalov and Bourne, 1998) uses
combinatorial extension of alignment path, the method
by Taylor and Orengo (1989) uses Taylor and Oren-
gouses dynamic programming, that by Szustakowski
and Weng (2000) uses genetic algorithms, that by Zhu
and Weng (2005) uses maximal common sub-graphs
between proteins represented as graphs, and that by
Krissinel and Henrick (2004) aligns matching of sec-
ondary structural elements followed by local refinement
to align Ca atoms. DALI represents a protein structure
as a 2D distance matrix that considers distances be-
tween all pairs of Ca atoms. The matrix hence formed
becomes a frame invariant representation, containing
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sufficient information for reconstruction of the 3D ob-
ject except for possible loss of chirality. An elegant
scoring function is used to score pairs of fragments with
matching distances, to finally obtain a score indicating
the extent of similarity. Commonly used metrics for
comparing structures are root mean squared deviation,
Z- scores that indicate quality of alignment and over-
comes some of the drawbacks of the RMSD metric. The
dynamic programming method by Taylor and Orengo
(1989) is similar to that of Needleman and Wunsch
(1970) for sequence alignment, but has the drawback
of requiring huge computational resources - time and
memory. The maximal common sub-graph detection
by Zhu and Weng (2005) involves incremental construc-
tion of the graph between pairs of Ca atoms and uses
local geometric properties to arrive at pairs of nodes,
assigns edges by directionality-based scoring scheme,
iteratively prunes the bad vertices and finally uses dy-
namic programming to arrive at final alignment on this
simplified graph. Unfortunately, the formulations have
turned out to be NP-Hard (Zhu and Weng, 2005), lead-
ing to the development of many heuristics. Two main
issues about protein structure comparison algorithms
are, to what extent are indels tolerated and whether
non-topological similarities are detected. MatchProt, a
new fast algorithm developed addresses some of these
issues (Bhattacharya et al., 2006). The formulation in-
volves a novel method to characterize the residues of a
protein in the context of its overall structure by project-
ing them on the real line in a neighborhood preserving
way. This characterization is used to define a similarity
function between the residues of two proteins and find
the optimal equivalences. Non-topological similarities
in a set of circularly permuted proteins are identified
between sets of proteins efficiently, resulting in a more
realistic estimation of their extents of similarity than
many other algorithms available for that purpose.

5 Structural classification of proteins

Murzin and co-workers (Murzin et al., 1995; An-
dreeva et al., 2008) developed a database called SCOP
(Structural classification of proteins), through visual
comparison, guided by experience and intuition (Ta-
ble 1). A hierarchical organization consisting of four
levels was used: the structural class, super-family, fam-
ily and fold. Each protein is described at these lev-
els. About 405 unique folds were observed at that time
from about 6500 structures, which has grown today into
more than 1086 folds, 1777 super-families and 3486 fam-
ilies (SCOP-1.73 release). Subsequently Thornton and
co-workers developed a classification scheme and a re-
sulting database called CATH (Orengo et al., 1997).
Here also, structures are also described based on a hi-
erarchical organization, but are compared with each
other by using structural comparison algorithms. These
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databases are most useful resources for understanding
a protein structure and are heavily used by structural
biologists and bioinformaticians. Various databases of
protein structures and their derived features are indi-
cated in Table 1. PALI, a database of phylogeny and
alignment of members of SCOP families (Gowri et al.,
2003), SMotif - a database of structural motifs in pro-
teins (Pugalenthi et al., 2007), CAMPASS, a database
of structural super-families (Sowdhamini et al., 1998),
are examples of databases resulting from structural
bioinformatics analysis. Several tools to extract various
structural features and probe their roles in stabilizing
the structure or imparting function, have also been de-
veloped that enable such analysis over the internet at
great ease (Ananthalakshmi et al., 2005).

6 Deciphering protein function through
structure

6.1 Function annotation at the fold level

The ultimate purpose of studying a protein structure
is to gain functional insights on how the given struc-
ture achieves the associated function. It is not surpris-
ing then, that once a structure is available, any known
function from biochemical and biophysical experimen-
tal studies will be mapped onto it by associating the
fold with the function as well as marking the binding
site residues of the associated ligands in the protein.
This type of information however, is not available in
all cases, making it necessary to explore bioinformatics
methods for functional annotation. Functional infor-
mation can be obtained in some cases by comparison
of the protein fold to that of another related protein
whose function is already determined experimentally
and transfer of that functional knowledge to the new
protein. Function itself can be defined at different in-
terdependent levels, the two most important of them
being (a) the level of molecular function, which includes
binding of a particular ligand and catalysis of a partic-
ular reaction, and (b) the level of the biological process,
which refers to the larger function of the protein. For
example, the function of the RecA protein could be de-
scribed as ATP binding and DNA binding at the first
level and as a component of homologous recombination
and DNA repair at the second level. ‘Fold to function’
models have been the basis for functional annotation
of proteins in some cases. When two proteins exhibit
high structural similarity along their entire polypeptide
chains, they are likely to have similar functions, both
at the molecular function level as well as at the biologi-
cal process level. Sequence-structure-function relation-
ships however are a bit more complex than the simple
linear relationships among the three aspects. There are
a number of instances in literatures, where dissimilar
structures exhibit similar functions while also other ex-
amples that show different functions for proteins adopt
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the same structural fold. Fig. 4 illustrates both these
cases with known examples. Nevertheless, it is clear
that high sequence similarity leads to high structural
similarity and a strong likelihood of similarity in func-
tion, both in the molecular function as well as in the
cellular functions. In cases where structural fold is the
same, but functions are different, the two proteins are
likely to have significant differences in their finer ar-
rangement of residues, particularly at the functional
sites. In the same spirit, it is possible to have proteins
adopting different folds, but with similar sub-structures
(Fig. 5), hence similar functions. It is also possible to
have cases where a given function has arisen in two pro-
teins independently using different structural folds and
different binding site architectures as well. A case-by-
case analysis of the structures at hand, generally reveals
the patterns that one would expect and hence strategies
that will be useful in their analyses and annotations.
It must be remembered that when two proteins ex-
hibit only a part similarity in their structures, their
functions are not necessarily the same and more de-
tailed studies would be required to infer function, as
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described later. Part similarity can exist in two broad
ways, (i) medium-to-high similarity in a portion of the
polypeptide chain, indicating the presence of a common
domain in the two proteins or (ii) low-to-medium level
similarity in most part of the polypeptide chain. For the
first category, inferring molecular level function would
be possible for the conserved region in many cases, but
inferring biological process level function would not be
possible. For the second category, functional inference
at either level would not be meaningful since fold level
similarity does not necessarily imply conservation at the
functional regions of the molecule and hence does not
also imply conservation in function, especially at the
level of the biological process.

Structure to function models work best when there
is high conservation in the entire protein, applications
of which have been described several times in the lit-
erature. An interesting example is the annotation of
function of Rv3214 from Mycobacterium tuberculosis
as a broad-spectrum phosphatase, important for My-
cobacterial phosphate metabolism in vivo (Watkins and
Baker, 2006). This protein was originally annotated as

Fig. 4 Protein structure and function. Examples (a) and (b) show proteins that have different structures but the same
function; while (c) and (c) show proteins that have similar structures but different functions. The specific examples
shown are Cu/Zn superoxide dismutase (1SDY, SCOP-b.1.8.1) shown in (a), and Fe/Mn superoxide dismutase (1N0J,
SCOP- ¢.87.1) shown in (b). The SCOP classes reveal the difference at the fold and class levels. On the other hand,
a Thiamine Phosphate Synthase (2TPS) shown in (c) and Indole-3-Glycerolphosphate (1A53) shown in (d), both
belong to the TIM barrel fold but have completely different functions. The corresponding substrates are shown in

CPK form
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Fig. 5 Substructure comparison. An example to show two proteins belonging to completely different classes, yet exhibiting
very high similarity at binding site level; Lignin Peroxidase (1ILGA, SCOP-a.93.1.1) shown in (a) where as Cytochrome
F (1E2Z, SCOP- b.2.6.1) shown in (b). A superposition of their binding sites along with the heme ligand is shown
in (c). The ligand is shown in ball and stick and the residues are in wireframe representations

EntD through sequence similarity with the Escherichia
coli EntD, a 4’-phosphopantetheinyl transferase impli-
cated in siderophore biosynthesis. After solving its
crystal structure as part of a structural genomics ini-
tiative, closer comparisons of structure and sequence
indicated the protein to be a phosphatase belonging to
the dPGM superfamily, later confirmed by biochemical
experiments. Another example of obtaining biological
insights through structure is that of Rv1347¢c, a puta-
tive antibiotic resistance protein from Mycobacterium
tuberculosis, which revealed a GCNb5-related fold, sug-
gesting an alternative function in siderophore biosyn-
thesis, rather than its annotation as a putative amino-
glycoside N-acetyltransferase (Card et al., 2005).

The success in deriving various relationships is of
course, dependent on the method used. There are a
number of sequence-based methods such as BLAST and
FASTA, which are used routinely today for identify-
ing sequence homologues. Newer ways of comparing
molecules and recognizing similarities at various lev-
els have been an area of intense research, resulting in
progress in many fronts, such as the evolution of pattern
recognition methods applied to sequences (e.g., PSI-
BLAST, PRINTS), development of various substitu-
tion matrices for use with database searching and align-
ment protocols (BLOSUM), as well as in the emergence
of various fold-recognition (Gen-threader (McGuffin et
al., 2000), 3D-PSSM (Kelley et al., 2000)) and struc-

ture comparison methods (DALI, VAST). Most of the
sequence alignment methods are based on recogniz-
ing common sequence patterns whereas the structural
alignment methods are based on recognition of common
topological arrangement of sub-structures (such as the
secondary structural elements).

6.2 Function annotation at binding site level

It has long been recognized that understanding lig-
and binding to a protein molecule holds the key to
understanding function of the molecule. Therefore a
different level of understanding protein function is to
extract functionally important regions in them and as-
sociate them with particular function(s). A complete
description of the binding sites is not always obtained,
even for crystallographically determined structures, be-
cause the protein may not be complexed with all the
ligands required for the function of the molecule or be-
cause the complexed ligands are often substitutes for
the natural ligands. Identification of all relevant bind-
ing sites in protein molecules, therefore becomes a key
step in the process of gaining functional insights from
protein structures. A number of methods have emerged
in the last decade for the task of locating binding sites in
proteins (Goodford, 1985; Levitt and Banaszak, 1992;
Kleywegt and Jones, 1994; Peters et al., 1996; Hendlich
et al., 1997; Liang et al., 1998; Brady and Stouten,
2000; Venkatachalam et al., 2003; Bhinge et al., 2004;
An et al., 2005; Coleman et al., 2006; Glaser et al.,
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2006; Huang and Schroeder, 2006; Brylinski et al., 2007;
Chakrabarti and Lanczycki, 2007; Landon et al., 2007;
Soga et al., 2007; Kalidas and Chandra, 2008; Tong
et al., 2008; Yeturu and Chandra, 2008). They can
be broadly classified into (a) geometry-based and (b)
energy-based methods. The geometry-based methods
are generally known to be faster while the energy-based
methods score better in terms of high accuracy of the
sub-pockets predicted. Different methods focus on dif-
ferent properties such as size, hydrophobicity, energy
potential, solvent accessibility, desolvation energy or
residue propensity for representing and hence analyzing
the pockets. The chosen descriptor directly influences
the quality of prediction. Hence it is important to ex-
plore the use of different features to represent protein
molecules and subsequently predict binding sites.

Some examples of the geometry-based methods are
LigsiteCSC (Huang and Schroeder, 2006), CASTP
(Liang et al., 1998), PASS (Brady and Stouten, 2000),
LigandFit (Venkatachalam et al, 2003), VOIDOO
(Kleywegt, 1999), APROPOS (Peters et al., 1996),
LIGSITE (Hendlich et al., 1997), SURFNET (Glaser
et al., 2006), while examples of energy-based meth-
ods are GRID (Goodford, 1985), Pocket finder (An et
al., 2005), Q-SiteFinder (Laurie and Jackson, 2005),
desolvation-based free-energy models (Coleman et al.,
2006) and solvent mapping models (Landon et al.,
2007). Roterman and co-workers have also reported
identification of active sites based on the characteris-
tics of the spatial distribution of hydrophobicity in a
protein molecule, using a fuzzy-oil-drop model (Brylin-
ski et al., 2007).

Once the binding sites are identified through one or
more of the above methods, the next task is to com-
pare or align them with binding pockets from known
structures, or in other words, known recognition sites
of different ligands. Similar to the transfer of function
from homologous sequences or highly similar structures,
ligand binding function and hence the broader function
of the protein can be inferred when there is a signifi-
cant similarity of the binding sites (Fig. 5). Comparison
of binding sites at the structural level however is not a
trivial task and requires specialized algorithms. A num-
ber of methods are available for this purpose, including
Sitesbase (Gold and Jackson, 2006), Cavbase (Kuhn
et al., 2007), and Pocketmatch (Yeturu and Chandra,
2008).

7 Macromolecular recognition

7.1 Protein-ligand interactions

Understanding the molecular basis of recognition of
the ligands by the proteins is an important aspect of
structural and molecular biology, so as to understand
how proteins are capable of specific and reversible inter-
actions with ligands. This can be achieved by studying
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the interactions among proteins, their internal molecu-
lar dynamics guided by its intra-molecular forces, in-
fluence of other substances such as allosteric factors
and function in terms of ligand binding. The basis
for protein-ligand interactions can be understood by
studying the thermodynamic components, which are
the driving forces for ligand binding. A wide variety
of experimental methods are used for direct or indi-
rect determination of thermodynamic quantities and
hence the ligand binding strengths. These involve the
calculation of thermodynamic quantities from theoret-
ical relationships. For example, the enthalpy changes
can be determined from the temperature dependence
of the equilibrium binding or dissociation constant.
High sensitivity calorimetric measurements on the other
hand, allow precise and direct determination of the
change in enthalpy values. Computationally, the bind-
ing strengths can be measured by analyzing their ex-
tents of interaction judged by their structures. Com-
monly used metrics such as interaction energies, buried
surface area upon complexation, shape complementar-
ity values (Cai et al., 2002) or by simply analyzing the
number and nature of the hydrogen bonds involved in
interaction (Fig. 6). Since a large number of high res-
olution protein-ligand complexes have been available
for a couple of decades now, they have been utilized
to derive scoring functions to compute relative bind-
ing affinities of the same protein with different ligands.
The most popular among these are the empirical scor-
ing function of Bohm and co-workers (Bohm, 1994),
which take into consideration 82 protein-ligand com-
plexes to derive relative contributions of different types
of interactions, deriving an expression, so as to fit the
experimentally observed values, leading to deriving ap-
propriate weights for electrostatic interactions, surface
area of interaction and other such parameters.
7.2 Protein-protein interactions

Most biological processes are carried out by macro-
molecular assemblies and regulated through a complex
network of protein-protein interactions. These interac-
tions with other proteins and sometimes nucleic acids
are known to be important for maintaining normal
physiology. Interactions are of different types, the most
important of them being complex formation leading to
large protein-protein assemblies. An example of this
category would be a ribosome or a RuvABC complex
required for DNA recombination. Interactions can also
be mediated through sugar molecules present as part
of glycans that ride on proteins. Some interactions can
also be in the form of influences where a given pro-
tein influences the function of another through increase
or decrease in the levels of the associated metabolite,
leading to feed-forward or feed-back regulations. Un-
derstanding protein-protein interactions would pertain
mainly to the first category of interactions. A number
of protein structure complexes are being determined ex-
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Fig. 6 Different types of molecular complexes: Protein-ligand interactions are seen in (a), protein-protein interactions
are seen in (b), while protein-DNA interactions is in (c) and protein-carbohydrate interactions are shown in (d).
The examples chosen for the illustration are the X-ray crystal structure of TFGBRI complexed with its inhibitor
pyrazolone (3KCF), the crystal structure of human growth hormone ((1A22) shown in dark grey bound to its single
receptor (light), crystal structure of arginine repressor (3FHZ), bound with its co-repressor along with DNA operator
sequence and the structure of concanavalinA (1TEI) complexed with (pentose sugar shown in black), respectively

perimentally and the current release of PDB contains
several protein-protein complexes (Fig. 6), providing a
wealth of information on the nature of the interfaces
and the types of interactions that stabilize protein-
protein complexes.

Experimental approaches studying protein-protein
interactions have certain limitations and need to be
complemented by computational methods. Different
types of interaction prediction methods have emerged
in the recent years, that involve one or more of the
methods considering gene neighborhoods (Dandekar et
al., 1998), or phylogenetic profiles (Snel et al., 2000), or
detection of gene fusion (Enright and Ouzounis, 2001)
in another organism. These methods are all based on
sequence information and provide quick information
about possible protein-protein linkages. They do not
however tell us if the two proteins can form a struc-
tural complex and where they do, there is no infor-
mation on the mode of interaction or which segments
of the two proteins may be involved. Structure-based
methods (Jones and Thornton, 1997) are required to
address these issues, which are becoming increasingly

more feasible. Some of the recently developed algo-
rithms are FTDOCK (Gabb et al., 1997) which involves
rigid-body docking on two biomolecules in order to pre-
dict their correct binding geometry. Protein-protein in-
terfaces are generally larger, less conserved and often in-
volve a fair amount of hydrophobic residues, making it
difficult to detect as compared to that of protein-small
molecular recognition. There are methods that depend
upon identification and comparison of surface patches
(Jones and Thornton, 1997) on protein surfaces, differ-
entiating between core and the rim residues present at
the protein-protein interface to map the conservation
(Guharoy and Chakrabarti, 2005), but methods in this
category are in general still in their infancy with a lot
of scope for improvement.

7.3 Protein-DINNA interactions

DNA binding proteins have a fundamental role to
play in any living organisms because they are involved
in various processes such as DNA recombination (repli-
cation and maintaining genome integrity); expression
(transcription and translation), genome packaging (hi-
stones and protamines), and gene regulation (promot-
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ers and repressors). It therefore becomes very impor-
tant for us to understand the kind of interactions made
by the proteins with DNA. The interactions made by
the proteins can be non-specific, examples of which are
Tag-polymerase and Dnasel. Interactions in this cate-
gory generally involve backbone of the DNA and are
assisted by water molecules. On the other hand, pro-
teins such as Trp repressor, Rel homology region, TATA
box-binding protein (TBP) make specific interactions
with specific DNA bases, making them dependent on
DNA sequence at that region. Fig. 6 illustrates a simi-
lar example of a protein-DNA complex. The complexity
increases further in the case of multi-specific proteins
such as homeodomain, Lacl and CAP, which recognize a
number of different DNA segments with high specificity.
Majority of protein-DNA interactions comprise of DNA
backbone interactions that provide stability rather than
specificity, followed by van der Waals contacts and then
by hydrogen and water mediated bonds. Various com-
putational tools are available that can predict the DNA-
protein interactions. Most of these can be classified into
two different categories: the first one utilizes structure-
based information and requires 3D protein structures,
while the second class utilizes only sequence patterns.
Some examples of such tools are DISIS, DNABindR,
DISPLAR; and BindN, DP-Bind, DBS-PSSM, DBS-
Pred respectively (Sarai et al., 2005).

7.4 Protein-carbohydrate interactions

Carbohydrates observed naturally in biological sys-
tems, are among the most diverse of molecular com-
ponents, although our current knowledge on how they
code for biological information is limited. The poten-
tial information in these kinds of interactions is im-
mense because the conformational space which carbo-
hydrates can explore is vast. X-ray crystallographic
studies of these protein-sugar interactions with the cur-
rent methods can give us snapshots of certain conforma-
tions, leaving a large number of other possible confor-
mations and the interacting states of the system, to be
explored. Protein-carbohydrate interactions are seen to
drive many biological processes like cell adhesion, sig-
nal transduction, host-pathogen recognition, inflamma-
tion, often also serve as molecular switches (O’Conner
and Imperiali, 1998) in addition to providing specific
substrates for cellular interaction. Among the proteins
that are known to bind to carbohydrates, the family of
lectins and antibodies are well studied. Lectins have
carbohydrate recognition domains and exhibit a wide
range of forms with specificities for diverse carbohy-
drates, a remarkable range of strategies for achieving
selective binding (Fig. 6) (Chandra et al., 2006). Spe-
cific antibodies exist for specific recognition of carbohy-
drates as antigens, the binding in some cases is capable
of triggering a variety of immunological reactions (Sac-
chettini et al., 2001).
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8 Dynamics in proteins

Several studies have now shown that protein
molecules are not rigid bodies, rather specific move-
ments within them are crucial for their function
(Schultz-Heienbrok et al., 2005). Some proteins are
known to undergo substantial rearrangements in their
domains or in smaller segments upon binding to other
molecules, to switch between active and inactive states
(Kern et al., 1999). Flexibility of proteins has been
associated with various functional aspects such as en-
abling catalytic activity, signal transduction, and vari-
ous allosteric mechanisms. Currently our understand-
ing about conformational changes in proteins is limited
to a few well-studied examples (Dodson and Verma,
2006). Modeling these conformational changes is there-
fore of interest, to simulate and predict the nature of
conformational changes and hence the flexibility in dif-
ferent proteins. This understanding in turn has broad
implications in the field of protein design, assigning
function to uncharacterized protein and in mechanism
of molecular recognition. Various computational ap-
proaches have been adapted to study protein dynamics
and allostery, which has an advantage of being fast in
comparison and giving deeper mechanistic insights that
is not possible to trace experimentally.

The database of macromolecular movements
(http://molmovdb.org/) that describe and classify
the motions that occur in proteins and other macro-
molecules, hosts a large collection of protein structures
in different states. Traditionally theoretical studies on
protein motion have focused on structures of single
molecules to study phenomenon such as domain move-
ment in response to ligand binding (Qi and Hayward,
2009). A few cases of different conformations of the
same protein have been indeed studied by crystallogra-
phy. Fig. 7 illustrates one such example. In the recent
years, new computational methodologies are being ex-
plored to predict the flexibility of proteins. Techniques
from graph theory are applied to analyze the bond
networks in proteins with covalent, hydrogen bonds
and salt bridges considered to be distance constraints
to distinguish between flexible and rigid residues
(Ghosh and Vishveshwara, 2007; Kuhn et al., 2007). A
statistical thermodynamics algorithm (Vertrees et al.,
2005) predicts network of cooperative residues within
the proteins (Hilser, 1996), providing insights about
routes mediating conformational changes. Predicting
flexibility from sequence alone (Schlessinger and Rost,
2005) has also been explored.

Molecular dynamics and its other variations are one
of the most commonly used methods for studying pro-
tein flexibility, by mapping the atomic positions in the
trajectories and deriving insights into regions that can
undergo large movements. Although these have the
advantage of being highly accurate and the conforma-
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(b)

Fig. 7 An example to illustrate movements in proteins, linked to their function. The conformation change observed upon
ligand binding in phosphoglycerate kinase is shown, the inactive open, but more stable conformational (1PHP) is
in (a), while the active, closed conformation is in (b) (1VPE). The two ligands, an ATP analogue and the triose
phosphate are also shown in the closed form, while the position of the nucleotide is indicated in the open form also

tional trajectories can be studied in details, a main
drawback is the computational cost. An alternate ap-
proach to studying the conformations produced in the
protein structure is through morphing. In this tech-
nique, one image is gradually changed into another,
through the generation of intermediate images that help
transform the starting conformation to the desired or
expected end-point. It is expected that in nature that
the transition would be smooth and be energetically fa-
vorable. The morph server (Flores et al., 2006) uses en-
ergy minimization to calculate the intermediate frames,
which produces results that are usually much better
than morphs made by simpler linear interpolation, but
still relatively quick. The area of predicting flexibility
and different conformational states needs much more
attention, and more advances in this direction can be
expected in the future.

9 Applications

9.1 Structure based drug discovery
9.1.1 Target identification

Targetability refers to the assessment of the feasibil-
ity of a protein as a drug target molecule (Raman et
al., 2008). A further measure of feasibility is to under-
stand the ability of the protein molecule to be acces-
sible and specifically bind a drug-like small molecule;
all of these can be studied by sequence- and structure-
based methods. Knowledge of the structure of the tar-
get macromolecule helps us to estimate the feasibility

of the protein as a target and also facilitates computa-
tional docking of the ligand molecule into its binding
site. Function can also be better appreciated by ana-
lyzing protein structures than sequence alone. Several
methods have emerged in the last few years to analyze
protein structures, which can be used for evaluating
their feasibility as drug targets (Scapin, 2006). Besides
providing functional clues, the structures also provide a
framework to understand the molecular basis of recog-
nition, which is required both for lead design as well
as for analyzing the feasibility of the target molecule.
This type of analysis, however, is restricted to those
proteins whose structures are either experimentally de-
termined or predicted with high confidence by compu-
tational methods. Prior to docking, it is important to
identify the binding site in the target protein, infor-
mation for which is available many times through the
structures of the complexes of the protein with its nat-
ural substrate. Chemical modification or site-directed
mutagenesis data of the target protein can also provide
clues about the binding site residues, where structures
of complexes are not known.

A recent study of M. tuberculosis proteome demon-
strates how this can be achieved through computa-
tional methods (Raman et al., 2008). Possible pock-
ets in the set of bacterial and human structures were
first identified by detecting binding sites in all the pro-
teins and then by identifying unique pockets that could
serve as feasible drug targets. A similar concept has
been termed as a chemical systematic biology approach,
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which identifies off-target binding networks through
their ligand binding sites, again with the help of bind-
ing site detection in protein structures and compari-
son approaches. Using this, the authors demonstrate
their use in identifying drug candidates or multi-drug
resistant TB and in explaining adverse effects of CETP
inhibitors (Xie et al., 2009).
9.1.2 Lead identification and optimization

Structure-based drug design (SBDD) is a well estab-
lished field for designing appropriate small molecules to
enhance or inhibit the activity of the protein in ques-
tion, when the structure of the target protein and the
binding site details are known. Some examples of drugs
designed by structure-based methods are Zanamivir
and Oseltamivir against influenza neuraminidase, Nel-
finavir, Amprenavir, and Lopinavir targeting HIV pro-
tease (Nair et al., 2002).
9.1.3 Docking

Docking refers to the optimal positioning of a ligand
molecule with respect to the binding site of a target
structure. Many methods have been developed to per-
form ligand docking. The simplest is the rigid-body
docking (Kuntz et al., 1982), which represents internal
volume of the ligand and void volume of the site by set
of points and evaluates all superposable substructures
between the two sets of points. Rarey and et al. (1996)
developed FlexX where the base fragment of the lig-
and is placed into the binding site considering comple-
mentary interactions with atoms of site using geometric
hashing followed by incremental addition of fragments
to base fragment to arrive at the structure of the given
ligand. Many possible energetically favorable confor-
mations of the ligand are generated and later grouped
by pose-clustering based on root mean squared devia-
tion (Linnainmaa et al., 1988). Other methods avail-
able for this purpose are based on molecular dynam-
ics simulations, stochastic search techniques such as
simulated annealing and Monte Carlo simulations, and
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evolutionary algorithms (e.g. AUTODOCK (Morris et
al., 1999)) and heuristic clique-based searches (DOCK
(Ewing and Kuntz, 1998)). An example of docking of
saquinavir to HIV protease is shown in Fig. 8. The
strength of binding of the ligand to the target is usually
determined by considering the intermolecular energies
contributed by the interaction forces arising from elec-
trostatic, hydrogen-bond, van der Waals and hydropho-
bic interactions (Muegge and Martin, 1999; Sobolev
et al., 1999). The contribution of the solvent in lig-
and binding can also be explicitly considered. Quan-
tum chemical models for evaluating interaction poten-
tial are also available (Zoete et al., 2003; Xiang, 2006).
There are numerous examples in literature that report
the use of docking in structure-based lead identification.
In some cases, they also provide a basis to rationalize
relative affinities of a series of ligands, determined ex-
perimentally.
9.1.4 Virtual high-throughput screening

As the promise of structure-based drug design begins
to be realized (Congreve et al., 2005), the need for ex-
panding to a larger scale is becoming more acute. A
common need in present drug discovery therefore is to
carry out a database search to find probable ligands,
also referred to as ‘virtual screening’, so as to enrich
biologically active compounds during ‘lead’ identifica-
tion. A good example of this approach is the identifica-
tion of the lead compounds to replace the anti-cancer
drug Gleevec by overcoming the problem of drug resis-
tance. The structure of the ABL tyrosine kinase, the
target of Gleevec has been used to identify two promis-
ing lead compounds, which exhibited significant inhibi-
tions in ABL tyrosine phosphorylation assays (Peng et
al., 2003). On the computational front, development of
high performance methods for computationally intense
tasks such as docking, could lead to use of structure-
based methods in virtual screening of millions of com-
pounds for lead design.

Fig. 8 Examples of structure-based drug design. Docking of saquinavir (ROC) to HIV protease (3EL4) by using AutoDock.
A comparison of the docked pose (darker shade) with the crystallographically observed pose (lighter shade) is shown
in (a). Details of the interactions (b) show another example of structure-based design. Lisinopril, an inhibitor of
the angiotensin-converting enzyme, as bound to its target (1086). This drug, a clinically used antihypertensive has
been designed with clues derived from the structure of the target protein
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10 Future perspective and challenges

Various structural biology and structural bioinfor-
matics studies have already shown us the power of these
approaches in understanding biology at high resolution.
As the data generated keeps increasing in variety as well
as in quality, these approaches only become even more
important towards precisely reasoning out the function
of the biological system and predicting the effects of
modifications or perturbations. There are still some
challenges ahead that have to be overcome and help us
comprehend structural bases for the biological phenom-
ena.

One such important challenge is experimental struc-
ture determination at a genomic scale. With advances
in experimental methods and increased attempts in a
number of structures determined, a high amount of un-
processed structural data is being generated. A require-
ment therefore is to understand the gaps that exist in
processing such data (for example, data from twinned
crystals), and determine the structures much more ef-
fectively. The other rate-limiting step is arriving at
crystallization condition that works for the protein of
interest. The data on crystallization conditions can
also be explored; computational approaches including
machine-learning methods can be applied to increase
the yield of crystals (Hennessy et al., 2000; Gopalakr-
ishnan et al., 2004).

Other challenges include better visualization tools as
complexity of molecules demands novel display meth-
ods. It should help us synchronize the structural data
with important clues such as location of functional
sites, areas of structural and genetic variability. The
database of known structures available today is large
enough, and better classification systems are required.
An effort towards this end is a database termed SIFTS
(Structure Integration with function, taxonomy and se-
quence initiative), which maps the protein structures
in PDB with the corresponding gene ontology terms.
Much more work needs to be done for higher order in-
tegration with knowledge available in literature as well
as those which can be computed with various high con-
fidence bioinformatics approaches. Prediction of three-
dimensional structure from just the sequence still re-
mains an area of interest. CASP (Critical Assessment
of Protein Structures) meetings still continue to be ben-
eficial in terms of understanding the performance of dif-
ferent methods and the quality of homology modeling,
threading, binding site prediction and ab initio struc-
ture prediction. A new area that can be envisaged in
the near future is that of structural systems biology,
integrating systems level analysis of large complex sys-
tems with the details that are obtained through high
resolution studies of protein structures, which aims to
predict the behavior of biological systems on the basis
of a set of molecules involved. Inclusion of structural
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details can ultimately turns abstract system represen-
tations into models that reflect biological reality (Aloy
and Russell, 2006). Recently with the use of structural
genomics and systems biology, a three-dimensional re-
construction of the central metabolic network of bac-
terium Thermotoga maritima was obtained (Zhang et
al., 2009). Integration of structural data with network
analysis can also give us insights into function, mech-
anism and evolution of biological systems. Eventually
structural bioinformatics when cross-linked with the ex-
perimental data should provide us with valuable infor-
mation about the macromolecular interactions within
the cell, and their localization into compartments. It
can help us give a more comprehensive view of the work-
ing of the cell, enable development of more complete
computational models and enable answering questions
about how various diverse molecules work together in-
side a cell, provide mechanisms by which they are or-
chestrated and, unravel the physical basis of life itself.
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