Termoelektrika Applications of te materials Chování polovodiču p- a n- typu v teplotním poli <--- 1 i Electric Field Low density of electrons Electric Field Low density of holes High density of electrons Cold Side High density of holes Tento stav lze vyvolat rozdílným elektrickým potenciálem nebo teplotou konců Termoel. generator Heat Input Heat Source Cool Junction E Electrical Output Peltierův článek (chlazení) ' f A Heat Absorbed i Cooled Side I? 3P! J Dissipate d Heat Termoelektrický generátor elektricky vodivé 111 Ů st k \ Te Q 0.2 Q.A M D.B 1 li 14 Curranl^ A Thermoelectric Materials - 1921 Semiconductor Bulk Materials - 1950s SemEConductor Novel Materrais Comp:e.K Structures ■ 1990s Subswjclures 1990s Nanostructures - 2000s Litrme Then-nil Half Hausier Skutterudiies C lach rates Nano composites Thin Film LiHke Thermal Ordered Nanocomposites Random Nanocomposites Lattice The ml Reducü vi- IW- Far<->- La Etc e Therm il Figure 1 3 History of Efforts in increasing ZT. Metodika hodnocení TE materiálů - bezrozměrný koeficient ZT ZT = (S2 a/K) T T... teplota S ... Seebeckův koeficient a... elektrická vodivost k ... tepelná vodivost a) isolator Bífíii-ccntiLi-ctor wmimetal metal 1 i / \ t 9 í \s J — 1 charge can jer density 0 100 200 300 400 500 600 700 800 AT {K) Figure 5. Thermoelectric power versus temperature for several sulfides. Modified after Baleshta and Dibbs (1969). http://www.ela-iet.com/IronGlen/PearceMa2Sulf1des 127 .Ddf Cut* Cu1tS 1960 1990 ZD04 ZD06 2MB 2Q1Q 2012 2014 201 & Vývoj termoelektrických materiálů 3.0 2.5 k 2.0 h 1.0 k 0.5 h 0.0 A SíGe ♦ hM O clathrates • Pb(SeJe) skutterudites *k diamond-like O SnSe <] (Bi, Sb)2Te3 superlattices □ 1940 1950 —i—1—i—1—i—1—i— 1960 1970 1980 1990 Year N SrnjjJr- ťih liliu Itir ■ , j niE m.uhi|4f -fllkcl _!_ 0.0 0.1 0.2 0.3 0.4 Total Ji Min]: fraction 1.0 0.5 -0.5 fi í. iní í "ly -L (is Valence band alignments [ni] 2000 2010 2020 y v v y v y y -r y y . T. ^. y. v_ y. y_ y. y y« K Y- , Tl f- y^'V. r. t£ v, v- v. v. v. v. v. . T. T.—, . vt Y> r, *, r> r, SíMIDpUflíl tis Binary thermoelectrics Bi-Te 600 550 500 450 400 CD 350 Co CD 300 Q. t i0 250 h- 200 150 100 50 0 IIIIIIIII l| III HU II l| IIIIIII 10 20 Ii l| 11 II III II l|ll II II II II I Mil II III1]1111111111)1 IIIIIIIII [Mill lllll|lllllll III 30 40 50 60 70 80 90 100 Te, at% Heusler compounds (a) £jTi3Sn) ^ Ti2Sn ^Ti5Sr3 NiTi Ni3Ti Ternary phase diagrams at room temperature and stable binary phases for metallic XNiSn alloys, with X = (a) Ti, (b) 1Mb, and (c) Cr. HH phases with X:Ni:Sn of 1:1:1 are marked with a triangle, the stable full-Heusler phases (a) TiNiSn 2 , (b) Ni 2 NbSn, and (c) Cr 2 NiSn are marked with a square, and the circles between them mark the specimens with the best experimental performance. NI 90 80 70 60 50 40 30 20 10 Sn Ni3Sn Ni3Sri2 Ni3Sri4 ■ Ternary thermoelectrics Fe- Fe Weight percent S Phase Diagram, Fc*£ Binary System Pent Ian rtite below filO'C (NL.FtjSj* L ■ Vlolarite (Fe.Ni)3S4 ^Ni.F*jS, ■L'hH>lH Tt(F*.|f^p*FcNij WWWW (Fc NilJ.+NlJ,+Ni,Si FtVijtT+NiA Ternary thermoelectrics Fe-Ni-S 1000°C mss + 2 Liquids Vs +Liquid (b) 550 °C Ni Fe (Ni,Fe)3.xS V alloy so 100-135 °C Fe Po {m) 10 20 30 40 50 60 70 Diskuse Waste Heat to Electricity Nut Iími Howpi I'Mnt Automobile W^!e Inc meiern ^ . / Primary * Energy *. I -n ti)iy e.g. Glass, Al Thermal Power Plant Retrieval Electrical Energy