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4. Classical Probability Distributions 
 

4.1 Discrete Models 

 

FACT: 

 

Experiment 3a:   Roll one fair die...  Discrete random variable X = “value obtained” 

 

Sample Space:  S  =  {1, 2, 3, 4, 5, 6} #(S) = 6 
 

Because the die is fair, each of the six faces has an equally likely probability of 

occurring, i.e., 1/6.  The probability distribution for X can be defined by a so-called 

probability mass function (pmf) p(x), organized in a probability table, and 

displayed via a corresponding probability histogram, as shown.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Comment on notation: 

Event

( 4 )P X  = 1/6 

 

Translation:  “The probability of rolling 4  is  1/6.” 

 

Likewise for the other probabilities P(X = 1), P(X = 2),…, P(X = 6) in this example.  

A mathematically succinct way to write such probabilities is by the notation P(X = x), 

where x = 1, 2, 3, 4, 5, 6.  In general therefore, since this depends on the value of x, 

we can also express it as a mathematical function of x (specifically, the pmf; see 

above), written p(x).  Thus the two notations are synonymous and interchangeable.  

The previous example could just as well have been written f(4) = 1/6. 

  

Event Probability 

x p(x)  =  P(X = x) 

1 1/6 

2 1/6 

3 1/6 

4 1/6 

5 1/6 

6 1/6 

 1 

Random variables can be used to define events that involve measurement! 

“Uniform Distribution” 
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Experiment 3b:   Roll two distinct, fair dice.      Outcome  = (Die 1, Die 2) 
 

Sample Space:  S  =  {(1, 1), …, (6, 6)} #(S) = 6
2
 = 36 

 

 

Discrete random variable X = “Sum of the two dice (2, 3, 4, …, 12).” 

 

Events: “X = 2”   =  {(1, 1)} #(X = 2)   =  1 

 “X = 3”   =  {(1, 2), (2, 1)} #(X = 3)   =  2 

 “X = 4”   =  {(1, 3), (2, 2), (3, 1)} #(X = 4)   =  3 

 “X = 5”   =  {(1, 4), (2, 3), (3, 2), (4, 1)} #(X = 5)   =  4 

 “X = 6”   =  {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} #(X = 6)   =  5 

 “X = 7”   =  {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} #(X = 7)   =  6 

 “X = 8”   =  {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} #(X = 8)   =  5 

 “X = 9”   =  {(3, 6), (4, 5), (5, 4), (6, 3)} #(X = 9)   =  4 

 “X = 10” =  {(4, 6), (5, 5), (6, 4)} #(X = 10) =  3 

 “X = 11” =  {(5, 6), (6, 5)} #(X = 11) =  2 

 “X = 12” =  {(6, 6)} #(X = 12) =  1 

 

Recall that, by definition, each event “X = x” (where x = 2, 3, 4,…, 12) corresponds 

to a specific subset of outcomes from the sample space (of ordered pairs, in this 

case).  Because we are still assuming equal likelihood of each die face appearing, 

the probabilities of these events can be easily calculated by the “shortcut” formula 

#( )
( )

#( )

A
P A

S
.     Question for later:  What if the dice are “loaded” (i.e., biased)? 

  

(1, 1)     (1, 2)     (1, 3)     (1, 4)     (1, 5)     (1, 6) 

(2, 1)     (2, 2)     (2, 3)     (2, 4)     (2, 5)     (2, 6) 

(3, 1)     (3, 2)     (3, 3)     (3, 4)     (3, 5)     (3, 6) 

(4, 1)     (4, 2)     (4, 3)     (4, 4)     (4, 5)     (4, 6) 

(5, 1)     (5, 2)     (5, 3)     (5, 4)     (5, 5)     (5, 6) 

(6, 1)     (6, 2)     (6, 3)     (6, 4)     (6, 5)     (6, 6) 
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Again, the probability distribution for X can be organized in a probability table, 

and displayed via a probability histogram, both of which enable calculations to be 

done easily: 
 

 

x p(x)  =  P(X = x) 

2 1/36 

3 2/36 

4 3/36 

5 4/36 

6 5/36 

7 6/36 

8 5/36 

9 4/36 

10 3/36 

11 2/36 

12 1/36 

 1 

 

 P(X = 7  or  X = 11)  Note that “X = 7” and “X = 11” are disjoint! 
 

 = P(X = 7)  +  P(X = 11)  via Formula (3) above 
 

 =    6/36 +      2/36    =    8/36 
 

 P(5  X  8) 
 

 = P(X = 5  or  X = 6  or  X = 7  or  X = 8)  
 

 = P(X = 5)  +  P(X = 6)  +  P(X = 7)  +  P(X = 8) 
 

 =    4/36 +     5/36 +     6/36 +     5/36 
 

 =    20/36 
 

 P(X < 10)   =   1    P(X  10) via Formula (1) above 
 

 = 1    [P(X = 10)  +  P(X = 11)  +  P(X = 12)] 
 

 = 1    [3/36  +  2/36  +  1/36]    =    1    6/36    =    30/36 
 

Exercise:  How could event E = “Roll doubles” be characterized in terms of a 

random variable?  (Hint: Let Y = “Difference between the two dice.”) 
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The previous example motivates the important topic of... 
 

Discrete Probability Distributions 
 

In general, suppose that all of the distinct population values of a discrete random 

variable X are sorted in increasing order:  x1 < x2 < x3 < …,  with corresponding 

probabilities of occurrence p(x1), p(x2), p(x3), …   Formally then, we have the 

following. 

 

  

Definition:  p(x) is a probability mass function for the discrete random variable X if, 

for all x, 

p(x)  0  AND  
all

( )
x

p x   =  1. 

 

In this case,  p(x) = P(X = x),  the probability that the value x occurs in the population. 
 

The cumulative distribution function (cdf) is defined as, for all x, 
 

F(x)  =  P(X  x)  =  
all

( )
i

i

x x

p x   =  p(x1) +  p(x2) +  … + p(x).   

 

Therefore, F is piecewise constant, increasing from 0 to 1. 
 

Furthermore, for any two population values a < b, it follows that 

P(a  X  b)  =  ( )p x
b

a

  =  F(b) – F(a ) 

where a  is the value just preceding a in the sorted population. 

Exercise: Sketch the cdf F(x) 

for Experiments 3a and 3b above. 
 

Total Area  =  1 

 

 … 

  … 
X  |  |  |   | 

x1 x2 x3 … x …

  

p(x1) 

p(x2) 

p(x3) 

p(x) 

1 

X  |  |  |   | 

x1 x2 x3 … x …

  

F(x1) 

F(x2) 

F(x3) 

0 
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Population Parameters μ and σ
2
 (vs. Sample Statistics x  and s

2
) 

 

 population mean  =  the “expected value” of the random variable X 
 

 =  the “arithmetic average” of all the population values 

 
Compare this with the relative frequency definition of sample mean given in §2.3. 

 

 
 

 population variance  =  the “expected value” of the squared deviation of the  

random variable X from its mean (μ) 

 
Compare the first with the definition of sample variance given in §2.3.            

(The second is the analogue of the alternate computational formula.)  Of course, 

the population standard deviation σ is defined as the square root of the variance. 
 

 

*Exercise:  Algebraically expand the expression (X  )
2
, and use the properties of expectation given above. 

  

If X is a discrete numerical random variable, then… 

μ  =  E[X]  =   x p(x),  where pmf p(x) = P(X = x), the probability of x. 

 
 

If X is a discrete numerical random variable, then… 

σ
 2
  =  E[(X  )

2
]  =   (x  )

2
 p(x).   

 

Equivalently,* 

σ
 2
  =  E[X

 2
]  

 2
  =   x

2
 p(x)  

 2
 ,   

 

where pmf p(x) = P(X = x), the probability of x. 

 
 

Properties of Mathematical Expectation 
 

1. For any constant c, it follows that E[cX] = c E[X]. 
 

2. For any two random variables X and Y, it follows that  
 

 E[X + Y] = E[X] + E[Y]  and, via Property 1, 
 

 E[X − Y] = E[X] − E[Y]. 

 

Any “operator” on variables satisfying 1 and 2 is said to be linear. 
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Experiment 4:  Two populations, where the daily number of calories consumed is 

designated by X1 and X2, respectively.    
 

  Population 1  

Probability Table 
 

 

 Mean(X1) = µ1 = (2300)(0.1) + (2400)(0.2) + 

                                 (2500)(0.3) + (2600)(0.4) =  2500 cals 

 Var(X1) = σ1
2
 = (–200)

2
(0.1) + (–100)

2
(0.2) +  

                                     (0)
2
(0.3) + (+100)

2
(0.4) =  10000 cals

2
 

 
 
 
  Population 2 

Probability Table 
 

 
 Mean(X2) = µ2 = (2200)(0.2) + (2300)(0.3) + (2400)(0.5) =  2330 cals 

 Var(X2) = σ2
2
 = (–130)

2
(0.2) + (–30)

2
(0.3) + (70)

2
(0.5) =  6100 cals

2
 

  

x p1(x) 

2300 0.1 

2400 0.2 

2500 0.3 

2600 0.4 

x p2(x) 

2200 0.2 

2300 0.3 

2400 0.5 

20% 

30% 

50% 

2300 

2400 

2500 

2600 

2200 

2300 

2400 

0.1 

0.2 

0.3 

0.4 

0.2 

0.3 

0.5 
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Summary (Also refer back to 2.4 - Summary) 

 

  

POPULATION 

Discrete random variable X 

 

     Probability Table   Probability Histogram 
 

x p(x)  =  P(X = x) 

x1 f(x1) 

x2 f(x2) 

. 

. 

. 

. 

. 

. 

 1 

  

 

 

 

 = E[X] =  x p(x) 

 E[(X  )
2
] =  (x  )

2
 p(x) 

 2
 =   or 

 E[X
2
]  

2
  =  x

2
 p(x)  

2
 

X 
P

a
ra

m
et

er
s 

 

SAMPLE, size n 

 

Relative Frequency Table          Density Histogram 
 

x p(x)  =  
freq(x)

n
 

x1 p(x1) 

x2 p(x2) 

. 

. 

. 

. 

. 

. 

xk p(xk) 

 1 

 

 

 

x  =  x p(x) 
 

 
n

n  1
  (x  x )

2
 p(x) 

s
 2
 =   or 

 
n

n  1
 [  x

2
 p(x)  x

 2] 

X 

S
ta

ti
st

ic
s 

 

X  and 
2S  

can be shown 

to be 

unbiased 
estimators of 

 and 
2

, 

respectively. 

That is, 

E X , 

and 
2 2E S . 

(In fact, they 

are MVUE.) 

http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/2_-_Exploratory_Data_Analysis/2.4_-_Summary.pdf
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~  Some Advanced Notes on General Parameter Estimation  ~ 
 

Suppose that  is a fixed population parameter (e.g., ), and 

ˆ  is a sample-based estimator (e.g., X ).  Consider all the 

random samples of a given size n, and the resulting “sampling 

distribution” of ˆ  values.  Formally define the following: 
 

 Mean (of ˆ ) = ˆ[ ]E , the expected value of ˆ . 
 

 Bias = ˆ[ ]E , the difference between the expected 

value of ˆ , and the “target” parameter . 
 

 Variance (of ˆ ) = 
2

ˆ ˆ[ ]E E , the expected value 

of the squared deviation of ˆ  from its mean ˆ[ ]E ,   
 

or equivalently,
*
 = 2 2ˆ ˆ[ ]E E . 

 

 Mean Squared Error (MSE) = 2ˆ( )E , the expected value of the squared 

difference between estimator ˆ  and the “target” parameter . 

 

Exercise:  Prove
*
 that  2MSE = Variance + Bias . 

 

Comment:  A parameter estimator ˆ  is defined to be unbiased if ˆ[ ]E , i.e.,     

Bias = 0.  In this case, MSE = Variance, so that if ˆ  minimizes MSE, it then follows 

that it has the smallest variance of any estimator.  Such a highly desirable estimator is 

called MVUE (Minimum Variance Unbiased Estimator).  It can be shown that the 

estimators X  and 2S  (of  and 2 , respectively) are MVUE, but finding such an 

estimator ˆ  for a general parameter  can be quite difficult in practice.  Often, one 

must settle for either not having minimum variance or having a small amount of bias.  

                                                 
*
 using the basic properties of mathematical expectation given earlier 

 

POPULATION 

Parameter  

SAMPLE 

Statistic ˆ  

ˆc  

ˆ ˆ[ ]Ea  

ˆ[ ]Eb

Vector interpretation 

2 2 2[ ] [ ] [ ]E E E

c = a + b

c a b
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Related (but not identical) to this is the idea that of all linear combinations 

1 1 2 2 n nc x c x c x  of the data 1 2{ , , , }nx x x  (such as X , with 1 2 1/nc c c n ) 

which are also unbiased, the one that minimizes MSE is called BLUE (Best Linear 

Unbiased Estimator).  It can be shown that, in addition to being MVUE (as stated 

above), X  is also BLUE.  To summarize, 

 

MVUE gives:     Min Variance among all unbiased estimators 
 

 ≤  Min Variance among linear unbiased estimators 
 

 =  Min MSE among linear unbiased estimators (since MSE = Var + Bias
2
), 

 

 given by BLUE (by def). 

 

The Venn diagram below depicts these various relationships. 

 

 

Comment:  If MSE  0 as n , then ˆ  is said to have mean square convergence 

to .  This in turn implies “convergence in probability” (via “Markov's Inequality,” 

also used in proving Chebyshev’s Inequality), i.e., ˆ  is a consistent estimator of . 

  

Unbiased Linear 

Minimum 

MSE 

Minimum 

Variance 

BLUE 

MVUE 

X  

2S
Minimum variance 

among linear 

unbiased estimators 

Minimum variance 

among all unbiased 

estimators 
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Experiment 4 - revisited:  Recall the previous example, where X1 and X2 represent 

the daily number of calories consumed in two populations, respectively.   

 

Population 1                     Population 2 

 
 

 

 

 

 

 

 

 

 

 

 
Case 1:  First suppose that X1 and X2 are statistically independent, as shown in the joint probability 

distribution given in the table below.  That is, each cell probability is equal to the product of the 

corresponding row and column marginal probabilities.  For example, P(X1 = 2300  ∩  X2 = 2200) = .02, 

but this is equal to the product of the column marginal P(X1 = 2300) = .1 with the row marginal       

P(X2 = 2200) = .2.  Note that the marginal distributions for X1 and X2 remain the same as above, as can 

be seen from the single-underlined values for X1, and respectively, the double-underlined values for X2. 
 

 X1 = # calories for Pop 1   

  2300 2400 2500 2600  

X
2
 =

 #
 c

a
lo

ri
es

 

fo
r 

P
o
p

 2
 2200 .02 .04 .06 .08 .20 

2300 .03 .06 .09 .12 .30 

2400 .05 .10 .15 .20 .50 

  .10 .20 .30 .40 1.00 

 

2300 

2400 

2500 

2600 

2200 

2300 

2400 

x p1(x) 

2300 0.1 

2400 0.2 

2500 0.3 

2600 0.4 

Mean(X1) = µ1 = 2500 cals; 

Var(X1) = σ1
2
 = 10000 cals

2
 

 

x p2(x) 

2200 0.2 

2300 0.3 

2400 0.5 

Mean(X2) = µ2 = 2330 cals; 

Var(X2) = σ2
2
 = 6100 cals

2
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Now imagine that we wish to compare the two populations, by considering the 

probability distribution of the calorie difference D = X1 – X2 between them.  (The sum  

S = X1 + X2 is similar, and left as an exercise.) 
 

 

As an example, there are two possible ways that D = 300 can occur, i.e., two possible 

outcomes corresponding to the event D = 300:  Either A = “X1 = 2500 and X2 = 2200” 

or B = “X1 = 2600 and X2 = 2300,” that is, A ⋃ B.  For its probability, recall that 

( ) ( ) ( ) ( ).P A B P A P B P A B   However, events A and B are disjoint, for they 

cannot both occur simultaneously, so that the last term is P(A ⋂ B) = 0.  Thus, 

( ) ( ) ( )P A B P A P B  with P(A) = .06 and P(B) = .12 from the joint distribution. 

 

Mean(D) = µD =  

(–100)(.05) + (0)(.13) + (100)(.23) + 

(200)(.33) + (300)(.18) + (400)(.08) 

                                                 =  170 cals 

i.e., µD = µ1 – µ2   (Check this!) 

 

 

Var(D) = σD
2
 = 

(–270)
2
(.05) + (–170)

2
(.13) + (–70)

2
(.23) 

+ (30)
2
(.33) + (130)

2
(.18) + (230)

2
(.08) 

                                                 =  16100 cals
2
 

i.e., σD
2
 = σ1

2
 + σ2

2
   (Check this!) 

 

  

Events 

D = d 

Sample Space 
Outcomes in the form of ordered pairs (X1, X2) 

Probabilities 

from joint distribution 

D = –100: (2300, 2400) .05 

D =   0: (2300, 2300),  (2400, 2400) .13  = .03 + .10 

D = +100: (2300, 2200),  (2400, 2300),  (2500, 2400) .23  = .02 + .06 + .15 

D = +200: (2400, 2200),  (2500, 2300),  (2600, 2400) .33  = .04 + .09 + .20 

D = +300: (2500, 2200),  (2600, 2300) .18  = .06 + .12 

D = +400: (2600, 2200) .08 

.05 

.13 

.23 

.33 

.18 

.08 
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Case 2:  Now assume that X1 and X2 are not statistically independent, as given in the 

joint probability distribution table below.   
 

 X1 = # calories for Pop 1   

  2300 2400 2500 2600  

X
2
 =

 #
 c

a
lo

ri
es

 

fo
r 

P
o
p

 2
 2200 .01 .03 .07 .09 .20 

2300 .02 .05 .10 .13 .30 

2400 .07 .12 .13 .18 .50 

  .10 .20 .30 .40 1.00 

 

The events “D = d” and the corresponding sample space of outcomes remain unchanged, 

but the last column of probabilities has to be recalculated, as shown.  This results in a 

slightly different probability histogram (Exercise) and parameter values. 
 

 

Mean(D) = µD = (–100)(.07) + (0)(.14) + (100)(.19) + (200)(.33) + (300)(.18) + (400)(.08) 

                         =  170 cals,  i.e.,  µD = µ1 – µ2. 

 

Var(D) = σD
2
 = (–270)

2
(.07) + (–170)

2
(.14) + (–70)

2
(.19) + (30)

2
(.31) + (130)

2
(.20) + (230)

2
(.09) 

                       =  18517 cals
2
 

 

It seems that “the mean of the difference is equal to the difference in the means” still 

holds, even when the two populations are dependent.  But the variance of the difference 

is no longer necessarily equal the sum of the variances, as with independent populations. 

  

Events 

D = d 

Sample Space 
Outcomes in the form of ordered pairs (X1, X2) 

Probabilities 

from joint distribution 

D = –100: (2300, 2400) .07 

D =   0: (2300, 2300),  (2400, 2400) .14 = .02 + .12 

D = +100: (2300, 2200),  (2400, 2300),  (2500, 2400) .19 = .01 + .05 + .13 

D = +200: (2400, 2200),  (2500, 2300),  (2600, 2400) .31 = .03 + .10 + .18 

D = +300: (2500, 2200),  (2600, 2300) .20 = .07 + .13 

D = +400: (2600, 2200) .09 
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These examples illustrate a general principle that can be rigorously proved with mathematics. 

 

GENERAL FACT ~ 

 

 

Comments: 
 

 These formulas actually apply to both discrete and continuous variables (next section). 

 The difference relations will play a crucial role in 6.2 - Two Samples inference. 

 If X and Y are dependent, then the two bottom relations regarding the variance also 

involve an additional term, Cov(X, Y), the population covariance between X and Y.  

See problems 4.3/29 and 4.3/30 for details. 

 The variance relation can be interpreted visually via the Pythagorean Theorem, 

which illustrates an important geometric connection, expanded in the Appendix.] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Certain discrete distributions (or discrete models) occur so frequently in practice, that 

their properties have been well-studied and applied in many different scenarios.  For 

instance, suppose it is known that a certain population consists of 45% males (and thus 

55% females).  If a random sample of 250 individuals is to be selected, then what is the 

probability of obtaining exactly 100 males?  At most 100 males?   At least 100 males?  

What is the “expected” number of males?  This is the subject of the next topic: 

 

  

Mean(X + Y)  =  Mean(X) + Mean(Y) and Mean(X – Y)  =  Mean(X) – Mean(Y) 

 

In addition, if X and Y are independent random variables, 
 

Var(X + Y)  =  Var(X) + Var(Y) and Var(X – Y)  =  Var(X) + Var(Y). 

X  

Y  

D

http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/6_-_Statistical_Inference/6.2_-_Two_Samples.pdf
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POPULATION = Women diagnosed 

with breast cancer in Dane County, 

1996-2000 
 

Among other things, this study 

estimated that the rate of “breast cancer 

in situ (BCIS),” which is diagnosed 

almost exclusively via mammogram, is 

approximately 12-13%.  That is, for any 

individual randomly selected from this 

population, we have a binary variable 
 

1, with probability 0.12
BCIS

0, with probability 0.88.
 

 

In a random sample of 100n  breast 

cancer diagnoses, let 
 

X = # BCIS cases  (0,1,2, ,100) . 
 

Questions:  
 

 How can we model the probability 

distribution of X, and under what 

assumptions? 
 

 Probabilities of events, such as 
( 0),P X  ( 20),P X  ( 20),P X  

etc.? 
 

 Mean # BCIS cases = ? 
 

 Standard deviation of # BCIS cases = ? 

 
  

Full article available online at this link. 

http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/4_-_Classical_Probability_Distributions/BCIS.pdf
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 Binomial Distribution (Paradigm model = coin tosses) 

 

 

 

 

 

 
 

(H H H H H) (H H T H H) (H T H H H) (H T T H H) (T H H H H) (T H T H H) (T T H H H) (T T T H H) 

(H H H H T) (H H T H T) (H T H H T) (H T T H T) (T H H H T) (T H T H T) (T T H H T) (T T T H T) 

(H H H T H) (H H T T H) (H T H T H) (H T T T H) (T H H T H) (T H T T H) (T T H T H) (T T T T H) 

(H H H T T) (H H T T T) (H T H T T) (H T T T T) (T H H T T) (T H T T T) (T T H T T) (T T T T T) 

 

 

Random Variable:  X  =  “# Heads in n = 5 independent tosses (0, 1, 2, 3, 4, 5)” 
 

Events: “X = 0”   =   Exercise  #(X = 0)  =  
 5

 0
   =    1 

 

 “X = 1”   =   Exercise  #(X = 1)  =  
 5

 1
   =    5 

 

 “X = 2”   =   Exercise  #(X = 2)  =  
 5

 2
   =  10 

 

 “X = 3”   =   see above  #(X = 3)  =  
 5

 3
   =  10 

 

 “X = 4”   =   Exercise  #(X = 4)  =  
 5

 4
   =    5 

 

 “X = 5”   =   Exercise  #(X = 5)  =  
 5

 5
   =    1 

 

Recall:  For x = 0, 1, 2, …, n, the combinatorial symbol 
 n

 x
  – read “n-choose-x” – is 

defined as the value 
n!

x! (n  x)!
 , and counts the number of ways of rearranging x objects 

among n objects.  See Appendix > Basic Reviews > Perms & Combos for details. 

 

Note:  
 n

 r
  is computed via the mathematical function “nCr” on most calculators. 

 

  

 Binary random variable:  Probability: 
 

  1,  Success (Heads) with P(Success)  =   

        Y  =   

  0,  Failure   (Tails)  with P(Failure)   =  1   

 

Experiment:   n = 5 independent coin tosses 
 

Sample Space S  =  {(H H H H H), …, (T T T T T)} #(S) = 2
5
 = 32 

http://www.stat.wisc.edu/~ifischer/Intro_Stat/Lecture_Notes/APPENDIX/A1._Basic_Reviews/A1.2_-_Perms_and_Combos.pdf
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Total Area = 1 

 

Probabilities: 
 

First assume the coin is fair (  = 0.5    1   = 0.5), i.e., equally likely elementary 

outcomes H and T on a single trial.  In this case, the probability of any event A above 

can thus be easily calculated via  P(A) = #(A) / #(S). 

 

x P(X = x)  =  
1

2
5 

 5

 x
  

0 1/32 = 0.03125 

1 5/32 = 0.15625 

2 10/32 = 0.312500 

3 10/32 = 0.312500 

4 5/32 = 0.15625 

5 1/32 = 0.03125 

 

 

 

Now consider the case where the coin is biased (e.g.,  = 0.7    1   = 0.3).   

Calculating P(X = x) for x = 0, 1, 2, 3, 4, 5 means summing P(all its outcomes). 

 

Example: P(X = 3)  = 

 

          outcome  via independence of H, T 

 

    P(H H H T T)  =  (0.7)(0.7)(0.7)(0.3)(0.3)  =  (0.7)
3
 (0.3)

2
 

 

+  P(H H T H T)  =  (0.7)(0.7)(0.3)(0.7)(0.3)  =  (0.7)
3
 (0.3)

2
 

 

+  P(H H T T H)  =  (0.7)(0.7)(0.3)(0.3)(0.7)  =  (0.7)
3
 (0.3)

2
 

 

+  P(H T H H T)  =  (0.7)(0.3)(0.7)(0.7)(0.3)  =  (0.7)
3
 (0.3)

2
 

 

+  P(H T H T H)  =  (0.7)(0.3)(0.7)(0.3)(0.7)  =  (0.7)
3
 (0.3)

2
 

 

+  P(H T T H H)  =  (0.7)(0.3)(0.3)(0.7)(0.7)  =  (0.7)
3
 (0.3)

2
 

 

+  P(T H H H T)  =  (0.3)(0.7)(0.7)(0.7)(0.3)  =  (0.7)
3
 (0.3)

2
 

 

+  P(T H H T H)  =  (0.3)(0.7)(0.7)(0.3)(0.7)  =  (0.7)
3
 (0.3)

2
 

 

+  P(T H T H H)  =  (0.3)(0.7)(0.3)(0.7)(0.7)  =  (0.7)
3
 (0.3)

2
 

 

+  P(T T H H H)  =  (0.3)(0.3)(0.7)(0.7)(0.7)  =  (0.7)
3
 (0.3)

2
 

 

  

via disjoint outcomes, 

 

=   
 5

 3
  (0.7)

3
 (0.3)

2
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Hence, we similarly have…  

 

x  

0 
 5

 0
  (0.7)

0
 (0.3)

5
  =  0.00243 

1 
 5

 1
  (0.7)

1
 (0.3)

4
  =  0.02835 

2 
 5

 2
  (0.7)

2
 (0.3)

3
  =  0.13230 

3 
 5

 3
  (0.7)

3
 (0.3)

2
  =  0.30870 

4 
 5

 4
  (0.7)

4
 (0.3)

1
  =  0.36015 

5 
 5

 5
  (0.7)

5
 (0.3)

0
  =  0.16807 

 
Example: Suppose that a certain medical procedure is known to have a 70% 

successful recovery rate (assuming independence).  In a random sample of n = 5 

patients, the probability that three or fewer patients will recover is: 

 

Method 1: P(X  3)  =  P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)  
 

 =  0.00243  + 0.02835  + 0.13230  + 0.30870  =  0.47178 

 

Method 2: P(X  3)  =  1  [ P(X = 4) + P(X = 5) ]  
 

 =  1  [0.36015 + 0.16807 ]  =  1 – 0.52822  =  0.47178 

 
Example: The mean number of patients expected to recover is: 

 

  =  E[X]  =  0 (0.00243) + 1 (0.02835) + 2 (0.13230) + 3 (0.30870) + 4 (0.36015) + 5 (0.16807) 
 

 =  3.5 patients 

 

This makes perfect sense for n = 5 patients with a  = 0.7 recovery probability, i.e., 

their product.  In the probability histogram above, the “balance point” fulcrum 

indicates the mean value of 3.5. 
  

Total Area = 1 

P(X = x)  =  
 5

 x
  (0.7)

x
 (0.3)

5  x
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General formulation: 

 

The Binomial Distribution 
 

Let the discrete random variable X = “# Successes in n independent Bernoulli trials 

(0, 1, 2, …, n),” each having constant probability P(Success) = , and hence 

P(Failure) = 1  .  Then the probability of obtaining any specified number of 

successes x = 0, 1, 2, …, n, is given by the pmf p(x): 
 

P(X = x)  =  
 n

 x
   

x
 (1  ) 

n  x
. 

 

We say that X has a Binomial Distribution, denoted X ~ Bin(n, ).   

Furthermore, the mean  = n , and the standard deviation  = n  (1  ) . 

 

 

Example:  Suppose that a certain spontaneous medical condition affects 1% (i.e.,  = 0.01) 

of the population.  Let X = “number of affected individuals in a random sample of n = 300.” 

Then X ~ Bin(300, 0.01), i.e., the probability of obtaining any specified number x = 0, 1, 2, 

…, 300 of affected individuals is: 

P(X = x)  =  
300

 x
 (0.01)

x
 (0.99)

300  x
 . 

 

The mean number of affected individuals is  = n  = (300)(0.01) = 3 expected cases, with a 

standard deviation of  = (300)(0.01)(0.99) = 1.723 cases. 

 

 Probability Table for Binomial Dist. 
 

x p(x)  =  
 n

 x
   

x
 (1  ) 

n  x
 

0 
0 0

0
(1 )nn

 

1 
1 1

1
(1 )nn

 

2 
2 2

2
(1 )nn

 

etc. etc. 

n (1 )n nnn

n
 

 1 

  

Exercise:  In order to be a valid distribution, 

the sum of these probabilities must = 1.  Prove it.  
 

Hint: First recall the Binomial Theorem:     

How do you expand the algebraic expression 

( )na b  for any n = 0, 1, 2, 3, …?  Then replace 

a with , and b with 1 – .  Voilà! 
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Comments: 
 

 The assumption of independence of the trials is absolutely critical!  If not satisfied – i.e., 

if the “success” probability of one trial influences that of another – then the Binomial 

Distribution model can fail miserably.  (Example:  X = “number of children in a particular 

school infected with the flu”)  The investigator must decide whether or not independence 

is appropriate, which is often problematic.  If violated, then the correlation structure 

between the trials may have to be considered in the model. 

 

 As in the preceding example, if the sample size n is very large, then the computation of 

 n

 x
  for x = 0, 1, 2, …, n, can be intensive and impractical.  An approximation to the 

Binomial Distribution exists, when n is large and  is small, via the Poisson Distribution 

(coming up…). 

 

 Note that the standard deviation  = n  (1  ) depends on the value of .  (Later…) 
  



Ismor Fischer, 5/26/2016 4.1-20 
 

How can we estimate the parameter , using a sample-based statistic ˆ ? 

 

Example:  If, in a sample of n = 50 randomly selected individuals, X = 36 are female, 

then the statistic ˆ  = 
X

n
 = 

36

50
 = 0.72 is an estimate of the true probability  that a 

randomly selected individual from the population is female.  The probability of 

selecting a male is therefore estimated by 1  ˆ  = 0.28 . 

Binary random variable 
 

 1,  Success  with probability  

Y  = 

 0,  Failure   with probability 1   

 

POPULATION 

Experiment:   n independent trials 
 

SAMPLE  

0/1  0/1  0/1  0/1  0/1  0/1   …   0/1 

(y1,  y2,  y3,  y4,  y5,  y6,  …,  yn) 

 

y1 + y2 + y3 + y4 + y5 + … + yn 

 

Let  X  =  # Successes in n trials  ~  Bin(n, ) 
 

   (n  X  =  # Failures in n trials). 

 

Therefore, dividing by n… 

X

n
  =  proportion of Successes in n trials 

 
ˆ =  p  ( =  y , as well) 

and hence… 
 

q  =  1  p  = proportion of Failures in n trials. 
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Poisson Distribution  (Models rare events) 

 

 

 

Assume: 
 

1. All the occurrences of E are independent in the interval. 
 

2. The mean number  of expected occurrences of E in the interval is proportional 

to T, i.e.,   =  T.  This constant of proportionality  is called the rate of the 

resulting Poisson process. 

 

Then… 

 

 

 

Examples: # bee-sting fatalities per year, # spontaneous cancer remissions per year, 

# accidental needle-stick HIV cases per year, hemocytometer cell counts 
  

Discrete Random Variable:   
 

X  = # occurrences of a (rare) event E, in a given interval 

of time or space, of size T. (0, 1, 2, 3, …) 

T 0 
    

The Poisson Distribution 
 

The probability of obtaining any specified number x = 0, 1, 2, … of 

occurrences of event E is given by the pmf p(x): 

 

P(X = x)  =  
e

 
 

  x

x!
 

 
where  e = 2.71828…  (“Euler’s constant”). 

 

We say that X has a Poisson Distribution, denoted X ~ Poisson( ).  

Furthermore, the mean is  =  T, and the variance is  
2
 =  T also. 
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Area = 1 
Area = 1 

 

Example (see above):  Again suppose that a certain spontaneous medical condition E 

affects 1% (i.e.,  = 0.01) of the population.  Let X = “number of affected individuals 

in a random sample of T = 300.” As before, the mean number of expected occurrences 

of E in the sample is  =  T = (0.01)(300) = 3 cases.  Hence X ~ Poisson(3), and the 

probability that any number x = 0, 1, 2, … of individuals are affected is given by: 
 

P(X = x)  =  
e

 3
 3

 x

x!
 

which is a much easier formula to work with than the previous one.  This fact is 

sometimes referred to as the Poisson approximation to the Binomial Distribution, 

when T (respectively, n) is large, and  (respectively, ) is small.  Note that in this 

example, the variance is also  
2
 = 3, so that the standard deviation is  = 3 = 1.732, 

very close to the exact Binomial value.  
 

x 
Binomial 

P(X = x)  =  
300

 x
 (0.01)

x
 (0.99)

300  x 

Poisson 

P(X = x)  =  
e

 3
 3

 x

x!
 

0 0.04904 0.04979 

1 0.14861 0.14936 

2 0.22441 0.22404 

3 0.22517 0.22404 

4 0.16888 0.16803 

5 0.10099 0.10082 

6 0.05015 0.05041 

7 0.02128 0.02160 

8 0.00787 0.00810 

9 0.00258 0.00270 

10 0.00076 0.00081 

etc.  0  0 
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Why is the Poisson Distribution a good approximation to the 

Binomial Distribution, for large n and small ? 
 

Rule of Thumb: n  20 and   0.05; excellent if n  100 and   0.1. 
 

Let  pBin(x) = 
 n

 x
   

x
 (1  ) 

n  x
  and  pPoisson(x) = 

e  
 x

x!
 ,  where  = n .  

We wish to show formally that, for fixed , and x = 0, 1, 2, …, we have: 
 

lim  pBin(x)   =   pPoisson(x). 
 

 

 

Proof:  By elementary algebra, it follows that… 
 

 pBin(x)   = 
 n

 x
   

x
 (1  ) 

n  x
 

 

    =  
n!

x! (n  x)!
   

x
 (1  ) 

n
 (1  ) 

 x
 

 

    =  
1

x!
  n (n  1) (n  2) ... (n  x + 1)       

x
 1  

n
 

n

 

 
 (1  ) 

 x
 

 

    =  
1

x!
  
n (n  1) (n  2) ... (n  x + 1)

n
x   n

x
  

x
 1  

n
 

n

 

 
 (1  ) 

 x
 

 

    =  
1

x!
  
n

n
 

n  1

n
 

n  2

n
 … 

n  x + 1

n
  (n )

x
 1  

n
 

n

 

 
 (1  ) 

 x
 

 

    =  
1

x!
  1 1  

1

n
 1  

2

n
 … 1  

x 1

n
     

 x
   1  

n
 

n

 

 
 (1  ) 

 x
 

 

As n  ,      

       0, 

        
1

x!
  1(1)(1) … (1) = 1   

 x
   e

 
     1

 x
 = 1 

 

    =  
e  

 x

x!
  =  pPoisson(x).  QED 

  

n   

  0 

Siméon Poisson 

(1781 - 1840) 
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Classical Discrete Probability Distributions 
 

Binomial  (probability of finding x “successes” and n – x “failures” in n independent trials) 

 

   

 

 

 
 

 

Negative Binomial  (probability of needing x independent trials to find k successes) 

 

   

  

 

 

 

 

 

 

 

 
 

Hypergeometric  (modification of Binomial to sampling without replacement from “small” finite populations, relative to n.) 

 

   

 

 

 

 

 
 

Multinomial  (generalization of Binomial to k categories, rather than just two) 

 

 

 

 

 

 

 

 

 
Poisson  (“limiting case” of Binomial, with n   and   0, such that n  = , fixed) 

   

 

 

 

X = # occurrences of a rare event (i.e.,   0) among many (i.e., n large), with fixed mean  = n  

 

p(x)  =  P(X = x)  =  
e  

 x

x!
 , x = 0, 1, 2, … 

X = # independent Bernoulli trials for k successes (each with probability ),   k = 1, 2, 3, … 
 

p(x)  =  P(X = x)  =  
 x   1

 k   1
 

  k
 (1  )

 x  k
, x =  k,  k + 1,  k + 2, … 

 

Geometric:   X = # independent Bernoulli trials for k = 1 success 

 

p(x)  =  P(X = x)  =   (1  )
 x  1

, x = 1, 2, 3, … 

For  i = 1, 2, 3, …, k, 
 

Xi = # outcomes in category i (each with probability i), in n independent Bernoulli trials,   n = 1, 2, 3, … 

 1 2 3 1k  

p(x1, x2, …, xk)  =  P(X1 = x1, X2 = x2, …, Xk = xk)  =  
n!

x1! x2! … xk!
  1 2

1 2
kxx x

k , 

 

      xi = 0, 1, 2, …, n    with    x1 + x2 + … + xk  =  n 

X = # successes (each with probability ) in n independent Bernoulli trials,   n = 1, 2, 3, … 
 

p(x)  =  P(X = x)  =  
 n 

 x 
 

  x
 (1  )

 n  x
,   x = 0, 1, 2, …, n 

X = # successes in n random trials taken from a population of size N containing d successes,   n > 
N

10
  

p(x)  =  P(X = x)  =   

 d 

 x 
 N  d 

 n  x 
 N 

 n 

 , x = 0, 1, 2, …, d 


