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SUMMARY
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions
may contribute to variation in their health consequences. To mechanistically understand these relationships,
here we map interactions between �150 small-molecule dietary xenobiotics and the gut microbiome,
including the impacts of these compounds on community composition, the metabolic activities of human
gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can
toxify and detoxify these compounds, producing emergent interactions that explain community-specific re-
modeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such
dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in
community remodeling by resveratrol. Together, these results systematically map interactions between di-
etary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differ-
ences in microbiome response to diet.
INTRODUCTION

The human microbiome has wide-ranging impacts on our

health. Each individual hosts trillions of commensal microbes

that vary widely between people and collectively encode over

150 times more genes than the human genome.1 The genetic

and metabolic capability of these bacteria provide functions

essential to maintaining a healthy state, while microbiome dys-

biosis can contribute to diseases including cardiovascular dis-

ease,2,3 inflammatory bowel diseases,4 type 2 diabetes,5

obesity,6 and cancer.7 However, with few exceptions, the

mechanisms by which the microbiome contributes to health

are poorly understood.

Diet is another clear contributor to health. It is thus somewhat

surprising that epidemiological evidence for the health impacts

of individual biochemicals contained in food (dietary xenobiotics)

is limited. These equivocal results can be highlighted in the

context of cancer, where up to 35%of disease risk is attributable

to diet, but evidence for specific foods responsible for cancer

risk has been largely elusive.8 Similarly, there is limited efficacy

for controlling metabolic syndromes such as type 2 diabetes us-

ing dietary recommendations that are based on population aver-

ages.9 Indeed, human subjects experience significant interindi-

vidual variability in their responses to the same food,10 for

example, as quantified in postprandial metabolic measures.11

Person-specific factors such as the microbiome may represent

an important component of this variability, which is sometimes
All rights are reserved, including those
overlooked in studies evaluating links between diet and

health.9,11

The gut microbiome interacts closely with dietary xeno-

biotics, and diet is a major determinant of gut microbiome

composition.12–15 Previous research on how diet shapes the

gut microbiome has largely focused on macronutrients (fats,16

proteins,17 and carbohydrates18), particularly plant polysaccha-

rides that escape human digestive enzymes and act as an impor-

tant energy source for bacteria in the colon.18–20 Notably, studies

focused on macronutrient intake suggest that dietary manipula-

tion represents a tractable means to manipulate the gut micro-

biome.11,21 Gut microbes also have a robust capacity to metab-

olize dietary macronutrients, which results in increased energy

harvest for the host22 and the production of bioactive metabo-

lites such as fatty acids (short chained, branched chain, and ar-

omatic) and amines.18,23

In addition to macronutrients, our diets contain an enormous

biochemical complexity of micronutrients, encompassing

>26,000 unique dietary xenobiotics, including polyphenols, li-

gnans, stilbenes, and tannins.24,25 Previous research on these

compounds illustrates their potential to contribute toward host

health26,27 and impact microbiome composition.28–31 For a small

number of dietary xenobiotics, microbial metabolism has been

shown to modulate their impact on health and disease.2,32,33

However, apart from these examples, most previous research

has focused on mixtures or whole foods rather than pure

compounds, provides aggregated measurements that mask
Cell 187, 6327–6345, October 31, 2024 ª 2024 Elsevier Inc. 6327
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Figure 1. Dietary xenobiotics are variably metabolized by gut microbiome communities and can inhibit growth of gut commensals

(A) Ex vivo incubation of 29 human fecal samples (MV collection), plus a pH 5 control, with 22 dietary xenobiotics and their metabolites illustrates interindividual

variability in compoundmetabolism. Levels of each compound after incubation with each community at 10–20 mMwere determined by LC-MS and normalized to

ion abundance in sterile media controls (‘‘-’’). Compounds related through microbial transformation are indicated by arrows. Mean of triplicate incubations is

shown. A pH 5 control is also indicated.

(legend continued on next page)
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interindividual variability, or relied on animal models that may not

capture the metabolic potential of human microbiomes.

Studies of microbiome interactions with small-molecule

medical drugs reveal a broad capacity of these drugs to alter mi-

crobial growth,34 highlight extensive and variable microbial

metabolism,35,36 and provide examples of microbiome contribu-

tions to interindividual variability in drug efficacy and toxicity.36,37

Similarly, interindividual variability in the response to diet may

result from variability in the microbial metabolites produced

from dietary xenobiotics and interpersonal differences in micro-

biome composition or remodeling. While mapping efforts have

made significant progress in understanding interindividual varia-

tion in drug-microbiome interactions, similar approaches have

not been applied to dietary xenobiotics.

To understand the scope and principles of interactions be-

tween the gut microbiome and dietary xenobiotics, we sought

to systematically map the effects of chemically diverse dietary

xenobiotics on bacterial growth and community composition

and profile the capacity of diverse gut microbes and microbial

communities to chemically modify these compounds. By inte-

grating patterns highlighted in these maps, we identify mecha-

nisms by which gut microbiome communities are remodeled

by dietary xenobiotics and predict interindividual microbiome

variability in the response to a given compound.

RESULTS

Generatingmaps of the growth impacts andmetabolism
of dietary xenobiotics
Many dietary xenobiotics ingested from foods such as fruits

and vegetables (‘‘parent’’ compounds) exist primarily as glyco-

sides or esters, where a backbone is decorated with hydrophilic

sugars (e.g., glucose, rhamnose, and rutinose) or acids (e.g.,

quinic acid and gallic acid). Other parent compounds exist

only as undecorated backbones. To understand how microbial

metabolism of these dietary xenobiotics contributes to differ-

ential responses to diet, we first explored the capacity of 29

human gut communities from unrelated, healthy donors (micro-

biome variation [MV] collection35) to metabolize 22 representa-

tive compounds (Figure 1A). This set of compounds included

parent glycosides and esters and their undecorated deriva-

tives, as well as undecorated parent compounds, from 13

different classes of dietary xenobiotics and included both com-

pounds consumed in high doses from common foods (e.g.,

fruits and vegetables) as well as structurally related compounds

consumed as dietary supplements or traditional medicines.

Each compoundwas incubated with each human sample under

anaerobic conditions in a culture medium that largely recapitu-

lates microbiome composition in the human gut36; compound

metabolism was measured after 48 h by liquid chromatog-

raphy-mass spectrometry (LC-MS).
(B) Compound classes represented in a library of 161 dietary xenobiotics.

(C) Growth of 26 gut commensal species in the presence of each dietary xenobiot

all compounds for that species. Mean of two technical replicates is shown.

(D) Histogram of the number of species inhibited by each dietary xenobiotic. Co

marized in the pie chart.

See also Figure S1 and Tables S1 and S2.
We observed a wide range of interindividual variability in the

metabolism of different compounds by different communities,

establishing three consistent patterns. Firstly, parent com-

pounds with glycosidic linkages (e.g., polydatin and hesperidin)

and ester bonds were readily cleaved by most or all commu-

nities, while their undecorated forms (e.g., resveratrol and

hesperetin, respectively) were only metabolized by select com-

munities (Figure 1A). Secondly, different human communities

produced different metabolites from the same parent com-

pound, including products of deglycosylation, ring-opening,

double bond reduction, demethylation, and dehydroxylation

(Figures S1A and S1B). Finally, polyphenols decorated with

methoxyl groups were metabolized by fewer communities

compared with undecorated polyphenols (e.g., naringenin vs.

hesperetin; Figure 1A). The ability of individual members of the

gut microbiome to metabolize methoxylated and non-methoxy-

lated glycoside compounds in vitro is consistent with these com-

munity-wide measures (Figure S1C); for example, common

members of the gut microbiome (Bacteroides and Bifidobacteria

spp.) deglycosylate many of these compounds (Figure S1C),

while less common taxa (e.g., acetogens) remove methoxyl

groups from methoxylated polyphenols, likely through the

Wood-Ljungdahl pathway38 (Figure S1D).

These metabolic transformations of dietary xenobiotics

by human gut communities and individual species included

production or elimination of compounds reported to be antibac-

terial39–41 (herein, toxicity refers to antibacterial activity). To

determine whether microbial metabolism of dietary compounds

alters xenobiotic toxicity, we first expanded our collection of di-

etary xenobiotics to include 161 compounds belonging to 37

structural classes (Figure 1B, Table S1). This expanded

collection included parent compounds (glycoside, ester, or un-

decorated parents), undecorated derivatives (glycoside or ester

hydrolysis products), and further downstream microbial metab-

olites (e.g., phenolic acids) (Figure S1A), allowing us to assess

differences in toxicity between parent compounds and their mi-

crobial metabolites.

To determine relevant concentrations to test in our in vitro as-

says, we estimated human colonic concentrations of the dietary

xenobiotics in our library after dietary consumption. Many

polyphenols, especially glycoside or ester parent compounds,

have limited bioavailability, and many of these glycosides

are also resistant to human digestion (e.g., rhamnosides and ru-

tinosides).42–45 Up to 90% of a consumed dose can reach the

colon, and so expected colon concentrations are significantly

higher than expected serum concentrations.46,47 We made esti-

mates of small intestinal absorption based on ileostomy and

fecal recovery data from over 50 literature sources, and for 93

compounds where data was available, calculated estimates of

colon concentration using a previously described method34

(see STAR Methods; Table S1; Figure S2A). We experimentally
ic in the library (200 mM). Growth is normalized to the interquartile mean across

mpounds that inhibit two or more species are highlighted in orange and sum-
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validated our calculated estimates by directly measuring colonic

concentrations of 11 compounds in germfree mice; for 9/11

compounds, measured concentrations were within 3-fold of

calculated estimates (Figure S2B). For these 11 compounds,

we also used in silico physiology-based pharmacokinetic mo-

deling to predict pharmacokinetic properties, incorporating

parameters for compound structure, absorption, and intestinal

volume, and subsequently modeled their colonic concentrations

in humans48 (Figure S2C; Table S1); for 10/11 compounds, the

modeled colonic concentrations matched our calculated esti-

mates based on previous methods34 within 3-fold. Having vali-

dated our calculated estimates, we found that two-thirds

(64%) of compounds in our library were estimated to reach con-

centrations exceeding 200 mM in the colon (Figure S2D), and so

used 200 mMas a physiologically relevant working concentration

for further in vitro experiments.

Growth measurements of each of 26 bacterial species in the

presence of each compound in the 161-compound dietary xeno-

biotic library revealed that over half of compounds (86/161) did

not have a strong inhibitory effect (<50%growth) on any species,

and only 14/161 (9%) inhibited growth of more than half of the

tested species, suggesting that general antibacterial effects

are uncommon at the tested xenobiotic concentration. However,

we identified a subset of compounds (53/161; 32%) that reduce

growth of at least 2 species by at least 50% at 200 mM (Table S1;

Figures 1C and 1D). Concentrations of these compounds leading

to 50% growth inhibition (IC50) against a susceptible indicator

species ranged from 50 to 250 mM; these IC50 values are lower

than predicted colon concentrations for over half of the tested

compounds (Table S1). Compound toxicity displayed phyla-level

patterns: Proteobacteria were resistant to almost all compounds

that inhibit most other phyla, while some compounds were pref-

erentially toxic toward distinct phyla. Proteobacterial resistance

is likely due to outer membrane impermeability and efflux

because a hyperpermeable Escherichia coli DbamB DtolC

mutant exhibited sensitivity to a large number of compounds

(Figure 1C; Table S1).49 Importantly, toxicity varies between

parent compounds and their respective microbial metabolites;

in multiple cases, glycosides are non-toxic while the corre-

sponding non-glycosylated forms inhibit bacterial growth. In

some cases, compounds representing further downstream me-

tabolites of these toxic aglycones (reduced forms; altered car-

bon-carbon bonds) also do not inhibit bacterial growth.

Dietary xenobiotics remodel the composition of gut
microbial communities
Given the widespread and variable capacity of dietary xenobi-

otics or their microbial metabolites to inhibit the growth of indi-

vidual species, we next determined whether these compounds

remodel the composition of microbial communities. To this

end, we introduced 140 of the dietary xenobiotics from the

161-compound library (Table S1; 21 were excluded due to com-

pound availability) to anaerobic incubations of four different

microbial communities: three human communities from the

set tested in Figure 1A (MV20, MV27, and MV29), and one

38-member defined community that included representatives

of major human gut phyla along with species known to metabo-

lize common dietary xenobiotics (Figure 2A; Table S2).
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Using community composition measured by 16S sequencing,

we assessed the b-diversity between samples (Figure 2B).

Independent replicates of the same community treated with

the same compound exhibited low b-diversity (95th percentile

b-diversityreplicates < 0.34) (Figure 2C). To quantify the impact of di-

etary xenobiotics on community composition, we measured the

b-diversity between a community grown with a dietary xenobiotic

vs. its DMSOcontrol (b-diversityvs. DMSO).MV27 had higher overall

b-diversityvs. DMSO scores than the other communities (Figure 2D),

suggesting that it is more susceptible to disruption; this commu-

nity also exhibited low a-diversity (Shannon entropy) and higher

Clostridia relative abundance (Figures S2E and S2F). We used

b-diversityreplicates to estimate experimental and technical varia-

tion and identify compounds that significantly remodel commu-

nities (see STAR Methods) (Table S3; Figure 2D). In total, 25/140

compounds (19%) led to significant remodeling of at least one

community (Figures 2D and S2G), and 10 of these 25 compounds

disrupted all four communities (‘‘pan-disruptive compounds’’)

(Figure 2E). The changes induced by these pan-disruptive com-

pounds were comparable to the differences between commu-

nities from different donors (inter-community b-diversity) (Fig-

ure 2E), suggesting that this extent of remodeling is relevant to

microbiome function. The final density (OD600) of these commu-

nities in the presence of the pan-disruptive compounds was

also reduced compared with the DMSO controls, suggesting a

reduction in absolute bacterial abundance (Figure S2H). Notably,

pan-disruptive compounds were also toxic to gut commensals in

pure culture (Figure 2E; Table S1). Indeed, when considering

all compounds, average toxicity against single species in pure

culture significantly correlated with b-diversityvs. DMSO, demon-

strating that compound toxicity is a major predictor of community

remodeling under these conditions (Figure 2F).

We next assessed the change in relative abundance of individ-

ual taxa in a community in response to each dietary xenobiotic.

Certain compounds, including pan-disruptive compounds,

altered the relative abundances of the same bacterial classes

across communities (Figure 3A; Table S4). Furthermore, shifts

in community composition caused by these compounds were

consistent with measured toxicity against individual species:

the relative abundance of resistant taxa (e.g., Gammaproteo-

bacteria) increased at the expense of susceptible taxa (Fig-

ure 3A). Of note, relative abundance measurements do not al-

ways reflect changes in absolute abundance when total

bacterial load is altered, as we observed for highly toxic com-

pounds (Figure S2H).

For most dietary xenobiotics, however, changes in taxa rela-

tive abundance were not shared between the four communities

or predictable based on the compound’s toxicity against related

taxa in monoculture (Figure 3B). Furthermore, many compounds

that caused only subtle changes in overall composition (low b-di-

versityvs. DMSO) still showed significant changes in the relative

abundance of multiple taxa (Tables S4 and S5). Tomore carefully

dissect how an individual species’ susceptibility to a dietary

xenobiotic relates to its relative abundance in a community, we

plotted the growth of a given strain treated with a given com-

pound inmonoculture (Figure 1C) against the relative abundance

of the same strain in the 38-membered defined community

treated with the same compound (Figure 3C; Table S5). In this



Figure 2. Mapping remodeling of human gut microbial communities by dietary xenobiotics

(A) Experimental setup for surveying the effects of 140 dietary xenobiotics on the composition of 4 gut microbiome communities.

(B) Schematic of b-diversityreplicates and b-diversityvs. DMSO calculations. Each circle represents a single replicate.

(C) b-Diversityreplicates across 140 dietary xenobiotics in each community. A line is drawn at the mean, and error bars represent standard deviation. Outlier

replicates with high b-diversityreplicates were removed from further analysis.

(D) Index plots show the b-diversityvs. DMSO of each community treated with each of the 140 dietary xenobiotics. Dashed lines represent cutoffs based on mean

and standard deviation of b-diversityreplicates in (B). See STAR Methods for details.

(E) Violin plot of ten dietary xenobiotics that remodel all four communities (b-diversityvs. DMSO > 0.41). Inter-community b-diversity is also shown for each pair of

DMSO-treated communities. Toxicity is represented as a heatmap representing average normalized growth of 26 species in the presence of each compound

(Figure 1C).

(F) Correlation between b-diversityvs. DMSO and weighted toxicity. Each point represents a given community treated with a given compound. r2 value represents

two-sided Pearson correlation. Weighted toxicity is a measure that captures growth inhibition of individual species in monoculture by a compound (as in Fig-

ure 1C), weighted according to the relative abundance of related taxa in each community (Figure S2F). In (D) and (F), comparisons to communities from unrelated

human donors are indicated by stars. In (D)–(F), mean of b-diversityvs. DMSO is plotted (5 DMSO replicates 3 3 dietary xenobiotic replicates = 15).

See also Figure S2 and Table S3.
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plot, most points fall within a normal distribution along each axis,

since most compounds are non-toxic in monoculture and also

have no effect on community composition. Additionally, some

compounds that are toxic in monoculture lead to predictable

depletion of susceptible taxa. Points falling outside of these ex-

pected regions represent emergent interactions: cross-sensiti-

zation occurs when a compound reduces the relative abundance

of a species in a community but has little or no activity against
that species in monoculture, whereas cross-protection occurs

when a compound exhibits significant toxicity against a species

in monoculture but does not reduce the relative abundance of

that species in the community context.

To probe how compound metabolism is related to emergent

interactions, we used LC-MS to measure the levels of each

compound after incubation with the 38-member community.

Compounds that predictably depleted taxa in the community
Cell 187, 6327–6345, October 31, 2024 6331



Figure 3. Predicted and emergent interactions between dietary xenobiotics and community composition

(A and B) For each dietary xenobiotic, the fold change in relative abundance of bacterial classes within each community is compared with the average toxicity of

the compound toward representative species in this class. (A) For ten compounds that remodel all four tested communities, the taxa that change in relative

abundance are predicted by the spectrum of toxicity of the compound toward each bacterial class. (B) Examples of emergent interactions in which toxic effects of

a compound on individual species in monoculture do not predict community remodeling.

(C and D) (C) Response of 26 species in a 38-member defined community and in monoculture to the presence of each of 140 dietary xenobiotics. Each point

represents the normalized growth of a species treated with the given compound in monoculture (from Figure 1C) vs. its fold change relative abundance (vs.

DMSO) in the 38-member community. Histograms along the x and y axes demonstrate Gaussian distributions that define cutoffs for predicted or emergent

interactions, as indicated. Dietary xenobiotics falling into each category are listed in (D). Metabolism of the dietary xenobiotic by the defined community,

normalized to a sterile media control, is represented by color shading in (C) and (D). For all panels, mean of triplicate incubations is shown.

See also Tables S4 and S5.
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based on toxicity in monoculture, including 8 of the 10 pan-

disruptive compounds, were generally not metabolized by the

38-member community (Figure 3D). By contrast, most com-

pounds involved in cross-protection or cross-sensitization inter-

actions were substantially metabolized by the 38-member com-
6332 Cell 187, 6327–6345, October 31, 2024
munity, with less than 25% of the parent compound remaining

(Figure 3D). These results suggest that metabolism of dietary xe-

nobiotics may be related to the observed emergent interactions.

Notably, there are exceptions to this trend, and so alternate

mechanisms not related to metabolism could also occur.



Figure 4. Toxification and detoxification of dietary xenobiotics by the gut microbiome

(A) Model for microbiome-mediated toxification and detoxification of dietary xenobiotics.

(B) Experimental workflow for generation and characterization of extracts from microbial communities incubated with dietary xenobiotics.

(C and D) Normalized growth of indicator species (vs. DMSO) with extracts prepared from communities labeled along the top and dietary xenobiotics labeled

along the left. (C) For 11 of 94 dietary xenobiotics tested, extracts prepared from incubation of the compound with at least one community inhibited the growth of

at least one indicator species (<40% growth). Extracts of compounds alone (columns labeled with ‘‘-’’) and communities alone (DMSO row) did not inhibit growth

of these indicator species, apart from examples of inhibition ofB. thetaiotaomicron and E. limosum. (D) Toxification of the 11 compounds in (C) by 29 human fecal

microbial communities. Bar graphs along the right indicate the IC50 of these dietary xenobiotics and their metabolites, colored according to the scheme in (C).

(E) Relationship between normalized growth of an indicator species and the detection of toxic aglycones. Each point represents an individual extract prepared

from a different MV community. The mean growth of technical duplicates is plotted on the y axis.

(legend continued on next page)
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Together, these results illustrate the intuitive principle that

compounds inhibiting the growth of bacteria lead to community

remodeling based on their spectrum of toxicity, as exemplified

by the ten pan-disruptive compounds. In many cases, however,

the impact of a dietary xenobiotic on a given community is not so

readily predicted, revealing emergent interactions.

Dietary xenobiotics are variably toxified or detoxified by
human communities
We hypothesized that variable microbial metabolism of dietary

xenobiotics could produce emergent properties such as cross-

sensitization and cross-protection by altering compound toxicity

(Figure 4A). To create a detailed map of how the toxicity of die-

tary xenobiotics is modified by community metabolism, we

selected 94 of the dietary xenobiotics from the 161-compound

library (Table S1; the excluded compounds were pan-disruptive,

less common in foods, or cost prohibitive), incubated each of

these compounds with the four microbial communities (MV20,

MV27, MV29, and the 38-member defined community) used

above, generated small-molecule extracts from each incubation,

andmeasured the capacity of these extracts to inhibit the growth

of seven representative gut commensals (Figure 4B). Extracts

prepared from each of these four communities in the absence

of added dietary xenobiotics were non-toxic to the seven indica-

tor species (Figure 4C).

For 11/94 compounds (‘‘toxified compounds’’), growth of at

least one indicator species was inhibited by an extract prepared

after incubation with at least one community, indicating the po-

tential production of a toxic metabolite (Figures 4C and S3A; in

each case, the parent compound was non-toxic). Several com-

pounds in this set (e.g., quercitrin, polydatin, piceatannol, and

nobiletin) also displayed community-specific remodeling activity

in a manner that was not predicted by their impact on growth of

single species in pure culture, suggestive of community-specific

emergent interactions (Figure 3B). When these 11 compounds

were each incubated with the 29 human microbiome commu-

nities from the MV collection (Figure 1A), extracts from these in-

cubations produced community- and compound-specific ca-

pacity to inhibit growth of indicator species (Figure 4D).

Five of these toxified compounds (hesperidin, narirutin, quer-

citrin, stevioside, and polydatin) are glycosides whose aglycone

forms demonstrate toxicity but whose downstream metabolites

are non-toxic (Figures 4A and S3B). These glycosides were de-

glycosylated to toxic aglycones by almost all 29 human commu-

nities but then variably metabolized to non-toxic downstream

metabolites by some communities and not others (Figure S3C).

The correlation between aglycone abundance in extracts pre-

pared from compounds incubated with the 29 communities

and growth inhibition of the indicator species suggests these

aglycones are responsible for the observed toxicity (Figure 4E).

Toxification of the glycoside polydatin by community MV20 pro-

vides an example: we incubated polydatin with MV20, used ac-

tivity-guided purification to isolate the toxic factor produced in
(F) Examples of compounds where incubation with 29 human communities nev

through microbial metabolism, as shown in Figure S3B. For normalized growth in

independent growth measurements (total of n = 4) is shown; ‘‘D’’ indicates defin

See also Figure S3.
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these incubations, and identified this factor as the polydatin

aglycone resveratrol using LC-MS (Figure S3D). It is possible

that some compounds additionally induce a community to pro-

duce unrelated metabolites that either increase or decrease

the growth of indicator species. For example, this could explain

the observation that extracts prepared from incubations of

different communities with stevioside have varying impacts on

B. ovatus growth, despite similar levels of steviol in these ex-

tracts (Figure 4E).

For some glycosylated parent compounds whose aglycone

form is toxic, extracts prepared from incubation of the parent

compounds with MV20, MV27, MV29, or the 38-member defined

community did not inhibit growth of the indicator species despite

disappearance of the parent compounds. Incubating three of

these glycosides (phlorizin, luteoloside, and myricitrin) with the

complete set of 29 human communities did not reveal toxification

in any instance, and LC-MS revealed that predicted toxic agly-

cones were uniformly metabolized into non-toxic downstream

metabolites (Figures 4F, S3C, and S3E). Consistently, direct addi-

tion of these compounds to the tested communities did not result

in community remodeling, despite the toxicity of their aglycone

forms (Figure 3B). In contrast to these universally detoxified com-

pounds, methoxylated compounds (e.g., hesperetin, diosmetin,

and tangeretin) are transformed to downstream metabolites by

a smaller subset of communities and thus exhibit a greater vari-

ability in their toxic effects (Figure 4D). Therefore, for these glyco-

sides, the extent of metabolism of the toxic aglycone determines

whether a toxic or non-toxic metabolite accumulates.

For the remaining six toxified compounds that are not glyco-

sides (diosmetin, piceatannol, cardamonin, nobiletin, tangeretin,

and epigallocatechin gallate [EGCG]) (Figure 4C), the identity of

the metabolite(s) responsible for toxicity is not clear. In some

cases, reported metabolites of these dietary xenobiotics were

produced to variable levels by the different human communities

but did not correlate with growth inhibition of the indicator spe-

cies, suggesting that they are not responsible for toxicity (Fig-

ure S3F). It is possible that toxicity in these extracts results

from other transformation products of the dietary xenobiotic or

from unrelated metabolites induced in the community. Since

we observed weak growth inhibition by some compounds at

very high concentrations (i.e., nobiletin and piceatannol; Fig-

ure 4D), it is also possible that toxicity of the dietary xenobiotic

itself is enhanced by other components of the extracts.

Together, these results provide guiding principles that explain

how many dietary xenobiotics are variably metabolized by gut

microbial communities and are toxified or detoxified as a result,

although additional processes likely also contribute to these

interactions.

Dietary xenobiotic metabolism predicts community
remodeling in vitro

By combining insights into dietary xenobiotic toxicity, remodel-

ing capacity, and metabolism, we envisioned mechanisms by
er results in toxification, since toxic aglycone forms are invariably detoxified

(C), (D), and (F), mean of two independent extract preparations followed by two

ed community and ‘‘-’’ indicates sterile media.
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which dietary xenobiotics interact with the gut microbiome to

explain emergent properties (cross-sensitization/cross-protec-

tion) and variability in the effects of a compound on different

communities. We hypothesized that microbial metabolism of

non-toxic dietary xenobiotics could produce toxic metabolites

that deplete susceptible species, thus resulting in cross-sensiti-

zation. Additionally, microbial metabolism could detoxify other-

wise toxic dietary xenobiotics or their aglycones, resulting in

cross-protection of susceptible species.

We selected three dietary xenobiotics (polydatin, hesperidin,

and stevioside) to test these hypothesizedmechanisms (Figure 5).

We chose these compounds because (1) they were variably

metabolized by human communities both in vitro and in gnotobi-

otic mice colonized with human communities (Figures 1A and

S4A); (2) they were toxified by community metabolism through

production of the cognate aglycone (Figures 4D and 4E); (3) they

are commonly consumed (polydatin in grapes or as a supple-

mental tablet, hesperidin in citrus fruits, and stevioside as a

non-caloric sweetener; Table S1) and are implicated in human

health50–52; and (4) the doses that are commonly consumed pro-

duce colonic concentrations relevant for community remodeling

(200 mM). For example, the minimum inhibitory concentration

(MIC) of the aglycone forms of polydatin, hesperidin, and stevio-

side against susceptible taxa are �125–250 mM (Figure S4B),

which are exceeded in the colonic contents of mice gavaged

with relevant doses (Figure S4A).

To mechanistically test these hypothesized mechanisms

for community remodeling, we identified species capable of

metabolizing polydatin, hesperidin, or stevioside (Figure S4C),

constructed 8–10 membered defined communities variably con-

taining these species, and measured community remodeling

upon introduction of each parent glycoside, aglycone, and down-

streammetabolite. We first examined polydatin, a 3-glucosylated

stilbene (IC50 > 1,000 mM) that is deglycosylated to form the agly-

cone resveratrol (IC50R 125 mM); subsequent reduction produces

dihydroresveratrol (IC50 > 1,000 mM) (Figure 5A). While many spe-

cies are capable of deglycosylating polydatin to resveratrol (Fig-

ure S1C), only two species in our collection (Eggerthella lenta

DSM 2243 and Adlercreutzia equolifaciens DSM 19450; both

phylum Actinobacteria, class Coriobacteriia) reduce resveratrol

to dihydroresveratrol (Figure S4C), consistent with previous re-

ports.53 In a 9-membered community lacking E. lenta or

A. equolifaciens, addition of polydatin resulted in cross-sensitiza-

tion: resveratrol accumulated (FigureS4D),while the relativeabun-

dance of Bacteroides thetaiotaomicron was significantly reduced

(Figure 5B), consistentwith its sensitivity to resveratrol but not pol-

ydatin (FigureS4B).Directadditionof resveratrol to thiscommunity

modulatedcommunitycomposition inasimilarmanner (Figure5B).

Adding E. lenta to the community resulted in cross-protection:

when polydatin was administered, dihydroresveratrol accumu-

lated instead of resveratrol, andB. thetaiotaomicron remained sta-

ble in the community (Figures 5B and S4D).

As a second example, we examined hesperidin, a 7-O-

rutinoside with an IC50 > 1,000 mM. Hesperidin is deglycosylated

to form the aglycone hesperetin, a 40-methoxylated flavanone

with IC50R125mM(Figure 5C).Hesperitin is subsequentlymetab-

olized to phenolic acids (e.g., 3-(4-methoxy-3-hydroxyphenyl)

propionic acid (MHPPA); IC50 > 1,000 mM); we also identified spe-
cies capable of demethylating hesperetin to eriodictyol (Fig-

ure S4C). Of the 30 species tested, only Ruminococcus gnavus

ATCC 29149 metabolized hesperidin to hesperetin (Figure S1C);

consistentwithprevious reports,54,55E. ramulusDSM16296 trans-

formed hesperidin or hesperetin to MHPPA (Figure S4C). In a

9-membered community lacking R. gnavus or E. ramulus, the

glycoside hesperidin was not metabolized (Figure S4E) and had

minor effects on community composition, while the aglycone hes-

peretin caused depletion of B. thetaiotaomicron and B. ovatus

(both relativeandabsolute abundance, Figures5DandS4F). Addi-

tion ofR. gnavusorE. ramulus to this community resulted in cross-

sensitization to hesperidin or cross-protection from hesperetin,

respectively, consistent with metabolite accumulation through

this pathway in each community (Figures 5D, S4E, and S4F). The

relative abundance of E. ramulus also expanded in the presence

of these compounds, consistent with its utilization of hesperidin/

hesperetin and with its expansion in human subjects consuming

a flavonoid-rich diet.56

As a third example, we examined stevioside (IC50 >

1,000 mM), composed of three glucose moieties decorating

a steviol aglycone core (IC50R 250 mM) (Figure 5E). We identified

species capable of cleaving each glycosidic linkage in stevioside,

ultimately producing steviol, which is not further degraded

(Figures 5E and S4C). Blautia producta DSM 3507 was

capable of fully metabolizing stevioside to steviol, and its

inclusion in a defined community resulted in cross-sensitization

of B. thetaiotaomicron to stevioside (Figures 5F and S4G). Direct

addition of the aglycone steviol similarly depleted the relative

abundance of B. thetaiotaomicron, which was independent of

B. producta as expected (Figure 5F).

It was notable that each aglycone, whether added directly or

accumulated due to metabolic transformations, primarily

depleted B. thetaiotaomicron from these 9-member commu-

nities despite the presence of other susceptible species. To

test whether this was community dependent, we assembled

eight other defined communities with different Bacteroides

spp. and measured community disruption by hesperetin and

resveratrol (Figure S4H). In most cases, Bacteroides spp.

were preferentially depleted over other susceptible genera, but

the species most significantly depleted did not correlate with

growth rate or with IC50 in monoculture (Figure S4H). This finding

suggests that as observed for other community perturba-

tions,57,58 context-dependent interactions such as metabolic

cross-feeding and exploitative or interference competition59,60

likely play a role in shaping community response to disruption.

Building on these results from 9 to 12 membered synthetic

bacterial communities, we next tested whether cross-sensitiza-

tion and cross-protection through dietary xenobiotic metabolism

could also predict remodeling of complex, unfractionated human

gut microbial communities. Our previous data measuring

the impact of hesperidin on three communities (MV20, MV27,

and MV29) supported the possibility that metabolism of hes-

peridin to hesperetin predicts remodeling, as assessed by b-di-

versityvs. DMSO (Figure S5A; Table S3). These communities ex-

hibited similar metabolism of stevioside and polydatin,

precluding efforts to relate metabolism of these compounds

with remodeling. Thus, we extended our survey of human com-

munities, focusing on polydatin. To this end, we treated the
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Figure 5. Microbial metabolism links community remodeling with dietary xenobiotic toxicity

(A–F) (A and B) Polydatin, (C and D) hesperidin, and (E and F) stevioside remodel 8–10 membered defined communities in vitro. (A, C, and E) Metabolic pathways

and metabolizing species. (B, D, and F) Fold change relative abundance vs. DMSO of each species (columns) after introduction of these xenobiotics or their

metabolites (rows). Full species names are provided in Table S2. Mean of four replicate incubations is shown, and statistically significant differences compared

with the DMSO control are indicated (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; two-way ANOVA with Tukey’s post hoc analysis).

(G) Correlation between b-diversityvs. DMSO and resveratrol exposure over 48 h for 25 complex human fecal communities incubated in vitro with 200 mM re-

sveratrol. r2 value indicates Pearson correlation.

(H) Addition of E. lentamodulates community remodeling in response to polydatin or resveratrol. (G) Mean and standard deviation of three replicate incubations

were measured for ion abundance (resveratrol exposure). (G and H) Mean and standard deviation of b-diversity between two compounds with three replicates

each (DMSO vs. DMSO: n = 3; polydatin/resveratrol vs. DMSO or polydatin vs. resveratrol: n = 3 3 3 = 9) are shown.

See also Figures S4 and S5.
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human gut communities from the MV collection (Figure 1A) with

polydatin, resveratrol, or DMSO in vitro and measured com-

pound metabolism and community composition (Figures S5B

and S5C). In communities incubated with polydatin, exposure

to resveratrol was significantly correlated to b-diversityvs. DMSO

(Figure 5G). Polydatin-induced compositional changes were

similar to those resulting from direct resveratrol addition, as indi-

cated by low b-diversity and significantly correlated changes in

bacterial taxa relative abundance between these treatments

(Figures 5G, S5E, and S5F). Further, addition of the cross-pro-

tective strain E. lenta to communities characterized by slow re-

sveratrol detoxification or to a non-metabolizing 38-membered

defined community reduced resveratrol exposure (Figure S5D)

and community disruption by both polydatin and resveratrol (Fig-

ure 5H). The 38-member defined community demonstrated pre-

dictable emergent interactions: for example, B. ovatus was

cross-sensitized to polydatin in the absence of E. lenta and

cross-protected from resveratrol in the presence of E. lenta (Fig-

ure S5G). We also observed cross-protective interactions in the

absence of E. lenta, suggesting additional mechanisms outside

of detoxification that remain to be elucidated. Together, these re-

sults provide in vitro evidence that cross-sensitization and cross-

protection are one major mechanism by which dietary xenobi-

otics remodel microbial communities.

Identification of a resveratrol reductase in
Coriobacteriia
We sought to understand the genes and enzymes involved in di-

etary xenobiotic toxification and/or detoxification. Like many

metabolic transformations of dietary xenobiotics by the gut mi-

crobiome, the specific enzymes responsible for resveratrol

metabolism are unknown. We found that cell-free lysates pro-

duced from E. lenta grown in the presence of resveratrol, but

not in its absence, could reduce resveratrol (Figure 6A), suggest-

ing that the responsible gene may be transcriptionally regulated.

Therefore, we performed RNA sequencing (RNA-seq) of E. lenta

to identify genes upregulated by resveratrol. Only 26 genes were

significantly upregulated, including 2 operons (Figure 6B;

Table S6). Two genes were upregulated over 100-fold and had

annotated functions likely to be involved in electron transfer:

Elen_288, annotated as a fumarate reductase, and Elen_1284,

annotated as a flavodoxin family protein.

We usedCRISPR61 to delete either Elen_288 or the three-gene

operon including Elen_1284 (Figures S6A and S6B) from E. lenta.

Deleting Elen_288, but not Elen_1283-5, abolished resveratrol

reduction in E. lenta (Figure 6C). Heterologous expression of

Elen_288 in a non-metabolizing Coriobacteriia, Gordonibacter

urolithinfaciens, conferred resveratrol reductase activity. Thus,

Elen_288 is necessary and sufficient for resveratrol reduction

(Figure 6C). It is possible that Elen_1284 is not involved in resver-

atrol reduction or that its function is redundant with other pro-

teins and thus dispensable.

Elen_288 is a predicted TAT-secreted flavinylated lipoprotein

with previously characterized homologs in Listeria monocyto-

genes and Enterococcus rivorum (Figure S6C).62 This family of

proteins is involved in extracellular electron transport for the

reduction of terminal electron acceptors supporting anaerobic

respiration (Figure S6C). Previously characterized Elen_288 ho-
mologs reduce fumarate or urocanate, which are structurally

distinct from resveratrol on both sides of the targeted double

bond.62 BLASTP analysis of RefSeq identified Elen_288 homo-

logs in Coriobacteriia but not other bacterial classes. Consistent

with our phenotypic evidence (Figure 6C), the metabolizing spe-

cies A. equolifaciens DSM 19450 encodes a close homolog

(Aequ_2118, with 76.3% amino acid identity), while non-metab-

olizing species Gordonibacter pamelaeae, G. urolithinfaciens,

and Slackia isoflavoniconvertens encode only distant homologs

(<42% amino acid identity). Using this data to support 70% as

an amino acid identity cutoff that predicts resveratrol reductase

activity, we mapped the presence of Elen_288 homologs in 96

Coriobacteriial genomes (Figure 6D). We found that the gene is

largely restricted to Eggerthella, Adlercreutzia, andRaoultibacter

spp. and is highly conserved in E. lenta strains.

Having identified the species and genes responsible for re-

sveratrol reduction, we asked whether its abundance in microbi-

al communities could predict the metabolism of resveratrol. Us-

ing primers targeting conserved regions of resveratrol reductase

homologs in Eggerthella, Adlercreutzia, or Raoultibacter, we

measured gene abundance in our MV human community collec-

tion after in vitro culturing. E. lenta species abundance was

strongly correlated with resveratrol reductase gene abundance,

consistent with its high conservation in this species (Figure 6E).

Furthermore, Eggerthella resveratrol reductase gene abundance

was significantly correlated with the rate of resveratrol reduction

by the communities (Figure 6F). Adlercreutzia and Raoultibacter

resveratrol reductase gene abundance was below the limit of

detection, consistent with low abundance of these species un-

der these in vitro conditions.

We next tested whether Elen_288 determines the ability of

E. lenta to protect a community from disruption by polydatin

or resveratrol. Indeed, while wild-type E. lenta can protect

a 9-member community from disruption by polydatin or resvera-

trol (Figure 5B), the isogenic E. lentaDElen_288 strain fails to pro-

tect B. thetaiotaomicron from depletion despite maintaining

equivalent relative abundance as the wild-type E. lenta strain

(Figures S6D andS6E). These results demonstrate that by under-

standingmechanisms of dietary xenobiotic community remodel-

ing, the response of a community to a given compound can

potentially be predicted and altered based on a single gene.

Dietary xenobiotic metabolism predicts community
remodeling in vivo

Finally, we tested whether our model of dietary xenobiotic com-

munity remodeling extends to the mammalian gut environment.

Focusing on polydatin, we first colonized germfree mice

with the 9-membered multi-phylum community with or without

E. lenta, as previously characterized in vitro (Figure 5B). We

monitored microbiome composition in fecal samples during a

control window (PBS gavage) and treatment window (polydatin

gavage) (Figures 7A and S7A). During the treatment window,

fecal resveratrol levels approximated 200 mM, consistent with

predicted colonic concentrations in humans (Table S1; Fig-

ure 7B). Consistent with resveratrol reduction by E. lenta in the

gut, inclusion of E. lenta in the community significantly altered

exposure to polydatin and its metabolites both locally and sys-

temically: fecal resveratrol levels were significantly reduced,
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Figure 6. Identification of a resveratrol reductase in Coriobacteriia

(A) Cell-free lysates generated from E. lenta grown in the presence or absence of 100 mM resveratrol were tested for their ability to reduce resveratrol to dihy-

droresveratrol. Incubations of cell-free lysates in aerobic or anaerobic conditions are indicated. Mean and standard deviation of duplicates are shown.

(B) A volcano plot shows differential transcript abundance, determined by RNA-seq, for E. lenta grown in the presence of 100 mM resveratrol or vehicle (di-

methylformamide [DMF]).

(C) The ability of various species or strains to metabolize resveratrol to dihydroresveratrol was measured by in vitro incubation and LC-MS. Ion intensity is

normalized to the sterile medium control. G. urolithinfaciens includes an empty vector control (pXD68) or a vector carrying Elen_288-289 (pXD68-288-289);

Elen_289 is a putative transcriptional regulator that activates the expression of Elen_288 in response to resveratrol.

(D) Phylogenetic tree of 96 Coriobacteriial strains with the presence of Elen_288 homologs indicated by black dots.

(E) Correlation between the abundance of Elen_288 and the abundance of E. lenta in 29 MV communities grown in vitro, as determined by qPCR using gene- and

species-specific primers.

(F) Correlation between the abundance of resveratrol reductase homologs associatedwith different genera (Eggerthella,Adlercreutzia, andRaoultibacter) and the

rate of resveratrol metabolism (as in Figure 5G) by 29 MV communities incubated in vitro. For (E) and (F), Pearson correlation is shown. For (C), (E), and (F), mean

and standard deviation of three replicate incubations are shown.

See also Figure S6 and Table S6.
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Figure 7. Metabolism of resveratrol by gut microbes dictates community remodeling by polydatin in vivo

(A–C) A defined community is remodeled by polydatin in gnotobiotic mice. (A) Experimental design using defined communities as in Figure 5B. (B) The con-

centration of resveratrol and dihydroresveratrol in feces collected at 0, 6, or 9 h time points daily during polydatin treatment. Points represent 5 days of treatment

with 5 mice (base community: n = 25) or 3 mice (base community + E. lenta: n = 15). (C) Relative abundance of E. coli in feces during PBS or polydatin treatment.

Significance is tested compared with day 1 at 0 h for the base community (n = 5 mice) or base community + E. lenta (n = 3 mice).

(D) Relationship between Adlercreutzia resveratrol reductase gene abundance and resveratrol metabolism in ex-germfree mice colonized with fecal microbial

communities from 7 human donors. Each point represents an individual mouse with gene abundance measured across 4 days. Pearson correlation is shown.

(E–G) Impact of polydatin on themicrobiomes of ex-germfreemice colonized with eitherMV18 orMV20. (E and F) b-diversityvs. 0 h is calculated between the 0 and

6 h time points, or 0 and 9 h time points on the same day. In (E), significant differences betweenMV18 b-diversityvs. 0 h andMV20 b-diversityvs. 0 h at each time point

are indicated (n = 5mice/group). In (F), significant differences between PBS and polydatin treatment periods are indicated. Points represent 5 mice across 2 days

of PBS treatment (n = 10; green) or 5 mice across 3 days of polydatin treatment (n = 15; pink). (G) Change in relative abundance ofB. uniformis or A. insulae during

PBS or polydatin treatment. Significant changes in relative abundancewere determined by comparison to day 1 at 0 h (n = 5mice/group). For all panels, mean and

standard deviation are shown. Significance is tested using one-way (B and C) or two-way ANOVA (E–G) with Tukey’s (B), Bonferroni’s (E and F), or Dunnett’s (C

and G) post hoc analysis. *p < 0.05, **p < 0.01, ***p < 0.002, ****p < 0.0001.

See also Figure S7 and Table S7.
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while fecal dihydroresveratrol was significantly elevated (Fig-

ure 7B). Further, inclusion of E. lenta in the community signifi-

cantly reduced serum levels of resveratrol and its host-mediated

(glucuronidated and sulfated) metabolites and significantly

elevated serum levels of host-mediated dihydroresveratrol me-

tabolites (Figure S7B). While composition of communities with

and without E. lenta was stable during the control window, the

community lacking E. lenta exhibited daily disruption during

the polydatin treatment window. During disruption, E. coli (which

is resistant to growth inhibition by resveratrol, Figure S4B)
expanded 3- to 4-fold in relative and absolute abundance

(measured by colony-forming unit [CFU]) daily upon polydatin

treatment and returned to baseline levels by the next morning

when resveratrol had passed through the gut (Figures 7C and

S7A). Consistent with the capacity of E. lenta to detoxify resver-

atrol to dihydroresveratrol, addition of E. lenta protected the

community (including E. coli) from disruption by polydatin (Fig-

ure 7C and S7C).

We noted that while polydatin disrupts the composition of this

9-membered community in an E. lenta-dependent manner both
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in vitro and in vivo, the specific species affected differ: in the

absence of E. lenta, Bacteroides spp. are depleted in vitro, while

E. coli expands in vivo. Cell density likely contributes to these dif-

ferences: incubating fecal material from mice carrying the

9-membered community (lacking E. lenta) with resveratrol

ex vivo with minimal dilution recapitulated the pattern of E. coli

expansion observed in vivo, while further dilution of the same

fecal samples resulted in depletion of B. thetaiotaomicron

and other susceptible species upon resveratrol treatment

(Figure S7D).

Next, we investigated resveratrol metabolism in complex, un-

fractionated gut microbial communities in vivo. To this end, we

colonized groups of germfree mice with fecal microbiomes

from 7 unrelated human donors, administered polydatin, and

quantified the levels of polydatin and its metabolites in fecal

samples. We observed fecal resveratrol concentrations that

spanned over 160-fold (9–1,500 mM) across mice colonized

with different human communities (Figure 7D), highlighting the

wide, microbiome-dependent variability in dietary xenobiotic

metabolite concentrations in response to consumption of the

same amount of the parent compound. In this in vivo setting,

the abundance of Eggerthella and Raoultibacter resveratrol

reductase homologs does not correlate with resveratrol levels af-

ter polydatin treatment (Figures S7E and S7F), while the abun-

dance of the Adlercreutzia resveratrol reductase homolog

Aequ_2118 in these communities robustly predicts the extent

of polydatin metabolism to resveratrol in these animals (Fig-

ure 7D). The poor growth of Adlercreutzia in the in vitro condi-

tions tested, combined with possible differences in gene regula-

tion, may contribute to this discrepancy. These observations

suggest that molecular markers such as gene abundance can

be an important tool for predicting phenotype from human

samples.

We tested whether polydatin leads to community remodeling

in complex human communities in vivo. Using a similar experi-

mental scheme as for the defined community (Figure 7A), we

colonizedmice with two different human communities displaying

different levels of resveratrol reduction in vivo: MV20, character-

ized by high levels of Aequ_2118 and little accumulation of re-

sveratrol after polydatin administration in mice, and MV18, char-

acterized by low levels of Aequ_2118 and high levels of fecal

resveratrol after polydatin administration (Figure 7D). Assess-

ment of community disruption, as measured by b-diversity be-

tween the initial condition (0 h) and treated time points (6 and 9

h) each day during the control (PBS) and treatment (polydatin)

phase (b-diversityvs. 0 h), revealed distinct community responses

as predicted by Aequ_2118 gene levels and polydatin meta-

bolism. Specifically, the MV18 community (low Aequ_2118,

high resveratrol) was disrupted during the polydatin treatment

period compared with MV20 (Figure 7E) and compared

with the PBS control period (Figure 7F), while the MV20 commu-

nity (high Aequ_2118, low resveratrol) was not significantly dis-

rupted during polydatin treatment compared with PBS treatment

(Figure 7F). By examining taxa abundance at the genus and spe-

cies level, we identified Bacteroides spp. (e.g., B. uniformis) that

were depleted and Aestuariispira (Alphaproteobacteria) spp.

(e.g., A. insulae) that expanded during polydatin treatment in

MV18 colonized mice (Figures 7G and S7G). These observations
6340 Cell 187, 6327–6345, October 31, 2024
are consistent with the predicted susceptibility of these

taxa to growth inhibition by resveratrol. Furthermore, while

B. uniformis was also present in mice colonized with the MV20

community, it did not change in abundance in this community

during polydatin treatment (Figure 7G). Indeed, there were no

species in MV20-colonized mice with significantly different

abundance during polydatin vs. control treatment (Figure S7G).

Together, these in vitro and in vivo studies demonstrate how

interindividual variability in a specific family of resveratrol reduc-

tases can explain the response of a defined or complex commu-

nity to the dietary xenobiotic polydatin.

DISCUSSION

While significant progress has been made in understanding the

mechanisms bywhichmedical drugs and dietary macronutrients

interact with the gut microbiome, little is known about micro-

biome interactions with the vast diversity of small-molecule

micronutrients present in food. Here, we take a systematic

approach to map how these dietary xenobiotics affect the

growth of gut commensals, are metabolized, and remodel com-

munity composition. Using these maps, we hypothesize and

experimentally validate mechanisms by which community re-

modeling occurs: xenobiotics with antibiotic activity can result

in depletion of susceptible taxa, while metabolic transformation

of these compounds can result in detoxification and community

protection. Conversely, we identify non-toxic parent compounds

that are transformed into toxic forms by gut microbes, resulting

in community remodeling.

Our results build on previous studies focused on the interac-

tion between whole foods and the gut microbiome by taking a

reductionist approach with purified compounds instead of com-

plex mixtures and measuring interindividual variation in human

microbiome communities instead of population aggregates.

Notably, we observe transient changes in microbiome composi-

tion in vivo that necessitates frequent sampling after xenobiotic

consumption. Similar temporary remodeling in community

composition on the daily timescale has been observed in hu-

mans after fiber intake.63 These observations will inform future

studies dissecting the interaction of dietary xenobiotics on the

gut microbiome.

Human studies show that stevioside,52 resveratrol,64 and

hesperidin50 can all alter microbiome composition, and there

is interest in the role of these compounds in health. In the

case of stevioside, interindividual variability in community re-

modeling is suggested to impact host glucose tolerance, as

demonstrated by gut microbiome transplant studies.52 Re-

sveratrol has also been extensively studied for multiple poten-

tial health benefits, including anti-inflammatory, anti-oxidant,

and anti-atherosclerosis properties. This compound exhibits

poor bioavailability, and some studies have linked its benefits

to gut microbiome remodeling.51,65 In addition to identifying

differences in community remodeling in response to polydatin

that are dependent on the microbiome, we also demonstrate

that microbial metabolism significantly alters serum levels of

polydatin, resveratrol, dihydroresveratrol, and their respective

metabolites. Resveratrol and dihydroresveratrol have differ-

ences in their bioactivities,66,67 and gut community-specific
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differences in serum levels of these compounds may thus

impact these bioactivities. Interestingly, serum resveratrol

levels were higher in mice containing E. lenta, while host me-

tabolites of resveratrol were significantly lower in these mice.

These differences may reflect differences in host metabolism

of resveratrol that are dependent on the presence of dihydror-

esveratrol and/or E. lenta. Notably, most studies on the

impact of resveratrol have been performed utilizing in vitro as-

says or conventional mice, while human trials fail to consis-

tently demonstrate benefits from resveratrol.65 These studies

usually do not consider the role of the gut microbiome in

metabolizing resveratrol to dihydroresveratrol nor the conse-

quences of interindividual variability in this trait. It is possible

that stratifying populations by their ability to metabolize die-

tary xenobiotics, for example, through the abundance of

genes such as resveratrol reductase, will illuminate trends

that are otherwise masked.

Personalized nutrition is increasingly appreciated to be an

important component of human health. Toward developing

these nutrition strategies, large-scale clinical trials have

begun to dissect how interindividual variation in the gut mi-

crobiome correlates with the impact of diet on health.21

Mechanistic studies that complement these correlations are

required to fully realize the potential of using personalized

nutrition for therapeutic intervention. The maps we have

generated and mechanisms that they illuminate are one

step toward this goal.

Limitations of the study
Our results illustrate that community composition remodeling

can occur through the toxification and detoxification of dietary

xenobiotics by microbial metabolism. However, we also note

several instances where we cannot explain interindividual vari-

ation in community remodeling or the specific species that

change in abundance in response to a given dietary xenobi-

otic. Several mechanisms are likely involved, including spe-

cies that derive a growth benefit from using a dietary xenobi-

otic or its metabolites as a nutrient,56,68 or bioaccumulation

of xenobiotics in the absence of chemical transformation.69

As observed for other perturbations to microbial communities,

the response to perturbation likely depends on interspecies

interactions such as resource competition and cross-

feeding.57,70 Multi-omics approaches71 along with ecological

models that integrate mechanisms for cross-protection and

cross-sensitization could allow for more accurate prediction

of compositional changes. Additionally, it should be noted

that the xenobiotic concentrations used in this study are

based on indirect estimates derived from calculations based

on human ileostomy and fecal recovery data, as well as phys-

iology-based pharmacokinetic modeling. Finally, while the use

of pure compounds allows us to take a reductionist approach,

future studies can build on these results to capture the contri-

butions of the food matrix or interactions between multiple

food components in shaping microbiome-diet interactions,

as well as how diet-dependent changes in microbiome

composition (and microbiome-dependent changes in gut

and serum xenobiotic profiles) impact diverse aspects of

host biology.
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64. Queipo-Ortuño, M.I., Boto-Ordóñez, M., Murri, M., Gomez-Zumaquero,

J.M., Clemente-Postigo, M., Estruch, R., Cardona Diaz, F., Andrés-La-

cueva, C., and Tinahones, F.J. (2012). Influence of red wine polyphenols

and ethanol on the gut microbiota ecology and biochemical biomarkers.

Am. J. Clin. Nutr. 95, 1323–1334. https://doi.org/10.3945/ajcn.111.

027847.

65. Inchingolo, A.D., Malcangi, G., Inchingolo, A.M., Piras, F., Settanni, V.,

Garofoli, G., Palmieri, G., Ceci, S., Patano, A., De Leonardis, N., et al.

(2022). Benefits and implications of resveratrol supplementation onmicro-

biota modulations: A systematic review of the literature. Int. J. Mol. Sci. 23,

4027. https://doi.org/10.3390/ijms23074027.

66. Li, F., Han, Y., Wu, X., Cao, X., Gao, Z., Sun, Y., Wang, M., and Xiao, H.

(2022). Gut Microbiota-Derived Resveratrol Metabolites, Dihydroresvera-

trol and Lunularin, Significantly Contribute to the Biological Activities of

Resveratrol. Front. Nutr. 9, 912591. https://doi.org/10.3389/FNUT.2022.

912591.
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Strains used in this study See Table S2 N/A

Escherichia coli DbamB DtolC Wright lab, McMaster University Reference King et al.49

Bacteroides thetaiotaomicron Dtdk

att1::pNBU2-BC1

Goodman lab, Yale University Reference Tawk et al.73

Escherichia coli JW0333 Keio collection Reference Baba et al. 74

Chemicals, peptides, and recombinant proteins

Dietary xenobiotics See Table S1 N/A

GAM Broth Modified HyServe Cat# 5433

Bryant and Burkey Medium VWR Cat# 95021-064
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Breathe-Easy sealing membrane Sigma Cat# Z380059-1PAK

KAPA Sybr Fast Universal KAPA Biosystems Cat# KK4602

Zirconia-Silica Bead, 0.1mm BioSpec Cat# 11079101z

Phenol – chloroform – isoamyl alcohol

mixture

Sigma Cat# 77617-500ML

E-Z 96 Cycle Pure Kit Omega Cat# D1043

TRIzol reagent Thermofisher Cat# 15596018

SequalPrep Normalization Plate Kit, 96-well Invitrogen Cat# A1051001
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RNAprotect Bacteria Reagent Qiagen Cat# 76506

RNeasy Mini Kit Qiagen Cat# 74106

DNA-free DNA Removal Kit Thermofisher Cat# AM1906

NEBNext rRNA Depletion Kit NEB Cat# E7850S

Ultra II Directional Library Prep Kit for

Illumina

NEB Cat# E7760S

T4 polynucleotide kinase NEB Cat# M0201S

Cumate (4-Isopropylbenzoic acid) Sigma Cat# 268402

LabDiet JL Rat and Mouse/Auto 6F Purina Cat# 5K67

Kinetex 1.7 mm EVO C18 100 Å, LC Column

100 x 2.1 mm, EA

Phenomenex Cat# 00D-4726-AN

HyperSep Retain PEP 30 mg/1 mL 96

Removable Well Plate

Thermofisher Cat# 60303-207

Critical commercial assays

Quant-IT PicoGreen dsDNA assay kit Invitrogen Cat# P7589

Deposited data

RNA-seq: Transcriptomic analysis of

Eggerthella lenta response to resveratrol

NCBI SRA: PRJNA992521

16S sequencing: Effect of dietary

xenobiotics on gut microbiome

composition - 161 dietary xenobiotics

NCBI SRA: PRJNA992071

16S sequencing: Effect of dietary

xenobiotics on gut microbiome

composition - polydatin and resveratrol

NCBI SRA: PRJNA992066
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16S sequencing: Effect of dietary

xenobiotics on gut microbiome

composition - in vivo

NCBI SRA: PRJNA992060

LC-MS Metabolism Data Metabolights: MTBLS9221

Experimental models: Organisms/strains

Mouse: C57BL/6NTac Germ-free Taconic Model# GF-B6

Oligonucleotides

See Table S7 for oligonucleotides This study N/A

Recombinant DNA

pXD68Kan2-AphA Addgene Cat# 191248

pXD71Cas10RFP-Pct5.1-crRNA(AarI)-RFP Addgene Cat# 192273

pXD70Tet(LacZ3) Balskus Laboratory, Harvard University Reference Dong et al.61

pXD68-288-289 This study N/A

pXD71Cas10-crRNA-288 This study N/A

pXD71Cas10-crRNA-1283-5 This study N/A

Software and algorithms

MassHunter Quantitative Analysis Software Agilent Version 7

ADMET Predictor Simulations Plus Version 10.4

GastroPlus Simulations Plus Version 9.8.2

QIIME Bolyen et al.75 Version 1.8

QIIME2 Bolyen et al.75 Version 2020.11

Bowtie2 Langmead and Salzberg et al.76 Version 2.4.2

Rsubread Liao et al.77 Version 2.14.2

DESeq2 Love et al.78 Version 1.40.1

Prism Graphpad Version 9

Spotfire Tibco Version 6.5.1
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal experiments
All mice experiments were performed using protocols approved by the Yale University Institutional Animal Care and Use Committee

(IACUC). Germ-free C57BL/6 mice (7-12 weeks old) were used in this study. A mix of both sexes were used for all studies. In exper-

iments examining dietary xenobiotic metabolism, animals were housed alone or with a partner in gnotobiotic isocages (Sentry Sealed

Positive Pressure (SPP) isolation cage system (Allentown, Inc., Allentown, NJ, USA)). No differences between individually versus co-

housed mice were observed. In experiments examining community disruption, mice carrying the same bacterial community were

individually housed in flexible plastic gnotobiotic isolators. Mice were kept in a 12 hr light/dark cycle and provided a standard, au-

toclaved mouse chow (5K67 LabDiet, Purina) ad libitum, and autoclaved water for the duration of the experiment. The levels of

the studied dietary xenobiotics were below the level of detection in the mouse chow, as quantified by LC-MS.

Bacterial culture conditions
A flexible anaerobic chamber (Coy Laboratory Products) containing 20%CO2, 10%H2 and 70%N2 and incubation at 37�Cwas used

for all anaerobic microbiology steps. All anaerobic steps were performed using pre-reduced media and materials. Bacterial strains

and culture conditions are listed in Table S2. Routine culturing inmonoculture was performed in liquidmegamedium,79 or Brain Heart

Infusion medium (BHI; Becton Dickinson) supplemented with 0.5 g/L cysteine, 10 g/L arginine, 1 mg/L vitamin K1 and 5 mg/L hemin

(BHI++), as indicated. Experiments involving microbial communities were performed in a mixture of Bryant and Burkey Medium (BB;

HiMedia) and Modified Gifu Anaerobic Medium (mGAM; HyServe) at a ratio of 7:3, herein referred to as BB:mGAM, as previously

described.36 For growth curve assays, additions to mGAM were made as indicated (Table S2), including mGAM+sugar (0.1% cello-

biose, 0.1% fructose, 0.1% maltose). E. coli Top10 was used for molecular cloning and grown aerobically at 37�C in LB medium

(200 rpm shaking) or LB agar supplemented with antibiotics as appropriate (50 mg/mL kanamycin, 100 mg/mL ampicillin). E. lenta

and G. urolithinfaciens were routinely grown in BHI broth or agar containing 1% arginine and 10 mM sodium formate (BHIrf), supple-

mented with antibiotics as necessary (100 mg/mL kanamycin), unless otherwise indicated.
Cell 187, 6327–6345.e1–e7, October 31, 2024 e2



ll
Article
For community composition experiments where CFU were enumerated, strains with additional selective markers were utilized:

Bacteroides thetaiotaomicron Dtdk att1::pNBU2-BC1 (ermr)73 or E. coli JW0333 (DlacA783::kanr).74 B. thetaiotaomicron was plated

on BHI medium containing 10% horse blood (Quad Five, Cat# 210-1000), 200 mg/mL gentamicin and 25 mg/mL erythromycin. E. coli

was plated on LB agar containing 50 mg/mL kanamycin and grown aerobically. Two-fold serial dilutions were plated for CFU

determination.

Human fecal material
Human fecal material in theMV collection was obtained and prepared under the Yale University Human Investigation Committee pro-

tocol number 1106008725.35 Briefly, donors were 20-60 years old and generally healthy based on self-report data. Material was

stored in single use glycerol stock aliquots with anaerobic headspace at -80�C prior to use. The labeling of samples in a previous

report80 is the same here except samples MV26-30 in the previous study are labeled MV25-29 in the current study.

METHOD DETAILS

Chemicals
Dietary xenobiotics used in this study were purchased from MedChemExpress, Sigma, Cayman Chemicals or Santa Cruz Biosci-

ences, and dissolved in solvents (DMSO unless otherwise indicated) to concentrations indicated in Table S1. Compound libraries

for growth assays (Figure 1C), remodeling assays (Figure 2) and toxification assays (Figure 4) were arrayed in 96-well polypropylene

V-bottom microplates and stored at -20�C until use.

Community remodeling and metabolism assays
Incubations to measure the metabolism of dietary xenobiotics in vitro were performed anaerobically. For experiments involving MV

communities, glycerol stock aliquots were used to inoculate an overnight culture grown in BB:mGAM medium. For experiments

involving defined communities, saturated cultures of each species were normalized based on their OD600 and combined. These com-

munity starter cultures were then diluted 1:50 in fresh BB:mGAMmedia and 400-1000 mL was dispensed into 96-well 2mL deep well

plates. Each dietary xenobiotic was added to a final concentration of 10-20 mM (metabolism assays) or 200 mM (remodeling assays).

Incubations were allowed to continue anaerobically for 48 hr at 37�C. Unless otherwise indicated, biological triplicate incubations

were performed.

To prepare extracts for LC-MS analysis, the cultures were first mixed, then 20 mL was transferred to a 96-well polypropylene

V-bottom microplate, diluted with 20 mL of acetonitrile, and vortexed briefly. Plates were centrifuged at 4000 rpm for 10 min to pellet

cellular debris, then 10 mL was transferred to a new plate, diluted with 10 mL of water, and covered with a heat-sealing foil. In exper-

iments surveyingmany compounds at once, as in Figures 1A, 3D, and S1B–S1D, incubations were performed independently but then

pooled for LC-MS analysis. Pools were chosen so that each dietary xenobiotic and its predicted metabolites could be distinguished

using orthogonal mass and retention times. Every incubation was performed in biological duplicate or triplicate alongside sterile me-

dia controls.

For community composition analysis, deep-well plates containing 400-1000 mL were centrifuged at 4000 rpm for 10 min, spent

media was removed, and cell pellets were frozen at -20�C until genomic DNA extraction, as described below.

Xenobiotic metabolism by individual species
For metabolism experiments involving single species, 100 mL of a saturated culture was diluted with 100 mL of fresh media (mega

media or BHI++) and 200 mL of PBS+0.05% cysteine. This setup was used for every single species measurement except for Corio-

bacteriial metabolism of resveratrol, which was measured in undiluted BHI++. Dietary xenobiotics were added to a final concentra-

tion of 10-20 mM and incubations were allowed to continue anaerobically for 48 hr at 37�C. Extracts for LC-MS analysis were pre-

pared as described above.

In vitro growth assays
Starter cultures for growth assays were inoculated from frozen glycerol stocks into appropriate media (Table S2) and grown to satu-

ration (24-48 hr). These starter cultures were then sub-cultured (1 mL into 5mL fresh medium) and allowed to grow for a further 6-8 hr

to mid-log phase. Next, 2x concentrated inoculum was prepared according to the starter OD600 and media conditions specified in

Table S2, and 25 mL was dispensed into a 384-well plate (Thermo-scientific 12-565-342) containing 25 mL of sterile media and 1 mL of

compound (10 mM stock, 200 mM final, Figure 1C) or extract (Figure 4) for a final volume of 50 mL. Sterile media and DMSO controls

were included on every plate. Plates were covered with a Breathe-Easy sealing membrane and grown in Biotek Eon or Epoch2 plate

readers for 24 hr without shaking. Every 15 min, the plate was mixed for 1 min prior to OD600 measurement. To calculate normalized

growth, OD600measurements were baseline subtracted and area under the curve (AUC) was integrated from 0 hr until early stationary

phase, as determined by manual inspection. For the 161 compound screen (Figure 1C), AUC was normalized to the interquartile

mean for all compounds, since most did not affect growth. Otherwise, AUC was normalized to DMSO controls. Technical duplicate

or triplicate growth curves were performed and aberrant samples were removed by manual curation.
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LC-MS analysis
Extracts from in vitro or in vivo assays were analyzed (3-4 mL) in negativemode using an Agilent 1200 Infinity UHPLC system and 6550

Q-TOF LC–ESI/MS, with an C18 Kinetex Evo column (100 mm3 2.1 mm, 1.7-mm particle size, and according guard columns, Phe-

nomenex). The source parameters were: VCap, 3,500 V; nozzle voltage, 2,000 V; gas temperature, 225 �C; drying gas 13 l/min; nebu-

lizer, 20 psi; sheath gas temperature 225 �C; sheath gas flow 12 l/min. A dual column set-up with alternating injection was used. LC

conditions for the main pump are as follows: 0–0.5 min 0% B, 0.5–7 min 0%–70% B, 7–7.3 min 70%–95% B, 7.3–7.5 min 95% B,

7.5-7.9 min 95%–0% B, 7.9–8.5 min 0% B; A = water + 0.1% formic acid; B = acetonitrile + 0.1% formic acid; 0.4 ml min�1,

45�C). LC conditions for the reconditioning pump are as follows: 0–1.5 min 0%–95% B, 1.5–5 min 95% B, 5–6.5 min 95%–0% B,

6.5-8.5 min 0% B; A = water + 0.1% formic acid; B = acetonitrile + 0.1% formic acid; 0.4 ml min�1, 45�C). Integrated ion intensities

were extracted from chromatograms using MassHunter Quantitative Analysis Software (Version B.07.01/Build 7.1.524.0 for QTOF)

according to m/z and retention times listed in Table S1. Integrated ion intensities were normalized to levels in sterile media controls

when possible. If a reference standard was unavailable, ion intensity was normalized to the maximum detected ion intensity in the

dataset. Unless otherwise indicated, compounds labelled ‘‘parent’’ were added to incubations and quantified, while compounds

labelled ‘‘products’’ were not added but were quantified.

Estimating colonic xenobiotic concentrations
To estimate physiologically relevant dietary xenobiotic concentrations likely to occur in themammalian gut (Table S1), we adopted an

approach previously used for medical drugs.34 For each compound in our 161 dietary xenobiotic library, we determined a relevant

food source, concentration in that food source (mg/100g), and typical serving size from literature references, which allowed us to

calculate dose (mg). In the previous approach designed for medical drugs, 90% absorption was assumed in the small intestine.34

However, many dietary xenobiotics are not absorbed to the same extent, and sowe relied on data from ileostomy patients to estimate

absorption. If this data was unavailable for a given compound, we estimated it to be similar to a structurally related compound, and if

this was not available, we assumed 90%absorption as in the previousmedical drug analysis.34 Intestinal concentrationwas therefore

estimated as the dose (in mmol) dissolved in 300mL (approximate small intestine volume) multiplied by the ileal recovery fraction. We

estimated colonic concentrations by collecting data on fecal recovery andmultiplying the intestinal concentration by this fraction and

a factor of 10 to account for transit time and colonic concentration, as in the previousmedical drug analysis.34 These calculationsmay

underestimate true colonic concentrations because products from microbial metabolism are often not accounted for in ileal fluid/

fecal analysis and local concentrations can exceed fecal concentration >100-fold.81 Across 149 compounds for which we were

able to gather data, the median estimated colon concentration is 398 mM (Table S1), and two-thirds of compounds were expected

to reach over 200 mM in the gut (Figure S2D).

For in silico physiology-based pharmacokinetic modeling of intestinal concentrations, we usedmethods similar to those previously

described.48 The 2-dimensional structure of each dietary xenobiotic was used to calculate LogP and solubility in ADMET Predictor

(version 10.4). GastroPlus (version 9.8.2) was then used to simulate intestinal levels of each xenobiotic in a 70 kg human in a fasted

state after a single dose representative of a commonly consumed food. Full parameters for modelling are listed in Table S1, including

colonic volume, mean precipitation time, diffusion coefficient, drug particle density, and effective permeability.

Genomic DNA extraction and 16S amplification
For genomic DNA extraction from fecal material or in vitro cell pellets, samples were transferred to 2 mL sterile cryotubes and resus-

pended in 500 mL Omega CP buffer, 250 mL SDS 20%, 550 mL phenol-chloroform isoamyl alcohol 25:24:1 and 250 mL Zirconia silica

beads. The samples were lysed using a BeadBeater for 2 cycles of 2 min, centrifuged at 400 rpm at 4�C, and 100-200 mL of aqueous

phase was transferred to the Omega EZ-96 Cycle Pure kit for clean-up following the manufacturers recommendations.

The V4 hypervariable region of the bacterial 16S gene was amplified and sequenced using previously published techniques.82

Briefly, input genomic DNA was quantified (Quant-IT PicoGreen dsDNA assay kit), normalized to 5 ng/mL and amplified using bar-

coded primers (AccuPrime Pfx SuperMix).83 PCRproducts were cleaned and normalized (Invitrogen SequalPrep kit), pooled together

(384 – 432 samples), and sequenced (2x250 bp, dual 8bp indexing, 15%PhiX spike-in, IlluminaMiSeq) at the Yale Center for Genome

Analysis.

16S rRNA analysis
16S rRNA sequencing analysis was performed using QIIME275 and associated packages.84–86 Barcodes were first extracted using

QIIME v1.8. QIIME v2020.11 was used for subsequent analysis, beginning by demultiplexing using emp-paired then truncating and

denoising reads using DADA2.87 Data were inspected for quality based on the inclusion of blanks and sequence read length. Next,

taxonomy was assigned using the RDP Naı̈ve Bayesian classifier trained with NCBI Ref-Seq with the confidence cut-off of 0.7 for MV

community samples and 0.4 for defined community samples. Using this confidence cut-off, 35/38 species were detectable and

distinguishable in the 38-membered defined community, as listed in Table S2. Alpha- and beta-diversity measures were determined

using the core-metrics-phylogenetic function at a sampling depth of 6500 for the defined community and 7000-8500 for theMV com-

munities. This sampling depth retained >98% of samples while maintaining adequate diversity sampling, as visualized using a rare-

faction curve. Aberrant replicates whichmay have resulted from contamination or errors in sample preparation were also identified by

visual inspection of taxonomy barplots and b-diversityreplicates and omitted from further analysis. For example, one DMSO replicate of
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MV29 failed these criteria, and so only four instead of five DMSO replicates were used for this community. Bray-curtis b-diversity is

reported, but weighted and unweighted-unifrac measures were also evaluated and gave comparable results (Table S3).

To determine which compounds caused significant remodeling in a community, b-diversity between replicates (b-diversityreplicates)

was used to assess experimental and biological variation (mean of replicates m and standard deviation of replicates s) (Figure 2C).

Compounds were considered to cause no significant disruption in a community if b-diversityvsDMSO < m+s of b-diversityreplicates, or

0.24. Most compounds (93/140; 66%) did not disrupt MV20, MV29 or the defined community, validating the reproducibility of

this assay. Compounds were considered to cause a significant disruption in a community if b-diversityvsDMSO > m+3s of

b-diversityreplicates, or 0.41. These cut-offs are marked on Figure 2C.

The relative abundance of a given taxa (class or species level, as indicated) was calculated from the feature count of that taxa in a

given sample. For calculating the fold change relative abundance, taxa with <75 feature counts in a given sample were first set to 0 to

account for unreliable detection. A pseudocount (0.001, or 0.1% relative abundance) was then added to the relative abundance count

for each taxon to reduce noise in low abundance taxa. For the analysis of 161 dietary xenobiotics (Figure 3; Tables S4 and S5), fold

change was calculated by normalizing to the interquartile mean relative abundance of that taxa in a given community across all con-

ditions. Taxa that were only detectable in a small number of samples, and thus their interquartile mean relative abundance was 0,

were considered absent for the purposes of this analysis. To calculate the fold change abundance of species in MV18 and MV20

colonized mice (Figure S7F), the relative abundance for each species at the 6 hr time point was averaged across days within a treat-

ment window (PBS or polydatin). A pseudocount (0.001) was added to each relative abundancemeasure, and then the ratio between

polydatin and PBS treatment windows was calculated. These ratios were calculated individually for each mouse to account for vari-

ability in the initial relative abundance of each species between mice.

Generating extracts for toxification studies
Incubations of MV or defined communities with dietary xenobiotics were performed as for metabolism/remodeling incubations,

except at a final compound concentration of 500 mM and a final volume of 1 mL. Incubations with each community were performed

in triplicate, andDMSOonly or sterile media controls were included on every plate. Supernatant was harvested by centrifugation after

48 hr of incubation, transferred to new 96-well deep well plates, and frozen at -20�C until processing. Supernatants were brought to

room temperature before extract preparation. The supernatant was acidified with 0.1% formic acid and then applied to solid phase

extraction resin cartridges in a 96-well format, pre-equilibrated with water + 0.1% formic acid (HyperSep Retain PEP 30 mg/1 mL 96

RemovableWell Plate). Cartridge plates were centrifuged at 600 rpm for 20min to bind the supernatant, thenwashedwith 1mL of 5%

methanol + 0.1% formic acid followed by centrifugation. Extracts were eluted into 96 well deep-well plates through sequential appli-

cation of 500 mL methanol, 50 mL DMSO and 500 mL methanol, each followed by centrifugation at 600 rpm. Elution fractions were

dried through vacuum centrifugation followed by lyophilization, and finally resuspended in 20 mL DMSO. Extraction efficiency was

determined by comparing pure chemical standards to compound spiked into sterile media and extracted, followed by LC-MS quan-

tification as described above. For each compound, we confirmed efficient extraction (>90% recovery) of the parent compound and

known metabolites.

For the large-scale map generated for 94 dietary xenobiotics shown in Figures 4C and S3A, aliquots of extracts generated from

triplicate incubations were pooled before testing for growth inhibition of the indicator species. If inhibitory activity was observed,

the activity of each replicate was verified individually. For follow-up experiments involving all 29 MV communities (Figures 4D and

4F), duplicate incubations were performed and kept separate throughout. Importantly, incubation of compounds with sterile media,

or extracts prepared from each community in the absence of any dietary xenobiotic (DMSO control), did not inhibit bacterial growth

(Figure 4C).

qPCR for species and gene abundance
Genomic DNA extracted from fecal material or in vitro cell pellets was diluted 1:50 in nuclease free water and used as a template for

qPCR using species specific primers (Table S7). To design primers specific for resveratrol reductase homologs in Eggerthella, Adler-

creutzia or Raoulibacter, nucleotide alignments from multiple strains (listed in Figure 6C) were used to identify conserved nucleotide

sequences, and specificity was tested by BLASTn. Primers were empirically verified for specificity and efficiency 85%–110%prior to

use. qPCR was performed using a CFX96 instrument (BioRad) and SYBR FAST universal master mix (KAPA Biosystems). Arbitrary

species abundance was calculated by 2-Ct and relative abundance was normalized to the sum of the abundance of all species in a

sample. Fold change abundance of each species versus DMSO was calculated for each replicate against the average relative abun-

dance of four DMSO-treated replicates. Resveratrol reductase gene abundance was calculated by normalizing to total bacterial

abundance determined using universal 16S primers.

E. lenta cell free supernatants
For cell free supernatant and RNA-seq assays, E. lenta was grown in basal medium containing 10 mM sodium acetate and 1% argi-

nine, prepared as described previously.88 For these experiments, resveratrol was dissolved in DMF instead of DMSObecause DMSO

serves as an electron acceptor for E. lenta. For cell free lysate experiments, 10 mL cultures were grown with 100 mM resveratrol or an

equal volume of DMF for 24 hr. Cells were harvested through centrifugation and the cell pellet was washed twice with PBS to

remove resveratrol or dihydroresveratrol from the culture. Cells were then lysed in 400 mL buffer (50 mM HEPES, 100 mM NaCl,
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0.05% cysteine, pH 7.3) by bead beating with Zirconia silica beads. Lysates were centrifuged and the supernatant was harvested.

Protein content was normalized to 20 mg/mL using a Bradford assay, and finally 100 mM resveratrol (dissolved in DMSO) was added in

100 mL reaction volumes. All steps until this point were performed anaerobically. These reactions were then incubated either aero-

bically or anaerobically at 37�C for 24 hr, quenched with 100 mL acetonitrile + 0.5% formic acid, and analyzed by LC-MS.

E. lenta RNA-seq
E. lenta was inoculated from a single colony and grown in basal medium for 48 hr. This culture was diluted 1:10 into 10 mL fresh me-

dium and grown to an OD600 of 0.2 (24-26 hr), in triplicate. Resveratrol (100 mM) or an equal volume of DMF was added to these cul-

tures and grown to an OD600 of 0.5 (6-8 hr). Cells were harvested by centrifugation, washed with RNAprotect (Qiagen 76506), and

frozen at -80�C until processing. Crude RNA was extracted by bead beating in 1 mL TRIzol (Thermofisher) using Zirconia silica beads

(2 cycles x 2minutes), followed by addition of 200 mL chloroform and centrifugation at 4�C for 10 min. The aqueous phase was recov-

ered and mixed with an equal volume of 100% ethanol. RNA was further purified using the RNeasy mini kit (Qiagen 74106) according

to the manufacturer’s instructions. 10 mg of purified RNA was treated with DNAse using the Ambion DNA-free kit, and subsequently

cleaned using RNeasy spin columns (Qiagen). Bacterial rRNA depletion was performed using the NEBNext rRNA Depletion Kit and

libraries were prepared using the NEB Ultra II Directional Library Prep Kit for Illumina. Sequences was performed on an Illumina

NovaSeq (2x100bp, 35 million reads/sample) at the Yale Center for Genomic Analysis.

For analysis, reads were aligned to the E. lenta DMS 2243 reference genome (Genbank accession GCF_000024265.1)

using Bowtie2 (v2.4.2).76 Gene counts were determined with featureCounts in Rsubread (v2.14.2; isPairedEnd=TRUE, countRead-

Pairs=TRUE)77 and these data were used to calculate RPKM. Volcano plots were generated using DESeq2 (v1.40.1)78 with cut-offs

set at padj < 0.01 and log2(fold change) > 2. The upregulation of Elen_288 and Elen_1284was independently verified using qRT-PCR.

Coriobacteriia genetic manipulation
Tools for genetic manipulation of E. lenta and G. urolithinfaciens, including pXD68Kan2-AphA and pXD71Cas10RFP-Pct5.1-

crRNA(AarI)-RFP,61 were a gift from Emily Balskus. E. lenta CRISPRmutants were generated using pXD71-Cas10.1 with the primers

listed in Table S7 usingmethods similar to previously described.61 Protospacer targets of the form TTC-N34 were selected in genes of

interest and incorporated into oligonucleotides of the form AAAT-N34 and TGAC-N34. These oligonucleotides were mixed, annealed,

and phosphorylated using T4 polynucleotide kinase, then cloned into pXD71Cas10RFP-Pct5.1-crRNA(AarI)-RFP via Golden Gate

assembly with the restriction enzyme PaqCI. Homology repair templates were designed to create clean gene deletions and flanked

�1 kb upstream and downstream of the targeted gene (Figure S6A). Homology arms were amplified from E. lenta genomic DNA and

cloned into PCR-amplified pXD71Cas10 backbone (containing CRISPR RNAs; crRNAs) via Gibson assembly, generating

pXD71Cas10-crRNA-288 targeting Elen_288, or pXD71Cas10-crRNA-1283-5, targeting the operon Elen_1283-5. These constructs

were transformed into E. lenta via electroporation, as previously described,61 and plated on BHIrf plates supplemented with

kanamycin (100 mg/mL). After 3-4 days, colonies were inoculated into BHIrf broth with kanamycin and cumate (50 mM) to induce

expression of crRNA. At this point, diagnostic primers binding outside of the homology repair template region were used to check

for successful genome editing events (Figure S6B). In colonies where both wildtype and edited band sizes were detectable, the cul-

tures were re-streaked on BHIrf+kanamycin+cumate to ensure full removal of the wildtype gene. We were unable to introduce a

complementation construct (pXD70Tet(LacZ3)61) into CRISPR engineered E. lenta strains, possibly owing to incompatibility with

pXD71Cas10 in these strains.

Divergently encoded from Elen_288 is a 12-transmembrane spanning LuxR family transcriptional regulator, Elen_289, which be-

longs to a gene family in Coriobacteriia previously shown to specifically respond to and regulate catechol dehydroxylase gene

expression.61 For expression of Elen_288 and Elen_289 in G. urolithinfaciens, the native gene cassette spanning Elen_288 to

Elen_289 was amplified from E. lenta using primers listed in Table S7. Linear vector backbone was PCR amplified from

pXD68Kan2-AphA,61 removing the YFP cassette from this construct, and Elen288-289 was inserted via Gibson Assembly. This

construct, pXD68-288-289, or the original construct, pXD68Kan2-AphA, were transformed into G. urolithinfaciens as previously

described,61 and plated on BHIrf plates supplemented with kanamycin (100 mg/mL). After 3-4 days, transformants were verified

by colony PCR and metabolism was assayed.

Analysis of Elen_288 homologs
Coriobacteriial genomes were collated, including 79 genomes previously collected that span 20 different genera,89 14 additional

Adlercreutzia genomes, and 3 additional genomes identified from RefSeq that contain an Elen_288 homolog. Bifidobacterium ani-

maliswas included as an outgroup. A homolog to Elen_288 in A. equolifaciens (Aqeu_2118, with 76.3% amino acid identity) was first

identified and verified by phenotypic evidence. Homologs in the other 95 coriobacteriial genomes were identified with tBLASTn using

Elen_288 or Aequ_2118 protein sequences as queries. Notably, Gordonibacter pamelaeae, G. urolithinfaciens and Slackia isoflavo-

niconvertens, which cannotmetabolize resveratrol (Figure S4C) encode only distant homologs (<42%amino acid identity). Therefore,

an amino acid identity cut-off of 70% was selected since it effectively identified homologs that could be verified through reciprocal

BLAST, removed paralogs of Elen_288 encoded elsewhere in the E. lenta DSM2243 genome, and removed hits in non-metabolizing

species. These homologs were mapped onto a phylogenetic species tree built using CodonTree on PATRIC,90 ultimately using an

alignment of 16 conserved CDS, 6085 amino acids, or 18255 nucleotides to generate the tree shown.
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Metabolism of dietary xenobiotics in mice
Germfree mice were colonized with MV communities by gavaging 100 mL of human fecal material (preserved in glycerol and stored

at -80�C with anaerobic headspace, as described above) and allowing the community to stabilize for 7 days. Each group contained

3-5 mice as indicated in figure legends. In general, dietary xenobiotics were dissolved in PBS and <5% DMSO, mice were gavaged

with 100-200 mL, samples were collected at the indicated time points in sterile 2.0mL screw cap tubes, and tubes were flash frozen in

liquid nitrogen. Timing of gavage was staggered to allow for precise collection time points. For measuring the colonic concentration

of commondietary xenobiotics in germfreemice (Figure S2B), a pool of dietary xenobiotics (polydatin, myricitrin, narirutin, hesperidin,

quercitrin, genistin, phlorizin, EGCG, chlorogenic acid, rebaudioside A, and neotame) was gavaged at 10 mg/kg in 200 mL, mice were

sacrificed 4.5 hr post-gavage, and intestinal contents was collected. For measuring metabolism inmice colonized with four MV com-

munities (Figure S4A), a pool of dietary xenobiotics (hesperidin, polydatin, rebaudioside A) was gavaged at 40 mg/kg in 200 mL, mice

were sacrificed 4.5 hr post-gavage, and intestinal contents was collected. Rebaudioside A was used in these experiments instead of

stevioside for cost considerations. In all experiments measuring the metabolism of resveratrol by different defined or MV commu-

nities (Figures 7 and S7), polydatin was gavaged at 30 mg/kg in 100 mL at 0hr, 3hr and 6hr, and fecal pellets were collected at

6 hr or 9 hr post-gavage.

To prepare extracts for LC-MS analysis, intestinal material or fecal pellets were weighed (�20-100 mg), then extracted with 400 mL

of actetonitrile/methanol (1:1, ice cold) with 10 mMurolithin C, used as an internal standard for LC-MS detection. Samples were bead

beat with Zirconia silica beads for 2 min and centrifuged (10 min, 4000 rpm, 4�C) to remove debris. Supernatant was transferred to

clean tubes, centrifuged again to remove remaining debris, then diluted 1:5 in water for LC-MS analysis. To prepare serum samples

for LC-MS analysis, 10 mL serum was combined with 40 mL acetonitrile/methanol (1:1, ice cold), placed at -20�C for 1 hr, then spun

down and supernatant transferred to a new plate. Standard curves were prepared in parallel by spiking reference standards into

germfree cecal material or serum at appropriate concentrations (0.1-1000 mM). To calculate concentration in fecal matter, integrated

ion intensity was normalized to the weight of the extracted sample and compared to this standard curve.

Remodeling of microbial communities in mice
For defined communities, saturated cultures of each species were normalized based on their OD600 and mixed together (Base

community: E. coli, E. cancerogenes, B. thetaiotaomicron, A. muciniphila, B. adolescentis, C, scindens, C. sporogenes, E. rectale,

R. gnavus; Additionally: E. lenta and E. ramulus). E. ramulus was also included in the E. lenta community but colonized at <0.1%

and ultimately did not affect the outcome of this experiment. Mice were colonized with each defined community or human commu-

nity, 3-5 per group as indicated, and community composition allowed to stabilize for 7 days. At this point, mice were dosed daily with

vehicle (95 mL PBS, 5 mL DMSO), or 30 mg/kg polydatin (95 mL PBS, 5 mL 6.25 mg/mL polydatin in DMSO) at 0 hr, 3hr and 6hr time

points. Fecal samples were collected at 0 hr, 6 hr and 9 hr time points. For the defined community experiment (Figures 7A–7C), PBS

treatment continued for 5 days, followed by 2 days recovery, and 5 days of polydatin treatment. For the human community exper-

iment (Figures 7E–7G), PBS treatment continued for 2 days, followed by 2 days recovery, and 3 days of polydatin treatment. Fecal

pellets collected were analyzed for community composition (qPCR, 16S sequencing) and LC-MS analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using GraphPad Prism 9. Details of statistical tests used, sample size indicated as ‘‘n’’, definition

ofmeans, error bars, and significance are provided in figure legends. Tukey’s post-hoc analysis was used inmost cases. Bonferroni’s

post-hoc analysis was used when the number of comparisons was small, and Dunnett’s post-hoc analysis was used when compar-

ison to a single control group was made. Figures were generated in GraphPad Prism 9 and in Tibco Spotfire 6.5.1.
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Figure S1. Metabolism of dietary xenobiotics by the gut microbiome, related to Figure 1

(A) Structures and metabolic pathways for compounds included in Figure 1A. Colored shapes are used to denote different forms of parent compounds and

metabolites.

(B–D) Heatmaps representing the metabolism of dietary xenobiotics. Parent compounds are added to incubations, and then the disappearance of parents and

the appearance of products are quantified by LC-MS. Abundance is normalized to no-cell control (for parent compounds) or to the maximum value in the column

(for products). (B) Metabolism of the tannin ellagic acid and the lignan pinoresinol through different metabolic pathways (A) across 29 human fecal communities.

Pinoresinol is metabolized to secoisolariciresinol, enterodiol, or enterolactone by different communities,91,92 while ellagic acid is metabolized to urolithins A or

C.93,94 (C) Metabolism of 10 different dietary glycosides (parent compounds) by 30 human gut bacterial species. (D) Metabolism of structurally related com-

pounds that differ in methoxyl decoration, indicated by yellow shading. Compound pairs exemplifying this relationship include the flavones diosmetin (40-me-

thoxyl; largely non-metabolized) vs. luteolin (widely metabolized), the flavanones hesperetin (40-methoxyl) vs. naringenin, the stilbenes pinostilbene (30-methoxy)

or pterostilbene (30,50-dimethoxy) vs. resveratrol, and the chalcones cardamonin (60-methoxy) vs. phloretin. Three species (Blautia producta, Eubacterium

limosum, and Lactonifactor longoviformis; all acetogens marked by asterisks) have the capacity to demethylate these substrates. MHPPA, 3-(4-methoxy-3-

hydroxyphenyl)propionic acid. In (B)–(D), ‘‘-’’ indicates the sterile media control and pH indicates the pH 5 control.
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Figure S2. Physiologically relevant concentrations of dietary xenobiotics remodel the gut microbiome in vitro, related to Figure 2

(A) Strategy for calculating the colonic concentrations of dietary xenobiotics. See also Table S1.

(B) Measured colonic concentrations of 11 different dietary xenobiotics in germfree mice after a single 10 mg/kg dose. Mean and standard deviation are shown

(n = 4 mice). Estimated concentrations are calculated using the method shown in (A) and Table S1, based on a dose of 10 mg/kg and with allometric scaling for

mice. Note that polydatin is transformed into resveratrol in these mice, as indicated by the arrow.

(C) Estimated colonic concentrations of the same 11 dietary xenobiotics in humans after a single dose in a commonly consumed food. Calculated estimates (as in

A; blue) and results from in silico physiology-based pharmacokinetic modeling (red) are shown. All doses and parameters are listed in Table S1.

(D) Estimated human colonic concentration of 149 dietary xenobiotics from typical food portions, plotted against cumulative frequency. See also Table S1.

(E and F) (E) Alpha-diversity measures and (F) community composition for MV20, MV27, MV29, and the 38-member defined communities treated with DMSO.

Mean is shown (n = 5 biological replicates except for MV29, n = 4).

(G) Summary of 25 dietary xenobiotics that significantly remodel at least 1 of the 4 tested communities (b-diversityvs. DMSO > 0.41). b-diversity is represented as a

violin plot and indicates distances either between dietary xenobiotic and DMSO treatments of the same community (b-diversityvs. DMSO), or two different

communities both treated with DMSO (inter-community b-diversity). Mean and standard deviation are shown (n = 15). Toxicity is represented as a heatmap,

where normalized growth of 26 species (Figure 1C) is averaged.

(H) OD600 normalized to DMSO controls of the MV20, MV27, MV29, and 38-member defined communities incubated with 10 pan-disruptive compounds at

200 mM.
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Figure S3. Microbial metabolism can toxify dietary xenobiotics, related to Figure 4

(A) Normalized growth of 7 indicator species (colored dots) in the presence of extracts prepared from incubation of 94 dietary xenobiotics (indexed along the x

axis) with four different microbial communities and a no-cell control. Compounds that are toxic to at least one indicator species without community incubation are

labeled in the no-cell control plot, whereas points labeled in the other plots indicate compounds that become toxic after incubation with a community. Each point

represents the mean of two independent growth measurements, and growth is normalized to DMSO controls.

(legend continued on next page)
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(B) Inhibitory concentrations (50% growth; IC50) of parent glycosides, their aglycone forms, and downstreammetabolites. The indicator species is E. limosum for

polydatin and its metabolites and B. ovatus for all other compounds. See also Figure 4D.

(C) Heatmaps representing the metabolism of dietary xenobiotics by 29 human communities. Parent compounds are added to incubations, and then disap-

pearance of parent and appearance of products are tracked. Ion abundance is normalized to the sterile media control (for parent compounds) or maximum of the

column (for product compounds).

(D) Activity-guided purification of the inhibitory compound produced by incubation of polydatin with community MV20. LC-MS total ion chromatogram of the

inhibitory fraction isolated is shown, alongside a resveratrol reference standard (two peaks represent cis and trans isomers).

(E and F) Relationship between normalized growth ofB. ovatus or E. limosum, as labeled, and detection of toxic aglycones (E) or other predicted metabolites (F) in

extracts prepared from the parent compounds labeled in the top left of each graph. In (E), each of these three dietary xenobiotics is fully detoxified and

metabolized, indicated by low detection of the toxic aglycones. Different colors represent different communities, as indicated in the figure legends. In (F),

detection of predicted metabolites does not correlate with growth inhibition. Different colors represent the detection of different metabolites, as indicated by the

figure legends. For ion abundance data in (B), (E), and (F), individual replicate incubations are shown (n = 1). For normalized growth in (E) and (F), mean of two

independent extract preparations followed by two independent growth measurements (n = 4) is shown.
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(legend on next page)
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Figure S4. Mechanistic studies on community remodeling by hesperidin, polydatin, and stevioside, related to Figure 5

(A) Metabolism of hesperidin, polydatin, and rebaudioside A (related to stevioside) in ex-germfree mice colonized with four different human microbiome com-

munities. Parent compounds and microbial metabolite concentrations, averaged across the cecum and proximal colon, were measured. Mean with standard

deviation are plotted (n = 3 mice/group 3 3 measurements/mouse = 9).

(B) Normalized growth of 26 gut commensals in the presence of select compounds and their toxic aglycones. See also Figure 1C.

(C) Heatmaps representing the metabolism of key compounds by individual species. Parent compounds are added to incubations, and then disappearance of

parent and appearance of products are tracked. Abundance is normalized to no-cell control (for parent compounds) or to the maximum value in the column (for

products).

(D, E, and G) Heatmaps representing the metabolism of key compounds by 8–10 membered defined communities. Compounds added to the incubations are

labeled on the left, and detected compounds are along the top. Additional species added to base communities are labeled on the right. See also Figures 5B

(relates to D), 5D (relates to E), and 5F (relates to G).

(F) Absolute abundance of B. thetaiotaomicron (Dtdk att1::pNBU2-BC173) measured via CFU plating. Significance is calculated using two-way ANOVA with

Tukey’s post hoc analysis (n = 4; **p = 0.0024, ****p < 0.0001).

(H) Heatmaps representing fold change relative abundance of species in a defined community treated with hesperidin or polydatin compared with DMSO

controls. Bacteroides spp. included in each community are shown at right. For all heatmaps (B–E, G, and H), mean of four biological replicates is shown (n = 4).
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Figure S5. Complex communities are remodeled in vitro, related to Figure 5
(A) Metabolism is related to b-diversityvs. DMSO for three MV communities after application of either hesperidin or hesperetin, as in Figures 2 and S2. Detection of

hesperetin in culture media, normalized to levels in sterile media, is shown in the heatmap at the bottom. Hesperetin was only detected in the incubation of MV27

with hesperetin, and only this community had an elevated b-diversityvs. DMSO in response to hesperetin exposure. Heatmap shows mean of triplicate incubations

and mean and standard deviation of b-diversityvs. DMSO is plotted (5 DMSO replicates 3 3 hesperidin/hesperetin replicates = 15).

(B) Representative time course of metabolism of polydatin by a human gut community (MV09), as determined across 6 time points by LC-MS. The shaded area

under the curve illustrates how exposure was calculated. Mean and standard deviation of three independent incubations are shown.

(C and D) Exposure of MV communities to polydatin and resveratrol. Either polydatin or resveratrol was given to the community, and detected metabolites are

indicated. Lunularin is a dehydroxylated form of dihydroresveratrol. E. lenta is variably added to communities in (D), resulting in enhanced resveratrol metabolism.

(E) b-Diversity between DMSO, polydatin, and resveratrol treatments of 25 human gut microbiome communities in vitro, as indicated by different colored lines.

The mean b-diversity between two compounds with three replicates each is shown (DMSO vs. DMSO: n = 3; polydatin/resveratrol vs. DMSO or polydatin vs.

resveratrol: n = 3 3 3 = 9).

(F) For each of the 25 human communities, the fold change relative abundance (compared with DMSO) of each bacterial class after resveratrol treatment is

correlated to its change after polydatin treatment. Pearson correlation is shown.

(G) Response of the defined community treated with either polydatin or resveratrol, similar to Figure 3C. The community consists of 37 or 38members, depending

on E. lenta addition as indicated. Normalized growth in monoculture of each species treated with the given compound (from Figure 1C) vs. fold change relative

abundance (compared with DMSO) in the community is plotted. Interactions with B. ovatus that demonstrate cross-sensitization and cross-protection are

labeled. In (F) and (G), mean fold change relative abundance in triplicate incubations is shown.
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Figure S6. Generating a CRISPR mutant of Elen_288, related to Figure 6

(A) Schematic for clean deletion of targeted genes by homologous recombination using CRISPR-targeting plasmid pXD71-Cas10.0.61 Expression of the crRNA is

controlled by a cumate inducible system consisting of the repressor CymR and operator sequencesCuO. The relative location of primers used to validatemutants

is indicated.

(B) Validation of E. lenta mutants by PCR. PCR products from three different mutants are shown alongside wild-type E. lenta.

(C) Schematic showing proposed function of Elen_288 and its analogous functions in L. monocytogenes and E. rivorum. Membrane quinone pools, indicated by

‘‘Q,’’ shuttle electrons as part of the electron transport chain. It is proposed that these quinones pass electrons to flavin adenine dinucleotide (FAD) cofactors in

Elen_288, FrdA, or UrdA.62

(D and E) Relative abundance of E. lenta strains (D) or B. thetaiotaomicron (E) in 9–10 membered defined communities, similar to Figure 5B. B. thetaiotaomicron

levels are quantified in defined communities variably including E. lenta strains, as indicated. E. lentaDElen_288 fails to protectB. thetaiotaomicron from depletion

by polydatin or resveratrol. Mean and standard deviation of biological replicates are shown (n = 3). Significance is tested by two-way ANOVA with Dunnett’s post

hoc analysis. *p < 0.05, ****p < 0.0001.
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Figure S7. Polydatin metabolism predicts community remodeling in vivo, related to Figure 7
(A) Absolute abundance of E. coli in mice colonized by the 9-member defined community lacking E. lenta during PBS (day 1) or polydatin (day 8) treatment as in

Figure 7A. Significance is calculated using one-way ANOVA with Dunnett’s post hoc analysis (n = 5 mice, ****p < 0.0001).

(B) Serum levels of polydatin and its metabolites in mice colonized with defined communities, including or lacking E. lenta, and dosed as in Figure 7A. Serum

metabolites were measured 8 and 10 h after the first gavage. Concentrations were quantified for polydatin and resveratrol using authentic standards and plotted

on the right y axes. Arbitrary area under the curve (AUC) ion intensities are shown for all other compounds. p values were calculated by two-way ANOVA with

Sidak’s multiple comparison analysis (n = 5).

(C) Relative abundance of species in mice colonized by a defined community during PBS and polydatin treatment. All species are shown except for E. coli, which

is shown in Figure 7C. Mean and standard deviation from 3 to 5 replicate mice are shown (base community: n = 5, base community + E. lenta: n = 3).

(D) Heatmaps representing fold change relative abundance after ex vivo incubation of fecal material treated with 500 mM resveratrol vs. DMSO. Fecal pellets were

collected from mice colonized with the base-defined community lacking E. lenta, as in (A), and diluted in Bryant and Burkey Medium:Modified Gifu Anaerobic

Medium (BB:mGAM media). Mean of three biological replicates is shown (n = 3).

(E and F) Relationship between resveratrol metabolism in ex-germfree mice and gene abundance of resveratrol reductase homologs in either Eggerthella (E) or

Raoultibacter (F). Resveratrol was measured in feces at the 9 h time point after dosing using the scheme in Figure 7A. Each point represents an individual mouse

(n = 3–5 mice per MV community, as shown). Mean and standard deviation in gene abundance are shown from samples collected from 4 different days (n = 4).

Pearson correlation coefficients were calculated.

(G) Fold change relative abundance of species in MV18- or MV20-colonized mice during polydatin treatment compared with PBS treatment. y axis shows a log

scale. Mean and standard deviation for replicate mice are shown (n = 5).
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