
Gibbs Free Energy 
We introduced the concept of the Helmholtz free energy to meet the conditions 

that a system be in a state with minimum energy and maximum potential.  It describes 

systems at constant volume and temperature.  We now want to introduce another free 

energy, the Gibbs free energy.  This describes systems that are in equilibrium with 

constant pressure and temperature.  The Gibbs free energy is defined to be 

 

 G = U -  + pV  (15.1) 

 

Chemists often call this the free energy, while physicists often call it the thermodynamic 

potential.  The most important property of the Gibbs free energy is that it is a minimum 

for a system in equilibrium at constant pressure when in thermal contact with a reservoir.  

In order to see this, consider the differential dG, 

 

 dG = dU - d - d + pdV + Vdp  (15.2) 

 

If the system, S, is in thermal contact with a heat reservoir, R1, at temperature  and in 

mechanical contact with a pressure reservoir, R2, that can maintain the pressure p but 

cannot exchange heat, then d = dp = 0.  So dG becomes 

 

 dG = dU - d + pdV (15.3) 

 

From the thermodynamic identity 

 

d = dU - dN + pdV 

 

we see that 

 

dG = dN 

 

but dN = 0, so dG = 0, which is the condition of an extremum.  The fact that G is a 

minimum follows directly from the fact that the entropy has a minus sign associated with 

it.  Also, from the derivation, we see that G = G(,p,N).  The general differential of the 

Gibbs free energy is 
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Comparing this with (15.2) and using the thermodynamic identity, we can immediately 

see that 
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Intensive and Extensive Quantities 

The variables  and p are called intensive quantities; they do not change value when two 

identical systems are put together. The variables U, , V, N and G are called extensive 

quantities; their values change when two identical systems are put together.  For 

example, G depends on the number of particles, N.  When two systems are brought 

together, then the number of particles for the combined system doubles, so the Gibbs free 

energy also doubles.  Since the Gibbs free energy depends linearly on the number of 

particles, we can write 

 

G = N (p,) 

 

Thus we see that 
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But we already saw that =



N

G , so (p,) = , and we get 

 

 G = N (p,)  (15.7) 

 

Thus, the chemical potential for a system is equal to the Gibbs free energy per particle.  If 

more than one particle species is present, (15.7) becomes 
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jj pNG  ,  (15.8) 

 

With this change in definition, the differential dG becomes 

 

 VdpddNdG
j

jj +−=    (15.9) 

 



Gibbs Free Energy and Helmholtz Free Energy 

What is the difference between the Gibbs free energy and the Helmholtz free 

energy?  Consider an ideal gas.  We have already seen that the chemical potential for an 

ideal gas as a function of N,  and V is given by 
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From the definition of the Helmholtz free energy we know that 
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Holding  and V constant and integrating, we get 
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Thus, F is not directly proportional to N if we keep the temperature and volume constant.  

From the definition of the Gibbs free energy and the definition of the Helmholtz free 

energy we can immediately see that 
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since pV = N for an ideal gas.  Thus 
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From this we see that the chemical potential as a function of  and p is 
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Chemical Reactions 

How do we use the Gibbs free energy in a chemical reaction?  We can write a 

chemical reaction as 

 

  =
j

jjA 0  (15.12) 

 

where Aj is the jth chemical species, and j is the coefficient of the jth species in the 

reaction.  For example, in the reaction 

 

H2 + Cl2 = 2 HCl 

 

we have A1 = H2, A2 = C12, A3 = HCl, 1 = 1, 2 = 1 and 3 = -2.  We usually discuss 

chemical equilibrium for reactions that occur under conditions of constant pressure and 

temperature.  Recalling that the change in the Gibbs free energy is 
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this reduces to 
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The change dNj is proportional to the coefficient j.  This allows us to write 

 

dNj = j dx 

 

where dx indicates how many times the reaction takes place.  Thus dG becomes 
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But in equilibrium dG = 0, so thus reduces to the condition 
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Equilibrium Reactions in an Ideal Gas 

If we treat each of the molecules as an ideal gas, we can cast this into a more familiar 

form.  Recall that the chemical potential of an ideal gas is 

 

j = (ln nj - ln cj) 

 



where cj = nq,jZint,j.  Substituting this into the equilibrium condition, we get 
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This can be rewritten as 
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or 
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,  is called the equilibrium constant.  Exponentiating both 

sides of (15.14), we get the law of mass action, 
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Example: 

Consider the reaction 

 

HHe- →+ +
 

 

The law of mass action yields 

 

  
 

( )

( ) ( )
( )





I

e
n

nn

K

q

qq −
+

+

=

=

H

He

H

He

-

-

 

 

where FH(int) = -I = -13.6 eV and I is the ionization potential.  Here [A] is the 

concentration of the molecule A.  The quantum concentration for H and H + is the same, 

nq(H) = nq(H
+), so the mass action equation reduces to 
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If charge neutrality is preserved, [e-] = [H+], so this finally becomes 
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This is called the Saha equation. 

Reaction Speed 

The law of mass action expresses the condition satisfied by the concentrations 

once the reaction has gone to equilibrium, but it tells nothing about how fast the reaction 

proceeds.  Consider the reaction 

 

ABCBA =→+  

 

with concentrations nA, nB and nC = nAB.  What is dnAB/dt?  We can write 

 

( ) ( ) ABBA
AB nDnnC
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where C() and D() are constant with respect to rate.  In equilibrium, dnAB/dt = 0, so 
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In general, a graph of the potential energy required for a reaction looks like 

 

 
 

Here E is called the activation energy.  This is the potential energy required for the 

reaction to take place.  H is called the heat of reaction and is the energy that evolves 

out of the reaction. 

Isotherms 

One of the uses of the Gibbs free energy is to plot the curve of pressure verses 

volume for a quantity of matter at constant temperature.  This curve is called an 

isotherm. 



 

 
 

Different regions of the isotherm correspond to different forms of the matter, e.g. solid, 

liquid, or gaseous.  The phase is a portion of a system that is uniform in composition.  

Two phases may coexist, with a definite boundary between them.  Liquid and vapor (a 

gas that is in equilibrium with its liquid or solid form) may coexist on a section of an 

isotherm only if the temperature of the isotherm lies below a critical temperature, c.   

Above that critical temperature only a single phase - the fluid phase - exists, no matter 

how great the pressure.  Consider a system that is originally only a liquid at a constant 

temperature. 

 

 
 

Raise the piston.  As the piston is raised, more vapor is formed until there is only vapor in 

the chamber.  Plotting the pressure verses volume for this transformation we get 

 

 
 



The thermodynamic conditions for the coexistence of two phases are the conditions for 

the equilibrium of two systems that are in thermal, diffusive and mechanical contact.  

These conditions are that 
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At a general point in the p- plane the two phases do not coexist: if 1 < 2, the first 

phase alone is stable, and if l > 2 the second phase alone is stable. 

We see that l(p,) = g(p,), so there must exist some form of coexistence curve.   

This is the curve that divides the phases on a p diagram. 

 

 
 

Consider a small segment of the curve.  Then the condition for coexistence is that 
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and 
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Since the changes are small, we can expand the second condition to get 
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Subtracting (15.18) from (15.19) and rearranging the terms, 
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Now recall that the Gibbs free energy could be written as 
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If we define the volume and entropy per molecule as v = V/N and s = /N respectively, 

then 
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so (15.20) becomes 
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Note that this derivative refers to the very special interdependent change of p and  in 

which the gas and liquid continue to coexist.  The number of molecules in each phase 

will vary as the volume is varied, subject only to the condition that Nl + Ng = N. 

Enthalpy 

Recall that the quantity of heat added to a system was related to the entropy by 

 

 
 

Thus the quantity of heat added by the transfer of one molecule is 

 

  (15.22) 

 

where L is called the latent heat of vaporization.  If we write vg - vl = v, then (15.21) 

can be rewritten as 

 

 
v

L

d

dp


=


 (15.23) 

 



This is known as the Clausius-Clapeyron equation, or the vapor pressure equation.   

Finally, the latent heat of a phase transition is, as we have seen, equal to  times the 

entropy difference of the two phases at constant pressure.  It is also equal to the 

difference in the enthalpy, H, of the two phases, where H = U + pV.  To see this, 

consider the differential 
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by the thermodynamic identity.  But at constant pressure this becomes 

 

dH = d + dN 

 

Considering the change across the coexistence curve, we see that the last term in dH 

becomes (g - l)N, while HdH →  and  →d .  But g = l on the curve, so 
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Using the definition of the heat capacity at constant pressure, this can be written in a 

more useful form.  The heat capacity at constant pressure is given by 
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Integrating this yields 

 

 = dCH p  (15.25) 

 


