Interactions with ligands C6215 - Lecture 8 Igor Kuฤera C 6215 Lecture 8 IgorKuฤera [R], [L], and [RL] are the concentrations of free R, free L and the complex at equilibrium. Mass balance equations for the total concentration of R and L (cR and cL) can be written as R (receptor) could be enzyme, transporter, carrier protein, receptor, etc. L (ligand) could be substrate, cofactor, inhibitor, hormone, DNA/RNA, another protein, etc. Receptor-ligand equilibrium cR = [R] + [RL] (2) cL = [L] + [RL] (3) (1) By elimination of [R] from equations (1) and (2) we obtain ๐‘๐‹ = ๐œ ๐‘ ๐Š ๐š[๐‹] ๐Š ๐š ๐‹ + ๐Ÿ = ๐œ ๐‘ [๐‹] ๐‹ + ๐Š ๐ (4) C 6215 Lecture 8 IgorKuฤera [L] [RL] cR free ligand concentration required to achieve half maximal saturation a rectangular hyperbola The graphical representation of equation (4) is: The problem is that we often do not know [L] but only the total ligand concentration cL. C 6215 Lecture 8 IgorKuฤera Elimination of both [R] and [L] from equations (1) - (3) leads to a quadratic equation in [RL] [RL]2 โ€“ (cL + cR + Kd) [RL] + cL cR = 0 The only acceptable root is ๐‘๐‹ = ๐œ ๐‹ + ๐œ ๐‘ + ๐Š ๐ โˆ’ (๐œ ๐‹ + ๐œ ๐‘ + ๐Š ๐) ๐Ÿโˆ’๐Ÿ’๐œ ๐‹ ๐œ ๐‘ ๐Ÿ Using the well-known identity (a-b)(a+b)=a2-b2, Eq. (5) can be put in the form ๐‘๐‹ = ๐Ÿ๐œ ๐‘ ๐Ÿ + ๐œ ๐‘ ๐œ ๐‹ + ๐Š ๐ ๐œ ๐‹ + ๐Ÿ + ๐œ ๐‘ ๐œ ๐‹ + ๐Š ๐ ๐œ ๐‹ ๐Ÿ โˆ’ ๐Ÿ’ ๐œ ๐‘ ๐œ ๐‹ from which it follows that [RL] โ†’ cR, and hence also [RL]/cR โ†’ 1, when cL โ†’ โˆž . Contrary to the dependence of [RL] on [L] (Eq. (4)), the [RL] vs. cL dependence (Eq. (5)) is generally not hyperbolic, although it displays a saturation behavior. (5) C 6215 Lecture 8 IgorKuฤera In the limiting case where ligand binding is extremely tight (Ka โ†’ โˆž, Kd โ†’ 0), Eq. (5) simplifies to ๐‘๐‹ = ๐œ ๐‹ + ๐œ ๐‘ โˆ’ ๐œ ๐‹ โˆ’ ๐œ ๐‘ ๐Ÿ [RL] cR cL cR The amount of receptor-ligand complex increases equimolarly with the amount of ligand added and the receptor becomes saturated at cL = cR. equivalence point C 6215 Lecture 8 IgorKuฤera Since for small x it holds ๐Ÿ โˆ’ ๐ฑ โ‰ˆ ๐Ÿ โˆ’ ๐’™ ๐Ÿ after dividing both numerator and denominator of Eq. (5) by cL+ cR+ Kd we obtain ๐‘๐‹ = ๐Ÿโˆ’ ๐Ÿโˆ’ ๐Ÿ’๐œ ๐‹ ๐œ ๐‘ ๐œ ๐‹+๐œ ๐‘+๐Š ๐ ๐Ÿ ๐Ÿ ๐œ ๐‹+๐œ ๐‘+๐Š ๐ โ‰ˆ ๐Ÿโˆ’ ๐Ÿโˆ’ ๐Ÿ๐œ ๐‹ ๐œ ๐‘ ๐œ ๐‹+๐œ ๐‘+๐Š ๐ ๐Ÿ ๐Ÿ ๐œ ๐‹+๐œ ๐‘+๐Š ๐ = ๐œ ๐‹ ๐œ ๐‘ ๐œ ๐‹+๐œ ๐‘+๐Š ๐ ๐‘๐‹ = ๐œ ๐‹ ๐œ ๐‘ ๐œ ๐‹+๐œ ๐‘+๐Š ๐ โ‰ˆ ๐œ ๐‘ ๐œ ๐‹ ๐œ ๐‹+๐Š ๐ In case of cR << Kd, it simplifies further Thus, when the condition cR << Kd is fulfilled, the dependence of [RL] on cL is hyperbolic and half maximal saturation of the receptor occurs at the total ligand concentration equal to Kd. C 6215 Lecture 8 IgorKuฤera Scatchard plot George Scatchard (1892-1973) ฮฝ = ๐‹ ๐›๐จ๐ฎ๐ง๐ ๐œ ๐‘ = ๐ง โˆ™ ๐‹ ๐‹ + ๐Š ๐ Assume that R has n independent binding sites for L. The number of occupied sites (ฮฝ) can be expressed as ฮฝ ๐‹ = โˆ’ ๐Ÿ ๐Š ๐ โˆ™ ฮฝ + ๐ง ๐Š ๐ ฮฝ ๐‹ ฮฝ n ๐ง ๐Š ๐ ๐ฌ๐ฅ๐จ๐ฉ๐ž = โˆ’ ๐Ÿ ๐Š ๐ = โˆ’๐Š ๐š ๐‹ โ†’ โˆž ๐›Ž โ†’ ๐ง C 6215 Lecture 8 IgorKuฤera Techniques to measure binding constants SEPARATION-BASED ๏ฑ heterogeneous โ€ข dialysis โ€ข chromatography โ€ข surface plasmon resonance ๏ฑ homogeneous โ€ข affinity capillary electrophoresis โ€ข centrifugation โ€ข electrospray ionization mass spectrometry NON-SEPARATION-BASED โ€ข spectroscopy (UV-Vis, IR) โ€ข fluorescence โ€ข isothermal titration calorimetry โ€ข nuclear magnetic resonance C 6215 Lecture 8 IgorKuฤera cR = 6 cL = 7 [L] = 5 [RL] = 7-5 = 2 [R] = 6-2 = 4 cL = [L] = 5 ๐Š ๐ = ๐Ÿ’ร—๐Ÿ“ ๐Ÿ = 10 Equilibrium dialysis uses a two-chambered device with the chambers separated by a semipermeable membrane. The protein solution containing ligand is placed in one chamber while buffer is placed in the opposing chamber. When equilibrium is reached, the unbound ligand will be at equal concentrations on both sides of the membrane while the bound ligand will remain in the protein chamber. The total ligand concentration is sampled from the protein side while the free ligand concentration is sampled from the buffer side. The bound ligand is then calculated from these measurements. Howard et al. Comb Chem High Throughput Screen. 2010, 13, 170 A schematic illustration of the calculation of the dissociation constant from the equilibrium dialysis data Equilibrium dialysis C 6215 Lecture 8 IgorKuฤera A known quantity of receptor is injected on a size exclusion chromatography column and eluted with a buffer containing a constant concentration of ligand. An amount of ligand, determined by the dissociation constant(s) of the equilibrium and the free ligand concentration, binds to the receptor and migrates with it, while a trough in the ligand concentration, corresponding to the quantity withdrawn from the solvent, migrates at its proper rate. Hummel-Dreyer elution profile (trace B) from the injection of 50 ยตl of 54 ยตM HSA into a mobile phase of 81.1 ยตM warfarin in 0.067 M phosphate buffer (pH = 7.4) flowing at 2.0 ml/min through a 5 cm ร— 4.6 mm ISRP column. Mobile phase response monitored at 310 nm with response zeroed at the beginning of the run. Trace A is from the injection of 50 ยตl of 0.067 M buffer blank. The bound ligand concentration is calculated as ligand concentration in the buffer times (As โ€“ Ab)/Ab where As is area of the sample peak and Ab area of the buffer peak. Hummel and Dryer, Biochim. Biophys. Acta 1962, 63, 530 Pinkerton and Koeplinger, Anal. Chem. 1990, 62, 2114 Berger and Girault, J. Chromatogr. B 2003, 797, 51 Hummel โ€“ Dryer method C 6215 Lecture 8 IgorKuฤera The electrophoretic mobility (ฮผ) of a receptor protein (R) changes upon binding to the charged ligand (L) present in the electrophoresis buffer, due to changes in its chargeto-mass ratio. If the protein binds a charged ligand of relatively small mass, the change in mobility due to the change in mass is negligible relative to the change in mobility due to the change in charge. Affinity capillary electrophoresis ฮ”ฮผR+L ฮ”ฮผRL S R R+L RL Weak-to-moderate binding systems ๐‘น๐‘ณ ๐’„ ๐‘น = โˆ†๐ ๐‘น+๐‘ณ โˆ†๐ ๐‘น๐‘ณ = โˆ†๐’• โˆ†๐’•๐’๐’Š๐’Ž S R RL Tight binding systems ๐‘น ๐‘น๐‘ณ Chu and Cheng, Cell. Mol. Life Sci. 1998, 54, 663 C 6215 Lecture 8 IgorKuฤera Affinity capillary electrophoresis of bovine carbonic anhydrase B (CAB) in 0.192 M glycine-0.025 M Tris buffer (pH 8.4) containing various concentrations of L. The total analysis time in each experiment was ~5.5 min at 30 kV using a 70-cm (inlet to detector), 50-ฮผm open quartz capillary. Horse heart myoglobin (HHM) and mesityl oxide (MO) were used as internal standards. Chu et al., J. Med. Chem. 1992, 35, 2915 ๏ƒจ Kd = 2.1 ฮผM C 6215 Lecture 8 IgorKuฤera Sucrose gradient centrifugation after Draper and Hippel ๐‘๐‹ ๐Ÿ = ๐œ ๐‹๐Ÿ ๐œ ๐‘ ๐œ ๐‘ + ๐Š ๐ R is applied in a large surplus (> 10-fold) over L, so that [R] โ‰ˆ cR. When the R band migrates due to the centrifugation, it takes the bound ligand along, while free ligand is left at the starting position. Then the new distributions between free and bound ligand are repeatedly established. ๐‘๐‹ ๐Ÿ = ๐‘๐‹ ๐Ÿ ๐œ ๐‘ ๐œ ๐‘ + ๐Š ๐ ๐‘๐‹ ๐ข = ๐œ ๐‹๐Ÿ ๐œ ๐‘ ๐œ ๐‘ + ๐Š ๐ ๐ข Bisswanger, Enzyme Kinetics. Principles and Methods 2002 C 6215 Lecture 8 IgorKuฤera Electrospray ionization mass spectrometry Concepts Guide, Agilent Technologies 2015 ToF mass analyzer C 6215 Lecture 8 IgorKuฤera 1) native chicken muscle adenylate kinase (AK) 2) chicken muscle adenylate kinase covalently modified with 8-N3-ATP (AKยด) + Spectrum of the reaction mixture (10 ฮผM total protein) of AK and AKยด with 10 ฮผM of Ap5A in 50 mM (HNEt3)HCO3. Almost no binding to AKโ€™ is observed, suggesting that the inhibitor binds in the binding pocket of the protein. ๐ซ = ๐‘๐‹ ๐‘ ๐Š ๐ = ๐œ ๐‹ ๐ซ โˆ’ ๐œ ๐‘ ๐ซ + ๐Ÿ Daniel et al., J. Am. Soc. Mass Spectrom. 2003, 14, 442 C 6215 Lecture 8 IgorKuฤera Fluorescence quenching titration Vuilleumier et al., Biochemistry 1999, 38, 16816 The viral nucleocapsid protein NCp7 contains two Trp residues that constitute sensitive intrinsic fluorescent probes. Binding of oligonucleotides to NCp7 is accompanied by fluorescence quenching. The fluorescence that is measured (I) is a sum of the fluorescence of the free and complexed receptor. Denoting the fluorescence intensities measured when the receptor is completely free and when is complexed as IR and IRL (IR > IRL), we get I as a function of [RL] as follows: ๐ˆ = ๐ˆ ๐‘ ๐‘ ๐œ ๐‘ + ๐ˆ ๐‘๐‹ ๐‘๐‹ ๐œ ๐‘ = ๐ˆ ๐‘ ๐œ ๐‘ โˆ’ ๐‘๐‹ ๐œ ๐‘ + ๐ˆ ๐‘๐‹ ๐‘๐‹ ๐œ ๐‘ = ๐ˆ ๐‘ โˆ’ ๐ˆ ๐‘ โˆ’ ๐ˆ ๐‘๐‹ ๐œ ๐‘ ๐‘๐‹ ๐ˆ ๐ˆ ๐‘ = ๐Ÿ โˆ’ ๐Ÿ โˆ’ ๐ˆ ๐‘๐‹ ๐ˆ ๐‘ ๐‘๐‹ ๐œ ๐‘ The functional dependence of [RL] on cL is given by Eq. (5). When cL changes from zero to infinity, [RL] increases from zero to cR and I decreases from IR to IRL. Kd = 5.9 ร— 10-7 M-1 Kd = 9.1 ร— 10-6 M-1 I/IR C 6215 Lecture 8 IgorKuฤera Titration with a fluorescent ligand Suppose that the measured fluorescence intensity I depends linearly on the concentrations [L] and [RL] with the coefficients of proportionality ฮตL and ฮตRL. The intensity then can be expressed as I = ฮตL [L] + ฮตRL [RL] = ฮตL (cL โ€“ [RL]) + ฮตRL [RL] = ฮตL cL + (ฮตRL โ€“ ฮตL ) [RL] [RL] changes with cL according to Eq. (5) from zero to cR. After the receptor becomes saturated, adding more ligand cause only a linear increase in I with a slope of ฮตL . FAD FMN van den Heuvel et al., J. Biol. Chem. 2004, 279, 12860 The bound FAD fluoresces more than a free FAD molecule. FMN either does not bind at all or does not change fluorescence upon binding. Measurement of fluorescence anisotropy might be informative here. C 6215 Lecture 8 IgorKuฤera Additivity law of anisotropy: In cases where the emission of a fluorescent ligand does not change upon binding to receptors, IL/I = [L]/cL, IRL/I = [RL]/cL and ๐ซ = ๐ซ๐‹ ๐‹ ๐œ ๐‹ + ๐ซ ๐‘๐‹ ๐‘๐‹ ๐œ ๐‹ = ๐ซ๐‹ ๐œ ๐‹ โˆ’ ๐‘๐‹ ๐œ ๐‹ + ๐ซ ๐‘๐‹ ๐‘๐‹ ๐œ ๐‹ = ๐ซ๐‹ + ๐ซ ๐‘๐‹ โˆ’ ๐ซ๐‹ ๐œ ๐‹ ๐‘๐‹ Interaction of fluorescein-labeled moenomycin with a penicillin-binding protein (PBP). The anisotropy of F-Moe increases during incubation with various concentrations of E. coli PBP1b, because of the formation of an F-Moeโ€“PBP1b complex with a reduced rotational freedom. Chang et al., Proc. Natl. Acad. Sci. 2008, 433 [RL] rises from zero to cL and r from rL to rRL with increasing cR Fluorescence anisotropy binding assays The anisotropy r reflects the rotational diffusion of a fluorescent species. C 6215 Lecture 8 IgorKuฤera Binding of two different ligands R RA RB RABA A BB KA KB KAB + + + + KBA ๐Š ๐€ = ๐‘ ๐€ ๐‘๐€ ๐Š ๐€๐ = ๐‘๐€ ๐ ๐‘๐€๐ ๐Š ๐ = ๐‘ ๐ ๐‘๐ ๐Š ๐๐€ = ๐‘๐ ๐€ ๐‘๐€๐ ๐Š ๐€ ๐Š ๐€๐ = ๐Š ๐ ๐Š ๐๐€ ๐œถ = ๐Š ๐๐€ ๐Š ๐€ = ๐Š ๐€๐ ๐Š ๐ ๐œถ < 1 โ€ฆ positive cooperativity ๐œถ > 1 โ€ฆ negative cooperativity ๐œ ๐‘ = ๐‘ + ๐‘ ๐€ ๐Š ๐€ + ๐‘ ๐ ๐Š ๐ + ๐‘ ๐€ ๐ ๐›‚๐Š ๐€ ๐Š ๐ ๐œ ๐‘ = ๐‘ + ๐‘๐€ + ๐‘๐ + ๐‘๐€๐ ๐‘ = ๐œ ๐‘ ๐Ÿ + ๐€ ๐Š ๐€ + ๐ ๐Š ๐ + ๐€ ๐ ๐›‚๐Š ๐€ ๐Š ๐ ๐‘๐€ = ๐€ ๐Š ๐€ ๐‘ = ๐œ ๐‘ ๐€ ๐Š ๐€ ๐Ÿ + ๐€ ๐Š ๐€ + ๐ ๐Š ๐ + ๐€ ๐ ๐›‚๐Š ๐€ ๐Š ๐ ๐‘๐€๐ = ๐€ ๐ ๐›‚๐Š ๐€ ๐Š ๐ ๐‘ = ๐œ ๐‘ ๐€ ๐ ๐›‚๐Š ๐€ ๐Š ๐ ๐Ÿ + ๐€ ๐Š ๐€ + ๐ ๐Š ๐ + ๐€ ๐ ๐›‚๐Š ๐€ ๐Š ๐ C 6215 Lecture 8 IgorKuฤera Competitive binding R RA RB A B KA KB + + Competitive binding can be viewed as an extreme case of negative cooperativity (ฮฑ โ†’ โˆž, 1/ฮฑ โ†’ 0). Discarding the term containing ฮฑ from the denominator of the expression for [RA] gives: ๐‘๐€ = ๐œ ๐‘ ๐€ ๐Š ๐€ ๐Ÿ + ๐€ ๐Š ๐€ + ๐ ๐Š ๐ = ๐œ ๐‘ ๐€ ๐€ +๐Š ๐€ ๐Ÿ + ๐ ๐Š ๐ From this, it is apparent that the value of KA, the dissociation constant of ligand A, is increased by a factor of 1 + [B]/KB, so that KA is increased in direct proportion to the concentration of the competing ligand B. C 6215 Lecture 8 IgorKuฤera Competitive binding (solution for total concentrations) ๐Š ๐€ = ๐‘ ๐€ ๐‘๐€ ๐Š ๐ = ๐‘ ๐ ๐‘๐ cR = [R] + [RA] + [RB] cA = [A] + [RA] cB = [B] + [RB] ๐‘๐€ = ๐‘ ๐œ ๐€ ๐Š ๐€ + ๐‘ ๐‘๐ = ๐‘ ๐œ ๐ ๐Š ๐ + ๐‘ ๐‘ ๐Ÿ‘ + ๐Š ๐€ + ๐Š ๐ + ๐œ ๐€ + ๐œ ๐ โˆ’ ๐œ ๐‘ ๐‘ ๐Ÿ โˆ’ ๐Š ๐ ๐œ ๐€ โˆ’ ๐œ ๐‘ + ๐Š ๐€ ๐œ ๐ โˆ’ ๐œ ๐‘ + ๐Š ๐€ ๐Š ๐ ๐‘ โˆ’๐Š ๐€ ๐Š ๐ ๐œ ๐‘ = ๐ŸŽ Wang, FEBS Lett. 1995, 360, 111 [R] obtained by solving this cubic equation is then used to calculate [RA] and [RB]. C 6215 Lecture 8 IgorKuฤera Fluorescence anisotropy-based competitive assays Rinken et al., Trends Pharmacol. Sci. 2018, 39, 187 Allikalt et al., Eur. J. Pharmacol. 2018, 839, 40 Kd (nM) Dopamine D1 receptor C 6215 Lecture 8 IgorKuฤera The calorimetric thermogram is plotted as ITC compensating power (dQ/dt) versus time. The amount of heat at each injection of ligand is represented by the area under the corresponding peak. Isothermal titration calorimetry Freyer and Lewis, Methods in Cell Biology 2008, 84, 79 C 6215 Lecture 8 IgorKuฤera Wiseman et al., Anal. Biochem. 1989, 179, 131 To find an expression for the heat per mole of ligand added, we first differentiate [RL], described by Eq. (5), with respect to cL. ๐ ๐‘๐‹ ๐๐œ ๐‹ = ๐Ÿ ๐Ÿ ๐Ÿ + ๐œ ๐‘ โˆ’ ๐œ ๐‹ โˆ’ ๐Š ๐ ๐œ ๐‹ + ๐œ ๐‘ + ๐Š ๐ ๐Ÿ โˆ’ ๐Ÿ’๐œ ๐‹ ๐œ ๐‘ = ๐Ÿ ๐Ÿ ๐Ÿ + ๐Ÿ โˆ’ ๐œ ๐‹ ๐œ ๐‘ โˆ’ ๐Š ๐ ๐œ ๐‘ ๐Ÿ + ๐œ ๐‹ ๐œ ๐‘ + ๐Š ๐ ๐œ ๐‘ ๐Ÿ โˆ’ ๐Ÿ’ ๐œ ๐‹ ๐œ ๐‘ cL/cR Kd/cR dcL d[RL] The change in [RL] can be related to the heat change as dQ = d[RL] ฮ”H0 V where ฮ”H0 is the molar enthalpy change of the ligand binding reaction and V the reaction volume. In the limit Kd/cR approaching zero, this equation reduces to ๐ ๐‘๐‹ ๐๐œ ๐‹ = ๐Ÿ ๐Ÿ ๐Ÿ + ๐Ÿ โˆ’ ๐œ ๐‹ ๐œ ๐‘ ๐Ÿ โˆ’ ๐œ ๐‹ ๐œ ๐‘ C 6215 Lecture 8 IgorKuฤera Titration of a protein with three different ligands. Each ligand binds to the protein with either A) a high affinity, B) a medium affinity or C) a low affinity. Top panels: experimental trace. The baseline is indicated in red. Bottom panels: the integrated heats upon injection (black squares) and the data fit (red line) after subtraction of the control data. Harris and Scott, Biochemist 2019, 41, 4 C 6215 Lecture 8 IgorKuฤera k1 k-1 Pseudo-first order transient kinetics ๐ ๐‘ ๐๐ญ = โˆ’๐ค ๐Ÿ ๐œ ๐‹ ๐‘ + ๐คโˆ’๐Ÿ ๐œ ๐‘ โˆ’ ๐‘ ๐ ๐‘ ๐๐ญ = ๐คโˆ’๐Ÿ ๐œ ๐‘ โˆ’ ๐ค ๐Ÿ ๐œ ๐‹ + ๐คโˆ’๐Ÿ ๐‘ cR = [R] + [RL] [L] โ‰ˆ cL >> cR kobs Tepper et al., J. Biol. Chem. 2004, 279, 13425 Fluoride binding to 2.5 ยตM tyrosinase ฮปex = 285 nm ฮปem = 320 nm Linear fit: k1 = 11.7 mM-1s-1 k-1 = 13.9 s-1 F-(mM) ๐‘ = ๐‘ โˆž + ๐‘ ๐ŸŽ โˆ’ ๐‘ โˆž ๐žโˆ’๐ค ๐จ๐›๐ฌ ๐ญ ๐‘๐‹ = ๐‘ ๐ŸŽ โˆ’ ๐‘ โˆž ๐Ÿ โˆ’ ๐žโˆ’๐ค ๐จ๐›๐ฌ ๐ญ C 6215 Lecture 8 IgorKuฤera ASSOCIATION DISSOCIATION REGENERATION Patching, Biochim. Biophys. Acta 2014, 1838, 43 kSP ksp kx kx k k SP Critical angle glass gold Surface plasmon resonance (SPR) ~ ๐Ÿ โˆ’ ๐’†โˆ’ ๐’Œ ๐Ÿ ๐’„ ๐‘ณ+๐’Œโˆ’๐Ÿ โˆ™๐’• ~๐’†โˆ’๐’Œโˆ’๐Ÿโˆ™๐’• Response is for ASSOCIATION and for DISSOCIATION. The measurement of the SPR is done using monochromatic and polarized light. Although incident light is totally reflected at the interface glass-gold, the electromagnetic field component does penetrate a short (tens of nanometers) distance into the metal creating an exponentially attenuated โ€˜evanescent waveโ€™, which can excite surface plasmons. Due to resonance energy transfer between the evanescent wave and surface plasmons (SP), the intensity of the reflected light is reduced at a specific incident angle. The resonance angle at which the intensity minimum occurs is a function of the refractive index of the solution close to the gold layer. k = wave vectors C 6215 Lecture 8 IgorKuฤera Enzyme reaction (equilibrium approximation) enzyme substrate complex enzyme + product kcat kcat (s-1) = catalytic rate constant, molecular activity, โ€žturnover numberโ€œ By applying previous considerations to a case with R = E (enzyme) and L = S (substrate), the rate of enzyme reaction v = kcat [ES] can be expressed in three ways as ๐ฏ = ๐ค ๐œ๐š๐ญ ๐œ ๐„ [๐’] ๐’ + ๐Š ๐ ๐ฏ = ๐ค ๐œ๐š๐ญ ๐œ ๐’ + ๐œ ๐„ + ๐Š ๐ โˆ’ (๐œ ๐’ + ๐œ ๐„ + ๐Š ๐) ๐Ÿโˆ’๐Ÿ’๐œ ๐’ ๐œ ๐„ ๐Ÿ ๐ฏ = ๐ค ๐œ๐š๐ญ ๐œ ๐„ ๐œ ๐’ ๐œ ๐’ + ๐Š ๐ In all three cases, v tends to kcat cE (= limiting or โ€œmaximumโ€œ rate) as substrate concentration tends to infinity. Holds only if cE << Kd; then [ES] is small and cS โ‰ˆ [S]. Requires [S] to be known, which is rarely the case in in vivo conditions. C 6215 Lecture 8 IgorKuฤera When working with isolated enzymes, the substrate concentrations are usually held at least 1000 times higher than that of the enzyme (i.e., cS >> cE). Under in vivo conditions, however, the actual cS/cE ratio may be significantly lower. For various enzymes of glycolysis in mammalian skeletal muscle it ranges from 0.057 (for glyceraldehyde 3-phosphate dehydrogenase) to 62 (for phosphofructokinase). In-vivo concentrations of substrates and enzymes Punekar, Enzymes: Catalysis, Kinetics and Mechanisms 2018 C 6215 Lecture 8 IgorKuฤera When substrates A and B react with a single enzyme E without formation of any ternary complex containing A and B, then in mixtures of A and B each substrate acts as a competitive inhibitor of the other: E EAA B KA + + ๐ค ๐œ๐š๐ญ ๐€ EB KB ๐ค ๐œ๐š๐ญ ๐ Competition of two substrates for a single enzyme ๐ฏ ๐€ = ๐ค ๐œ๐š๐ญ ๐€ ๐„๐€ = ๐ค ๐œ๐š๐ญ ๐€ ๐œ ๐„ ๐€ ๐Š ๐€ ๐Ÿ + ๐€ ๐Š ๐€ + ๐ ๐Š ๐ = ๐ค ๐œ๐š๐ญ ๐€ ๐œ ๐„ ๐€ ๐€ +๐Š ๐€ ๐Ÿ + ๐ ๐Š ๐ ๐ฏ ๐ = ๐ค ๐œ๐š๐ญ ๐ ๐„๐ = ๐ค ๐œ๐š๐ญ ๐ ๐œ ๐„ ๐ ๐Š ๐ ๐Ÿ + ๐€ ๐Š ๐€ + ๐ ๐Š ๐ = ๐ค ๐œ๐š๐ญ ๐ ๐œ ๐„ ๐ ๐ +๐Š ๐ ๐Ÿ + ๐€ ๐Š ๐€ ๐ฏ ๐€ ๐ฏ ๐ = ๐ค ๐œ๐š๐ญ ๐€ ๐Š ๐€ ๐ค ๐œ๐š๐ญ ๐ ๐Š ๐ ๐€ ๐ => The relative rate of turnover of two competing substrates is defined by their relative concentrations and kcat/K values. The kcat/K ratio is called specificity constant (or kinetic efficiency) and is used as a measure of the substrate preference of an enzyme . C 6215 Lecture 8 IgorKuฤera Kraut, Kurtz, Clin. J. Am. Soc. Nephrol. 2008, 3, 208 Management of toxic alcohol ingestions General principles in the treatment of alcohol intoxications Gastric lavage, induced emesis, or use of activated charcoal to remove alcohol from gastrointestinal tract needs to be initiated within 30 to 60 min after ingestion of alcohol. Administration of ethanol or fomepizole to delay or prevent generation of toxic metabolites needs to be initiated while sufficient alcohol remains unmetabolized. Dialysis helpful in removing unmetabolized alcohol and possibly toxic metabolites and delivering base to patient to ameliorate metabolic acidosis. Ethanol has 10 to 20 times greater affinity for alcohol dehydrogenase (ADH) than the other alcohols. At a serum concentration of 1 g ethanol/L, the conversion of other alcohols by ADH is completely inhibited. C 6215 Lecture 8 IgorKuฤera Clopidogrel is a prodrug of the thienopyridine family, which has little, if any, platelet inhibitory effect in its original state. Its active form is produced by metabolism of the prodrug through the cytochrome P450 system of the liver, most particularly by the enzyme CYP2C19. Comin, Kallmes, Am. J. Neuroradiol. 2011, 32, 2002 => There is reduced inhibition of platelet aggregation by clopidogrel when PPIs are coadministered. Proton pump inhibitors (PPIs) irreversibly block the gastric proton pump responsible for the acidification of the stomach. Elimination of these drugs occurs almost entirely by cytochrome P450 metabolism to inactive or less active metabolites. Meyer, Yale J. Biol. Med. 1996, 69,203 CLOPIDOGREL PPIs are often coadministered to patients receiving clopidogrel to reduce the risk of gastrointestinal bleeding. An example of drug interactions C 6215 Lecture 8 IgorKuฤera ๐ฏ = ๐ฏ๐ฅ๐ข๐ฆ ๐’ ๐’ + ๐Š ๐’ ๐ฏ โ‰ˆ ๐ฏ๐ฅ๐ข๐ฆ ๐Š ๐’ ๐’ = ๐ค ๐œ๐š๐ญ ๐œ ๐„ ๐Š ๐’ ๐’ ๐ฏ โ‰ˆ ๐ฏ๐ฅ๐ข๐ฆ = ๐ค ๐œ๐š๐ญ ๐œ ๐„ [S] << KS : [S] >> KS : => An enzyme reaction can be appropriately characterized by the parameters specificity constant (kcat/KS) and catalytic rate constant (kcat). Johnson, Beilstein J. Org. Chem. 2019, 15, 16 ๐ค ๐œ๐š๐ญ ๐ฌ๐ฅ๐จ๐ฉ๐ž = ๐ค ๐œ๐š๐ญ ๐Š ๐’ An enzyme reaction at low and high concentrations of substrate C 6215 Lecture 8 IgorKuฤera