Příklady hmotnostní zlomek – společná hodina Vypočítejte hmotnost jednoho atomu jodu, pokud víte, že relativní atomová hmotnost jodu je 126,90. [2.1073×10^-25 kg] Postup: 1. Platí, že Ar(I) = m(I)/mu 2. Ze zlomku se vyjádří se hmotnost jodu M(I) = Ar(I) × mu 3. m(I) = 126,90 × 1,6606×10^-27 kg = 2.1073×10^-25 kg Kolik gramů vody bude nutno použít na přípravu roztoku chloridu nikelnatého z 50 g NiCl[2].6H[2]O, má-li být hmotnostní zlomek chloridu nikelnatého v připraveném roztoku 0,07. [340 g] Postup: 1. Vyjádří se hmotnostní zlomek NiCl[2] w(NiCl[2]) = m(NiCl[2]) / (m(NiCl[2].6H[2]O) + m(H[2]O)) 2. Ze zlomku se vyjádří hmotnost vody, kterou máme spočítat m(H[2]O) = (m(NiCl[2]) / (w(NiCl[2])) - m(NiCl[2].6H[2]O) 3. Spočítá se hmotnost NiCl[2], který je obsažen v NiCl[2].6H[2]O a jelikož lze v periodické tabulce dohledat relativní atomové hmotnosti jednotlivých prvků, tak zároveň platí, že známe hmotnostní poměry jednotlivých atomů v příslušné molekule, a tedy lze vyjádřit m(NiCl[2]) = (M[r](NiCl[2]) / M[r](NiCl[2].6H[2]O)) × m(NiCl[2].6H[2]O) 4. m(H[2]O) = (((129,6 / 237,7) × 50 g)/0,07) - 50 g = 339,8 g Jaké je hmotnostní procento (w/w) FeCl[3] v roztoku, který vznikl z 888,4 g 10,12% (w/w) roztoku FeCl[3], bylo-li k němu přidáno 41,1 g FeCl[3].6H[2]O? [12,33 %] Postup: 1. Vyjádří se a následně spočítá hmotnost čistého FeCl[3] obsaženého v FeCl[3].6H[2]O a jelikož lze v periodické tabulce dohledat relativní atomové hmotnosti jednotlivých prvků, tak zároveň platí, že známe hmotnostní poměry jednotlivých atomů v příslušné molekule m[1](FeCl[3]) = (M[r](FeCl[3]) / M[r](FeCl[3].6H[2]O) × m[1](FeCl[3].6H[2]O) m[1](FeCl[3]) = (162,2 / 270,3) × 41,1 g = 24,7 g 2. Vyjádří se a následně spočítá hmotnost čistého FeCl[3] v 10,12% roztoku m[2](FeCl[3]) = m[2](roztok FeCl[3]) × w[2](roztok FeCl[3]) m[2](FeCl[3]) = 888,4 g × 0,1012 = 89,91 g 3. Vyjádří se a následně spočítá hmotnostní zlomek FeCl[3] vzniklý smísením roztoku a pevného hexahydrátu w/w[1+2] (FeCl[3]) = (m[1](FeCl[3]) + m[2](FeCl[3])) / (m[1](FeCl[3].6H[2]O) + m[2](roztok FeCl[3])) w/w[1+2] (FeCl[3]) = ((24,7 g + 89,91 g) / (888,4 g + 41,1 g)) × 100 % = 12,33 % Příklady objemový zlomek – společná hodina 80 cm^3 methanolu bylo doplněno vodo na celkový objem 1000 cm^3. Jaká je koncentrace roztoku vyjádřená v objemových procentech? [8 %] Postup: 1. Vyjádří se a spočítá objemové procento čistého methanolu v jeho roztoku j(MeOH) = V(MeOH) / V(roztok MeOH) j(MeOH) = 80 cm^3 / 1000 cm^3 × 100 % = 8 % K 500 cm^3 roztoku methanolu o koncentraci 29 % obj. (ρ = 0,9607 g/cm^3) bylo přidáno 400 g vody. Vyjádřete koncentraci připravovaného roztoku ve hmotnostních procentech, víte-li, že ρmethanolu = 0,7917 g/cm^3. [13,04 %] Postup: 1. Vyjádří se a spočítá objem čistého methanolu V(MeOH) = j(roztok MeOH) × V(roztok MeOH) V(MeOH) = 500 cm^3 × 0,29 = 145 cm^3 2. Vyjádří se a spočítá hmotnost čistého methanolu m(MeOH) = ρ(roztok MeOH) × V(roztok MeOH) V(MeOH) = 145 cm^3 × 0,7917 g/cm^3 = 114,8 cm^3 3. Vyjádří se a spočítá hmotnost roztoku methanolu m[2](roztok MeOH) = V(roztok MeOH) × ρ(MeOH) m[2](roztok MeOH) = 500 cm^3 × 0,9607 g/cm^3 = 480,35 g 4. Vyjádří se a spočítá hmotnostní zlomek methanolu v roztoku w(MeOH) = m(MeOH) / (m(roztok MeOH) + m(H[2]O)) w(MeOH) = 114,8 g / (480,35 g + 400 g) = 13,04 % Bylo smícháno 400 cm^3 methanolu o koncentraci 18,38 % obj. (ρ = 0,9483 g/cm^3) s 500 cm^3 roztoku obsahujícího 57,71 % obj. této látky (ρ = 0,9156 g/cm^3). Jaká je výsledná koncentrace roztoku ve hmotnostních procentech? ρ[methanolu] = 0,7917 g/cm^3. [34,24 %] Postup: 1. Vyjádří se a spočítá hmotnost roztoků methanolu m[1/2](roztok MeOH) = ρ(roztok MeOH) × V[1/2](roztok MeOH) m[1](roztok MeOH) = 400 cm^3 × 0,9483 g/cm^3 = 379,32 g m[2](roztok MeOH) = 500 cm^3 × 0,9156 g/cm^3 = 457,8 g 2. Vyjádří se a spočítájí objemy čistého methanolu v roztocích methanolu V[1/2](MeOH) = j[1/2](roztok MeOH) × V[1/2](roztok MeOH) V[1](MeOH) = 400 cm^3 × 0,1838 = 73,52 cm^3 V[2](MeOH) = 500 cm^3 × 0,5771 = 288,55 cm^3 3. Vyjádří se a spočítá hmotnost čistého methanolu z objemů čistého methanolu m[1/2](MeOH) = V[1/2](MeOH) × ρ(MeOH) m[1](MeOH) = 73,52 cm^3 × 0,7917 g/cm^3 = 58,21 g m[2](MeOH) = 288,55 cm^3 × 0,7917 g/cm^3 = 228,45 g 4. Vyjádří se a spočítá hmotnostní zlomek čistého methanolu po smíchání w[1+2](MeOH) = (m[1](MeOH) + m[2](MeOH)) / (m[1](roztok MeOH) + m[2](roztok MeOH)) w[1+2](MeOH) = (228,45 g + 58,21 g) / (379,32 g + 457,8 g) = 34,24 % Roztok ethanolu o koncentraci 12,44 % obj. má hustotu 0,9818 g/cm^3. Vypočítejte, jaká je molární koncentrace tohoto roztoku, víte-li, že hustota absolutního ethanolu je 0,7893 g/cm^3. [2,13 M] Postup: 1. Vyjádří se molární koncentrace ethanolu v roztoku c(roztok EtOH) = n(EtOH) / V(roztok EtOH) 2. Vyjádří se látkové množství ethanolu n(EtOH) = m(EtOH)/M(EtOH) 3. Vyjádří se hmotnost čistého methanolu v roztoku m(EtOH) = V(EtOH) × ρ(EtOH) 4. Vyjádří se objem čistého ethanolu V(EtOH) = V(roztok EtOH) × j(roztok EtOH) 5. Je známa hustota EtOH a jeho zlomek v roztoku, dále je nutné spočítat molární hmotnost ethanolu M (EtOH) = A (2 C) + A (6 H) + A (O) M (EtOH) = 2×12 g/mol + 6×1,008 g/mol + 16 g/mol = 46,07 g/mol 6. Koncentraci roztoku ethanolu vyjádříme následovně c(EtOH) = (j(roztok EtOH) × ρ(EtOH) × V(roztok EtOH)) / (V(roztok EtOH) × M(EtOH)) Objemy se vykrátí a lze dosadit c(EtOH) = (0,1244 ×0.7893 g/cm^3) / 46 g/mol = 0,00213 mol/cm^3 = 2,13 mol/dm^3 Vypočítejte, jak dlouho by trvala reakce 0,6171 molů vodíku s 0,6171 moly chloru, kdyby každou sekundu vznikly 2 molekuly HCl. [3,7162×10^23 s] Postup: 1. Vyjádří se rovnice reakce H[2] + Cl[2] = 2 HCl Platí, že za 1s se přemění jedna molekula chloru a vodíku, je tedy nutné spočítat, kolik je molekul v zadaném látkovém množství 2. Vyjádří se a spočítá počet molekul N (H[2]/Cl[2]) = n (H[2]/Cl[2]) × N[A] N (H[2]/Cl[2]) = 0,6171 mol × 6,022×10^23 = 3,7162 ×10^23 3. Pokud se počet molekul vynásobí časem, vyjde čas, který je nutný k tvorbě daného látkového množství Treakce = N(H[2]/Cl[2])/t(vznik 2HCl) = 3,7162 ×10^23 × 1s = 3,7162 ×10^23 s