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7-Dehydrocholesterol is an endogenous 
suppressor of ferroptosis
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Matthias Kroiss18, Georg W. Bornkamm19, Fernando Gomes20, Luis Eduardo Soares Netto20, 
Manjima B. Sathian21, David B. Konrad21, Douglas F. Covey22,23, Bernhard Michalke24, 
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Ferroptosis is a form of cell death that has received considerable attention not only as 
a means to eradicate defined tumour entities but also because it provides unforeseen 
insights into the metabolic adaptation that tumours exploit to counteract phospholipid 
oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase 
(DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol 
(7-DHC). Although previous studies suggested that high concentrations of 7-DHC are 
cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 
7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of 
its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)
lipids from autoxidation and subsequent fragmentation. We provide validation in 
neuroblastoma and Burkitt’s lymphoma xenografts where we demonstrate that the 
accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant 
state in these tumours ultimately resulting in a more aggressive phenotype. 
Conclusively, our findings provide compelling evidence of a yet-unrecognized 
antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited 
by cancer cells to escape ferroptosis.

Lipid components of cellular membranes are constantly exposed to 
free radical species that are competent to trigger their degradation 
through an oxygen-dependent process4. This process broadly known 
as lipid peroxidation is primarily dictated by the propagation rate 
constants (kp) of its lipidic elements, an intrinsic chemical feature 
unique to each of these components. The past few years have wit-
nessed a surge of interest in understanding the cellular mechanisms 
that regulate lipid peroxidation as they have been associated as key 

determinants of a distinct non-apoptotic cell death modality, known 
as ferroptosis5.

Early works have established the central role of the enzymatic 
activity of the selenoprotein glutathione peroxidase 4 (GPX4)2,6 in 
suppressing the process of ferroptosis7–9. GPX4 is the sole enzyme in 
mammals capable of directly reducing a broad range of peroxidized 
lipids present in membranes10,11. GPX4 can be irreversibly inhibited 
by a series of alkylating small molecules, such as RSL3 and ML210  
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(ref. 8), leading to cell death in ferroptosis-sensitive cancer cell lines. 
The enrichment of phospholipids with polyunsaturated fatty acids 
(PUFAs) results in a marked dependency on GPX4 activity12,13. This 
high-PUFA state was shown to be largely dependent on the activity of 
the enzyme acyl-CoA-synthetase long-chain family 4 (ACSL4), which 
is required for the critical step of PUFA activation12. Accordingly, the 
inhibition of GPX4 in ferroptosis-prone cell lines leads to the character-
istic oxidation fingerprint entailing the accumulation of peroxidized 
products of phosphatidylethanolamine (PE) containing arachidonic 
acid and adrenic acid14. It has been further demonstrated that the sole 
accumulation of peroxidized fatty acids is not sufficient to induce 
ferroptosis and a central role of the free radical-mediated propaga-
tion step has been unambiguously demonstrated15. The propagation 
step of lipid peroxidation was shown to contribute to the formation 
of pore-like structures of ill-defined identity16 that drive the osmotic 
lysis of the cells17.

The present study uncovered and characterized a role for 
7-dehydrocholesterol reductase (DHCR7) in the ferroptotic process. 
DHCR7 catalyses the final step in cholesterol biosynthesis and its inhi-
bition leads to the accumulation of 7-dehydrocholesterol (7-DHC). 
Others18 initially reported 7-DHC to accumulate in preputial gland 
tumours and whose function, at that time, was only assumed to be as 
a spare capacity for cholesterol synthesis. Subsequent studies char-
acterized 7-DHC as the most oxidizable lipid ever reported and whose 
accumulation predisposes cells to lipid peroxidation19. By contrast, 
we now show that the accumulation of 7-DHC causes a paradoxical 

increased tolerance towards phospholipid peroxidation, thus providing 
a robust resistance to ferroptosis. Furthermore, the characterization 
of the protective effect of 7-DHC provided valuable insights into the 
distinction between lipid and phospholipid peroxidation in cell death 
processes. By demonstrating the accumulation of oxidatively truncated 
phospholipid species in ferroptotic cell death, we emphasize the crucial 
role of these species in the execution of ferroptosis. Together with the 
accompanying paper20, our findings suggest that manipulating this 
pathway could be exploited to increase ferroptosis resistance to sup-
press ferroptosis in acute settings but also exploited by cancer cells 
to evade ferroptosis.

DHCR7 is a proferroptotic gene
Spurred by the still incomplete understanding of the ferroptotic 
process and the development of next-generation single guide RNAs  
(sgRNAs)21, we performed a genome-wide reverse genetic CRISPR 
screen to identify genes that may confer robust protection against 
ferroptosis. To this end, the Pfa1 cell line6 was transduced with a CRISPR 
library covering 18,424 genes with a total representation of 90,230 
sgRNAs followed by a stringent selection for 14 days using 200 nM of 
the GPX4 inhibitor (1S,3R)-RSL3 (in the following referred to as RSL3) 
(Fig. 1a). Consistent with the results of ours and others previous screens, 
Acsl4 emerged as the highest-scoring hit12,13,22–24. The second top-scoring 
gene was Dhcr7 (Fig. 1b). The identification of Dhcr7 as a potential pro-
ferroptotic gene was surprising in light of several studies indicating 
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Fig. 1 | Identification and impact of DHCR7 deficiency on ferroptosis.  
a, Schematic of the identification of Dhcr7 as a proferroptotic gene, using 
CRISPR-KO library and GPX4 inhibition. b, Volcano plot of sgRNA enriched in 
cells selected with RSL3 compared with untreated control cells. c, Immunoblot 
(IB) analysis of DHCR7 and key ferroptosis regulators, namely, FSP1, ACSL4 and 
GPX4 in cells expressing an sgRNA targeting DHCR7 and EGFP. Values represent 
mean ± s.d. of ratio of protein of interest in relation to β-actin, n = 3 independent 
experiments. d, Relative quantification of 7-DHC and cholesterol concentrations 
in HT1080 cell lines stably transduced with a vector expressing Cas9 and a sgRNA 
targeting DHCR7 and EGFP as a control. e, Assessment of de novo cholesterol 

biosynthesis, by means of the quantification of 13C-cholesterol originating 
from 13C-glucose in HT1080 cell expressing sgRNA targeting DHCR7 and EGFP 
as control. Data are the mean ± s.d. of n = 3 wells of a 6-well plate from one 
representative experiment (d,e). f, Dose-dependent toxicity of the ferroptosis 
inducers RSL3, ML210 and FIN56 in HT1080 cell lines stably transduced with a 
vector expressing Cas9 and an sgRNA targeting DHCR7 and EGFP as a control. 
Cell viability was monitored using Alamar blue after 48 h (f) and represented as 
the mean ± s.d. of triplicates from one representative of two independent 
experiments (f). *P < 0.05; two-way analysis of variance (ANOVA) (d–f).
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that loss or inhibition of DHCR7 is associated with an increased sus-
ceptibility to lipid peroxidation4,25, which, in principle, should lead to 
an increased susceptibility to ferroptosis26. Intrigued by this finding, 
we set out to explore the basis of this discovery. Using the bona fide 
ferroptosis fibrosarcoma cell line model HT1080, we generated poly-
clonal cultures of DHCR7-deficient cell lines using two independent 
sgRNAs. The successful loss of DHCR7 was validated by western blot 
and mirrored by the accumulation of its substrate 7-DHC (Fig. 1c,d) 
and impaired incorporation of C13-glucose into cholesterol (Fig. 1e). 
Notably, cholesterol depletion was less pronounced, suggesting that 
a substantial fraction is directly taken up from the serum. Importantly, 
knockout of DHCR7 did not concur in a marked alteration in the pro-
tein concentrations of known ferroptosis regulators (Fig. 1c) nor the 
phospholipid composition of cells (Extended Data Fig. 1a–c). Using 
these cellular models, we validated the screening results showing that 
DHCR7-deficient HT1080 cells present a marked resistance to ferrop-
tosis (Fig. 1f). Similar results were obtained with three independent 
clonal cell lines derived from Pfa1, HT1080 and MDA-MB-435 cells, 
confirming the general impact of this system in specifically preventing 
ferroptosis (Extended Data Fig. 2a–d). Subsequent studies focused on 
the clonal cell line derived from the HT1080 DHCR7 knockout (KO) pool 
(a detailed characterization of the genetic modification of these cells 
is provided in Extended Data Fig. 3a–d). Thereby, we could unequivo-
cally demonstrate the proferroptotic activity of DHCR7 because the 
genetic reconstitution of DHCR7 abolished 7-DHC concentrations and 
resensitized cells to ferroptosis without affecting the response of the 
cell to other cytotoxic agents (Extended Data Fig. 3e–g).

7-DHC is an antiferroptotic metabolite
In the penultimate step of the cholesterol biosynthesis pathway, 
lathosterol, through lathosterol oxidase (SC5D), is converted to 7-DHC, 
which, in turn, is reduced to cholesterol by DHCR7 in the final step of 
the pathway (Fig. 2a and Extended Data Fig. 4a). Several previous stud-
ies have pointed to a toxic effect of 7-DHC accumulation through its 
inherent propensity to autoxidize and propagate radical chain reactions 
within the lipid bilayer25. To shed light on these seemingly paradoxical 
observations, we generated a DHCR7 SC5D double-mutant cell line to 
address whether 7-DHC accumulation mediates the protective effects 
induced by the loss of DHCR7. In agreement with a protective effect of 
7-DHC, the loss of SC5D in the DHCR7 KO cell line completely abolished 
the resistance conferred by the single loss of DHCR7 (Fig. 2b). Similarly, 
pharmacological inhibition of upstream steps of cholesterol biosyn-
thesis recapitulated this effect (Extended Data Fig. 4b). Accordingly, 
combined loss of DHCR7 and SC5D led to a detectable accumulation 
of lathosterol and suppressed 7-DHC accumulation (Fig. 2c). Subse-
quently, the serial reconstitution of DHCR7 and SC5D in a DHCR7 SC5D 
KO background demonstrated that the re-expression of SC5D resulted 
in substantial accumulation of 7-DHC as also validated by monitor-
ing C13-labelled glucose incorporation into 7-DHC and cholesterol 
(Fig. 2d,e,f). This, in turn, resulted in a specific increased resistance 
to ferroptosis (Fig. 2g and Extended Data Fig. 4c). Using wild-type (WT), 
DHCR7 and DHCR7 SC5D-deficient cell lines in a series of sterol sup-
plementation experiments, we further demonstrated that exogenous 
supplementation of 7-DHC protected all cell lines from ferroptosis; 
also, lathosterol only increased ferroptosis resistance in cell lines able 
to produce 7-DHC (Fig. 2h). Similar observations were made in the 
sgRNA expressing polyclonal cell population, where we could also 
demonstrate that squalene, a previously reported ferroptosis sup-
pressor27, failed to inhibit cell death when supplemented exogenously 
(Extended Data Fig. 4d). Importantly, a similar protective effect of 
7-DHC was observed in a genetic model of Gpx4 deficiency6 (Extended 
Data Fig. 4e). Curiously, free cholesterol blunted the protective effects 
in all genotypes (Fig. 2h, and Extended Data Fig. 4f). Building on this 
observation we could show that an enantiomer of cholesterol, which 

has an opposite three-dimensional structure but identical physical 
properties to cholesterol28, was markedly less efficient at blunting 
these protective effects (Extended Data Fig. 4g). Combined with the 
observed loss of 7-DHC in cells treated with free cholesterol (Extended 
Data Fig. 4h,i) our observations suggest an inhibitory effect on SREBP2 
and biosynthetic activity of the mevalonate pathway.

Given the suppressive function of cholesterol on the protective 
effect conferred by 7-DHC, we investigated the response to ferropto-
sis in settings where cholesterol supply is scarce. To accomplish this, 
we cultivated cells in delipidated fetal bovine serum (dlFBS), which 
effectively removes sterols from the culture medium (Extended Data 
Fig. 5a). In dlFBS, we noted a decline in total cholesterol concentra-
tions and a concurrent increase in 7-DHC in DHCR7-deficient cells, 
indicating enhanced biosynthesis (Extended Data Fig. 5b). Under this 
experimental condition, we consistently observed similar responses, 
albeit with heightened sensitivity, which can probably be attributed 
to reduced expression of GPX4 resulting from the fumed silica treat-
ment (Extended Data Fig. 5c,d). Notably, the loss of GPX4 seems to be 
independent of sterol concentrations and is probably due to selenium 
depletion (Extended Data Fig. 5e,f). To mitigate potential confound-
ing factors, we investigated the impact of LDL-receptor (LDLR) KO 
(Extended Data Fig. 5g). As anticipated, the KO cells exhibited increased 
expression of SREBP2 target genes, no differences in GPX4 concentra-
tions and an inability to efficiently internalize fluorescently labelled 
LDL (Extended Data Fig. 5h–k). Treatment with the EBP inhibitor Tasin-1 
induced a substantial reduction in cholesterol concentrations in the 
LDLR KO cells, whereas the WT cells remained largely unaffected 
(Extended Data Fig. 5l). Using these models, we show that the loss of 
LDLR does not significantly affect ferroptosis under normal conditions 
but pretreatment with Tasin-1 markedly sensitizes LDLR KO cells to 
ferroptosis (Extended Data Fig. 5m). These findings substantiate the 
notion that 7-DHC plays a crucial role in cellular protection, particularly 
in conditions where biosynthesis is stimulated.

7-DHC blocks phospholipid peroxidation
The conjugated double-bond present in the sterol B-ring stands as 
the most prominent feature of 7-DHC, when compared to the other 
sterols. To probe the relevance of this feature in preventing ferroptosis 
we assayed the structurally related sterol ergosterol for its capacity to 
supress ferroptosis (Extended Data Fig. 6a) and showed that it has an 
equally potent antiferroptotic activity (Extended Data Fig. 6b). Given 
that ergosterol is the main sterol component in yeast and fungi, it was 
reasonable to assume that this lipid could be an important suppressor 
of cell death induced by PUFAs in these evolutionarily distant organ-
isms. In fact, we could validate this hypothesis in yeast strains with 
targeted deficiencies of genes important for ergosterol biosynthesis 
(that is, erg2, erg3 and erg6)29 by revealing a hypersensitivity to PUFA 
supplementation in cells unable to generate sterol with the character-
istic unsaturated B-ring structure (Extended Data Fig. 6c,d).

To investigate the impact of 7-DHC in a well-defined phospho-
lipid autoxidation model, we prepared unilamellar liposomes of soy 
phosphatidylcholine (PC) loaded with 7-DHC (Fig. 3a). We used the 
recently developed FENIX assay to indirectly monitor in real time the 
process of phospholipid peroxidation30. The assay relies on the specific 
generation of lipid peroxyl radicals arising from the lipophilic radi-
cal generator di-tert-undecylhyponitrite (DTUN). A small amount of 
STY-BODIPY dye competes with PUFA for propagating lipid peroxyl 
radicals and the fluorescence of its oxidized product(s), STY-BODIPYox, 
can be monitored by fluorescence (Fig. 3a). Typical radical-trapping 
antioxidants inhibit autoxidation and thus retard STY-BODIPY oxida-
tion until the radical-trapping antioxidant is consumed (Fig. 3a,b). 
Interestingly, 7-DHC-loaded liposomes resulted in a dose-dependent 
suppression of STY-BODIPY oxidation (Fig. 3b,c). As the suppression 
of STY-BODIPY oxidation could arise from dilution of the pool of 
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autoxidizable phospholipids on supplementation of the liposomes 
with 7-DHC, similar experiments, wherein non-oxidizable dipalmi-
toyl PC (DPPC) was incorporated in place of 7-DHC, were performed, 
allowing us to demonstrate no difference from the native soy PC 
liposomes (Fig. 3b). Furthermore, because sterols alter membrane 
fluidity and may confer protection through dynamic parameters31 
that could impact lipid peroxidation32, corresponding experiments 
were carried out on cholesterol-loaded liposomes (Fig. 3c). Yet again, 
there was no effect on the rate of STY-BODIPY oxidation—even beyond 
concentrations of 7-DHC used (Extended Data Fig. 7a)—suggesting that 
physical changes in the bilayer imparted by the sterol framework do 

not impact the oxidation rates in our model system, neither do they 
impact their integrity (Extended Data Fig. 7b). Given the indirect nature 
of the assay, we also directly measured the impact of 7-DHC on soy PC 
peroxidation, that is palmitoyl-linoleoyl PC (PLPC)-OOH, dilinoleoyl PC 
(DLPC)-OOH and DLPC-2OOH, by liquid chromatography with tandem 
mass spectrometry (LC–MS/MS) (Extended Data Fig. 7d,e). Although 
supplementation of the liposomes with DPPC (up to 32 mol%) had no 
effect on the rate of PLPC and DLPC oxidation, cholesterol (at 8 mol%) 
had only a modest effect on the accumulation of PLPC-OOH, DLPC-OOH 
and DLPC-2OOH. Entirely consistent with the FENIX results, 7-DHC sup-
plementation led to a dose-dependent suppression in the rate of PLPC 
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and DLPC oxidation (Extended Data Fig. 7d,e) which is in good agree-
ment with previous reports in isotropic media33. To demonstrate that 
this suppression corresponded with the intervention of 7-DHC in the 
radical chain reaction, the consumption of 7-DHC was monitored spec-
trophotometrically through its characteristic absorbance (Extended 
Data Fig. 7f,g). These data thus suggest that the oxidation of 7-DHC 
in vitro is responsible for the inhibition of phospholipid peroxidation, 
a notion we could further validate in a model using iron/ascorbate 
as the source of oxidation (Extended Data Fig. 7h). Accordingly, we 
detected significant concentrations of the free radical-mediated oxi-
dation product of 7-DHC, namely 3β,5α-dihydroxycholest-7-en-6-one 
(DHCEO) (Fig. 3d), during the liposomal oxidation under conditions 
where no phospholipid oxidation product was detectable (Fig. 3e). 
Hence, if our hypothesis was correct, 7-DHC oxidation should lead to 

the accumulation of these products during the course of ferroptosis and 
by doing so, it could spare phospholipids from oxidative damage. To 
assess whether 7-DHC oxidation products also accumulate on trigger-
ing ferroptosis in cells, we treated the HT1080 DHCR7 SC5D double-KO 
cell line expressing SC5D and an empty vector with the GPX4 inhibi-
tor RSL3. Although no substantial loss in the total content of 7-DHC 
was noticeable (Extended Data Fig. 7i), the quantification of the main 
non-enzymatic oxidation products of 7-DHC, namely DHCEO, revealed 
a significant increase (Fig. 3f and Extended Data Fig. 7i). To demonstrate 
that the 7-DHC products originate from the peroxyl radical-mediated 
oxidation of 7-DHC, we further incubated these cells with Lip1 (ref. 9). In 
good agreement with the free radical-mediated formation of DHCEO25, 
Lip1 fully inhibited the formation of this product (Fig. 3f and Extended 
Data Fig. 7i). Therefore, these results firmly establish a unique role of 
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unsaturated B-ring sterols in protecting cells from ferroptosis-like 
cell death by diverting the propagation of peroxyl radical-mediated 
damage from phospholipid components to its sterol core.

Truncated phospholipids drive cell lysis
Following these results, we reasoned that the presence of 7-DHC 
in phospholipid bilayers generates a strong prosurvival effect by 
increasing the resistance of membranes to peroxidation-mediated 
permeabilization. Therefore, a model system was used that consists 
of 5(6)-carboxyfluorescein (CF) encapsulated in liposomes allowing 
for the detection of a fluorescent signal on membrane permeabiliza-
tion (Extended Data Fig. 8a). Using the iron/ascorbate couple as an 
oxidation model, we showed that liposomes containing 7-DHC were 
markedly resistant to peroxidation-mediated membrane permeabiliza-
tion (Extended Data Fig. 8b). To further support the relevance of this 
model system for ferroptosis, we could show that the process of vesicle 
rupture could be prevented by Lip1 (Extended Data Fig. 8c) and other 
molecules able to suppress ferroptosis, such as ergosterol, ubiquinone, 
α-tocopherol and squalene (Extended Data Fig. 8d), indicating that Lip1 
and naturally occurring ferroptosis supressors could act similarly to 
prevent membrane permeabilization of cells.

Recent reports studying the relative contribution of different photo-
sensitization mechanisms to membrane permeabilization suggested 
that truncated phospholipid species rather than phospholipid hydrop-
eroxides are key in generating membrane pores and consequently 
mediating the loss of membrane integrity34. Therefore, we reasoned 
that a similar mechanism could be at play during iron-induced per-
meabilization and ferroptosis execution35. To establish a functional 
link between truncated lipids and ferroptosis execution, we initially 
assayed a panel of different truncated species (Extended Data Fig. 9a) 
regarding their capacity to destabilize membranes. Accordingly, all 
tested truncated lipids were able to permeabilize liposomal membranes 
and to induce cell death more efficiently than the parental lipid and 
the corresponding hydroperoxide (Extended Data Fig. 9b–e). Further 
validation was provided by using an orthogonal approach based on 
a photochemical probe (PhotoPC). Irradiation of the probe directly 
generates a truncated product (PhotoTrunc-PC) which does not rely on 
the presence of alkoxyl or peroxyl radicals intermediate (Extended Data 
Fig. 9f). Using this model we could demonstrate the higher membrane 
destabilizing capacity of the truncated product in vesicles and cells 
(Extended Data Fig. 9g,h). Although being highly supportive, it should 
be acknowledged that the truncated species were added exogenously 
and were performed using PC and not PE species12,14. To circumvent 
this issue, a system in which the species are formed in situ would be 
preferred. We took advantage of the cell’s own fatty acid incorporation 
machinery to achieve this goal. ACSL4-deficient cells have a profound 
loss of PUFA content in phospholipids12. The absence of PUFA con-
taining phospholipids results in a marked resistance to ferroptosis 
because of the lack of oxidizable substrates. Sensitivity to ferroptosis 
in this setting can be regained by feeding exogenous PUFAs12. This 
feature can be leveraged to better control of the substrates used for 
ferroptosis execution. Using this model, we compared side-by-side 
the sensitization provided by α-linolenic acid (αLNN) and γ-linolenic 
acid (γLNN). Both fatty acids have an identical structure in length and 
number of double bonds leading to a similar propagation rate constant 
(kp), yet the position of the last double-bond determines the structure 
of the resulting truncated product. Analysis of the lipidomic changes 
of ACSL4 WT and KO cells treated with αLNN and γLNN confirmed 
that both lipids are directly and efficiently esterified into PE, thereby 
restoring the oxidizable pool of PUFA to a similar extent as in WT cells 
(Extended Data Fig. 10a,b). Remarkably, despite their equal abundance 
and propensity to undergo oxidation, γLNN seemed to be a superior 
ferroptosis-triggering substrate (Extended Data Fig. 10c,d), in line with 
its potential to generate shorter truncated phospholipid products. 

These results are remarkable because they indicate that the product 
formed determines cell death rather than solely its propensity to autoxi-
dize. Supporting this notion, in-depth epilipidomics analysis indeed 
detected a substantial accumulation of PE and plasmalogen PE trun-
cated products in cells undergoing ferroptosis (Fig. 4a). Notably, cell 
permeabilization, monitored as propidium iodide (PI)-positive cells, 
was only detectable in conditions where an increase in these oxidized 
and truncated species occurred (Fig. 4b). We further showed that Lip1 
fully inhibited the formation of these species, thus confirming their 
origin from the autocatalytic lipid peroxidation process (Fig. 4a,b). In 
accordance, cells accumulating 7-DHC behaved similarly to Lip1-treated 
cells and the specific oxidation product of 7-DHC, DHCEO, accumulated 
in these cells (Fig. 4b). This demonstrates that 7-DHC is preferentially 
oxidized in cells, thereby sparing phospholipids and preventing the 
formation of oxidized and truncated species (Extended Data Fig. 9i). 
Supporting the proposed mechanism, 7-DHC did not affect permeabi-
lization mediated by truncated phospholipid species (Extended Data 
Fig. 9e). Together, these observations provide compelling evidence for 
the role of truncated products in contributing to ferroptosis execution 
and that 7-DHC and other ferroptosis inhibitors such as Lip1, directly 
suppress their formation.

7-DHC accumulation increases cell fitness
Having characterized the molecular underpinnings by which 7-DHC 
prevents ferroptosis execution, we next asked whether this protective 
effect could have a potential role in supporting tumour growth under 
conditions in which ferroptosis inhibition is critical. To our initial sur-
prise, DHCR7 mutations, despite being rare, have been described in 
people with Burkitt’s lymphoma (BL), with a reported 9.8% frequency 
of DHCR7 mutations as shown by ref. 36. Moreover, a recent report has 
also identified rare pathological mutations in DHCR7 in a cohort with 
neuroblastoma37. To gain insights into the topology of these mutations, 
we created a model for the DHCR7 structure using an homologous 
structure (PDB ID 4QUV, sequence identity 37%, similarity 51%) and 
identified that they are primarily located in the transmembrane domain 
of DHCR7 (Fig. 5a). Re-expression of DHCR7-Flag-tagged versions of the 
seven corresponding mutants in the DHCR7-deficient cells allowed us 
to validate these predictions experimentally. Figure 5b illustrates that, 
except for T93M, N274K and V353fs, all mutations were generally well 
expressed as compared to WT. We then addressed the functionality of 
these mutations: the A24S and L317V mutations seemed to be functional 
when overexpressed as they were able to (1) metabolize 7-DHC when 
overexpressed (Fig. 5c) and (2) to re-sensitize DHCR7-deficient cells 
to ferroptosis akin to the WT enzyme (Fig. 5d). On the other hand, all 
other assayed variants were dysfunctional and failed to metabolize 
7-DHC (Fig. 5c) and were unable to restore sensitivity to ferroptosis 
(Fig. 5d). Further validation of the role of the DHCR7 was pursued by 
demonstrating that 7-DHC accumulation abolished the characteristic 
thiol-dependent growth of Burkitt’s lymphoma cell lines in the absence 
of thiol-donating compound (Extended Data Fig. 11a,b).

Next, the contribution of 7-DHC accumulation and tumour growth 
in a series of xenograft models was investigated. Initially, we deleted 
DHCR7 in two different cell lines: BL41 (a Burkitt’s lymphoma cell line) 
and MM1S (a multiple myeloma cell line). These cell lines showed dis-
tinct responses to ferroptosis when DHCR7 is deleted; whereas BL41 
cells showed a significant increase in resistance against GPX4 inhibitors 
(Fig. 5e), the protective effect in MM1S cells was negligible (Extended 
Data Fig. 12a,b). Accordingly, when implanted into the tail vein of 
mice, the MM1S xenograft did not show any noticeable behavioural 
differences, in line with the absence of extra protective effect caused 
by DHCR7 loss (Extended Data Fig. 12c,d). By marked contrast, the 
DHCR7-deficient BL41 cell line showed a significantly more aggressive 
phenotype compared to its WT counterpart with marked decrease in 
overall survival of mice (±24 days versus ±60 days) (Fig. 5f–i).

https://doi.org/10.2210/pdb4QUV/pdb
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To further substantiate whether this effect was attributed to 
increased resistance to ferroptosis, we performed an independent 
experiment where the growth of BL41 xenografts was compared in 
mice maintained on a selenium-adequate and -deprived diet (Extended 
Data Fig. 12e–h). This model mimics an in vivo ‘ferroptosis-prone’ 
condition38 by limiting the supply of selenium for the translation of 
selenoproteins, including GPX4 (Extended Data Fig. 12f). Under this 
proferroptotic conditions, an even more pronounced difference in 
tumour growth was observed (Extended Data Fig. 12g), strengthen-
ing the notion that ferroptosis-sensitive cancer cell lines benefit from 
the accumulation of 7-DHC and that its accumulation favours tumour 
growth by suppressing ferroptosis. In addition to this model, we also 
used an orthotopic neuroblastoma model (Extended Data Fig. 12i–p) 
using the ferroptosis-sensitive neuroblastoma cell line SK-N-DZ. Dele-
tion of DHCR7 in SK-N-DZ cells provided a robust protection against 
GPX4 inhibitors (Extended Data Fig. 12i–l). Orthotopic implantation 
of these cells in the adrenal gland of mice led to a more aggressive 
phenotype, as indicated by the reduced survival of mice implanted 
with DHCR7-deficient cells (Extended Data Fig. 12m,n). Interestingly, 

and in agreement with the reduced survival, analysis of these mice 
showed a massive increase in the incidence of lung metastasis in the 
DHCR7-deficient neuroblastoma group (Extended Data Fig. 12o,p); 
we speculate that ferroptosis-sensitive tumour cell lines, such as 
SK-N-DZ and BL41, benefit from mechanisms that protect against fer-
roptosis in the bloodstream39. Collectively, our data indicate that in 
ferroptosis-sensitive cell lines, the extra survival advantage conferred 
by accumulating 7-DHC promotes a more aggressive phenotype in vivo.

Discussion
Our work introduces and characterizes an unforeseen role for DHCR7 
in modulating ferroptosis. Although many reverse and forward genetic 
screens have been performed to identify regulators of ferroptosis, 
DHCR7 has not consistently emerged as a regulator—unlike ACSL4, for 
example13,40. Possible factors affecting DHCR7 inhibition and 7-DHC 
accumulation include defects in the cholesterol biosynthesis path-
way and the impact of free cholesterol on the mevalonate pathway, 
a notion supported by our results. We now provide a comprehensive 
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understanding of the protective role of B-ring-unsaturated sterols 
against phospholipid peroxidation and ferroptosis. Using 7-DHC and 
ergosterol as two representatives of this class of sterols, we show that 
the specific and robust protection against phospholipid peroxidation 
is a feature that is not limited to only mammalian cells but is shared 
between biologically distant organisms.

This discovery in itself poses a paradox: a lipid frequently reported 
to propagate radical chain reaction25,41 is capable of suppressing a cell 
death modality known to exclusively depend on these same biochemical 
events15,42. Initial studies have firmly established that, in cells undergoing 
ferroptosis, phospholipids furnished with PUFAs are the prime target 
for oxidation14. We now expand on this concept as we provide ample 
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statistical analysis; P value indicated. h, Tumour growth on implantation of 
DHCR7WT (blue, n = 5) or DHCR7KO (red, n = 5) of BL41 cell line. Data represent 
the mean ± s.e.m.; Mann–Whitney test one-tailed, P values are indicated. In 
each box, horizontal lines denote mean values, whereas the box contains  
the 25th to 75th percentiles of dataset and whiskers mark the 5th and 95th 
percentiles. i, Representative luminescence images from each group are shown 
(g,h). Images in f created with BioRender.com.
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evidence supporting their role in ferroptosis execution through the 
formation of membrane destabilizing truncated phospholipid species. 
These observations thus imply that lipid peroxidation can be uncoupled 
from cell death as only products of phospholipid peroxidation generate 
efficient ferroptosis-inducing metabolites. By having established this 
interrelationship, these seemingly paradoxical findings can now be 
rationalized. Molecules able to suppress the peroxidation of fatty acids 
esterified into phospholipid species need to efficiently outcompete 
PUFAs during lipid peroxidation and stabilize radical chain propagating 
species. Mechanistically, in isotropic solution, PUFAs have reported 
propagation rate constants (kp) ranging from 62 in linoleic acid up to 
197 M−1 s−1 for arachidonic acid, both of which can be easily outcompeted 
by 7-DHC given its extremely high (kp) of 2,260 M−1 s−1. This renders 
7-DHC a superior phospholipid shield when compared to other sterols 
(cholesterol (kp) = 11 and lathosterol (kp) = 57 M−1 s−1). Despite 7-DHC and 
other B-ring-unsaturated sterols being principal contributors and tar-
gets of lipid peroxidation, radicals derived from these sterol metabolites 
are poor inducers of cell death, unlike radicals in phospholipids that 
can give rise to membrane-destabilizing truncated species.

Together with the accompanying paper20, we demonstrate that this 
process can be exploited to suppress ferroptosis in different settings. 
Specifically, inspired by the report that rare mutations in DHCR7 have 
been reported in both patients with Burkitt’s lymphoma and patients 
with neuroblastoma, we demonstrate that the accumulation of 7-DHC 
can lead to a more aggressive phenotype in xenograft models relevant 
to both entities, thus presenting a potential compensatory mechanism 
for their intrinsic sensitivity to ferroptosis. This recognition could be 
relevant as recent reports have indicated that amplification of MYC and 
MYCN increase sensitivity to ferroptosis43–46 and extra mechanism pre-
venting ferroptosis in these oncogenic contexts could enhance cancer 
cell fitness. The ferroptosis-modulating activity of 7-DHC raises another 
noteworthy aspect; several recent screening studies have identified a 
series of FDA-approved drugs able to inhibit DHCR7 at nM concentra-
tions47. For example, trazodone is prescribed more than 20 million times 
a year in the USA, sometimes off-label as a sleep aid; studies of patients 
on this drug have reported increased plasma concentrations of 7-DHC48. 
Epidemiological studies will be required to explore whether there are 
any groups of patients who regularly consume ferroptosis-modulating 
drugs and whether this has any impact on cancer incidence, metastasis 
occurrence or other public health-relevant aspects.

Interestingly, some organisms seem to have shifted away from this 
strategy. Specifically, DHCR7-like enzymes convert 5,7-unsaturated 
sterols to the less autoxidizable sterols, such as cholesterol, thus keep-
ing the concentration of B-ring unsaturated sterols low. The replace-
ment of 7-DHC with cholesterol in humans offers clear benefits; this is 
documented by the causative role of DHCR7 mutations and the devel-
opmental syndrome known as Smith–Lemli–Opitz syndrome. This 
syndrome is characterized by varying levels of neurodevelopmental 
defects depending on the severity of the mutation. However, our find-
ings reveal a paradoxical aspect. Whereas previous studies have shown 
that oxidation products of 7-DHC are toxic to neuronal cells3 and can 
suppress key (neuro)developmental pathways like the Wnt/β-catenin49 
and Hedgehog50 signal pathways, our study presents a contrasting 
perspective. We have observed the accumulation of 7-DHC oxidation 
formed during the process of preventing phospholipid peroxidation in 
cancer cells exposed to oxidants, such as conditions that induce ferrop-
tosis. These findings emphasize the complex and context-dependent 
nature of 7-DHC and its oxidation products in different cellular contexts.

Ultimately, the mechanisms described here shed light in an unrecog-
nized and primitive tolerance mechanism toward phospholipid peroxi-
dation that could be highjacked by cancer cells to evade ferroptosis.
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Extended Data Fig. 1 | Lipidomic characterization of DHCR7-deficient cells. 
a, Lipidomics analysis of HT1080 cells expressing a Cas9 containing lentiviral 
vector co-expressing sgRNA targeting DHCR7 or EGFP as a control. Represented 
are the total amount of PE containing PUFA and the ratio of mono- to 
polyunsaturated fatty acids (MUFA/PUFA) in PE species. Data are represented 

as mean values ± s.d. of n = 3 technical replicates (from 10 cm plate) performed 
once. b, Fatty acid composition of PE species in the indicated cell lines. Data are 
representative of mean values ± s.d. of n = 3 technical replicates (6 cm plate) 
performed twice. c, Principal component analysis of PE composition data.



Extended Data Fig. 2 | DHCR7 deficiency impact on ferroptosis and other 
cell death modalities. a and b, Dose-dependent toxicity of RSL3 and FIN56 in 
DHCR7-Knockout clonal cell lines generated in the HT1080 (a) and PFa1 (b) cell 
lines. c, Levels of 7-DHC in MDA-MB-435 parental lines untreated and treated 
with a DHCR7 inhibitor (RB38 [500 nM]) and three independent DHCR7-KO 
clones. Data are represented as mean values ± s.d. of n = 2 technical replicates 

(from 10 cm plate) performed once. d, Dose-dependent toxicity of RSL3, FIN56, 
ML210, Erastin, Atheronal, Brefeldin-A, PLX-4032, Carfilzomib, TBOOH, 
Auranofin; Bortezomib and Docetaxel in MDA-MB-435 parental cells and the 
three DHCR7 knockout clones. Cell viability was assessed after 48 h using 
Alamar blue and data are representative of mean ± s.d. of n = 3 technical replicates 
of 2 independent experiments.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Characterization of HT1080 DHCR7-deficient clonal 
cell line. a, Graphical representation of the strategy used to generate DHCR7-
deficient cells with defined genomic alterations. b, Representative PCR of the 
pools and single clones derived thereof. c, Schematic representation of the 
sequencing results obtained from the PCR product (in blue) covering the 
edited region (in red) in comparison with the wild-type product. d, Sequencing 
chromatogram obtained from the edited allele. e, Relative quantification of 
7-DHC and levels of Cholesterol in HT1080 Cas9 WT, DHCR7-Knockout clone 
(DHCR7-KO) and the corresponding DHCR7-KO reconstituted with an empty 

lentiviral vector (mock) or overexpressing DHCR7. Data are the mean ± s.d.  
of n = 3 wells of a 6-well plate from one representative experiment. f, Dose-
dependent toxicity of RSL3 and FIN56 in HT1080 Cas9 DHCR7-KO clone and 
overexpressing DHCR7 or mock. g, Dose-dependent toxicity of ML210, Erastin, 
Carfilzomib, TBOOH, Atheronal B, Brefeldin-A, Auranofin and Docetaxel in 
HT1080 Cas9 DHCR7-KO clone transduced with a mock or a DHCR7 expressing 
vector. Cell viability was assessed after 48 h using Alamar blue and data are 
representative of mean ± s.d. of n = 3 technical replicates 2 independent 
experiments. *p < 0.05; two-way ANOVA (e, f).



Article

Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Impact of 7-DHC accumulation on ferroptosis.  
a, Schematic depiction of cholesterol biosynthesis, highlighting the 
pharmacological targets of the enzymes used in the present work. b, Dose-
dependent toxicity of RSL3 in DHCR7 WT and knockout HT1080 cells in the 
presence of pharmacological agents modulating cholesterol biosynthesis. 
Concentrations for the different inhibitors are: atorvastatin [1 µM], Amorolfine 
[500 nM], Tasin-1 [500 nM], Tamoxifen [1 µM] and RB38 [500 nM]. c, Dose-
dependent toxicity of Paclitaxel and Auranofin in HT1080 Cas9 DHCR7/SC5D 
knockout transduced with SC5D and/or DHCR7. d, Effect of sterols and squalene 
supplementation (10 µM) on RSL3 toxicity in cell expressing a control and two 
independent sgRNA targeting DHCR7. e, Effect of sterol supplementation on a 
genetic model of Gpx4 deficiency, i.e Pfa1 cells treated with TAM. f, Flow 

cytometry analysis of BODIPY 581/591 C11 oxidation in HT1080 cell line induced 
by RSL3 treatment ([100 nM], 5 h) in cells pretreated for 16 h with 10 µM of 
different sterols. g, Impact of exogenous free cholesterol and ent-cholesterol 
on the sensitivity of DHCR7-deficient cells to GPX4 inhibitors. h, Relative 
quantification of 7-DHC and Cholesterol levels in DHCR7-deficient cells treated 
with cholesterol and ent-cholesterol (8 µM). i, 7-DHC levels in HT1080 Cas9 
DHCR7-KO clone and pool of HT1080 expressing two independent sgRNA 
targeting DHCR7 treated with Cholesterol (5 µM). Data are representative data 
of mean ± s.d. of n = 3 technical replicate of a 96-well plate (b-e) or 6-well (f-i) 
performed twice. Cell viability was assessed after 48 h (b-d) or 72 h (e, f) using 
Alamar blue and data are representative of mean ± s.d. of n = 3 technical 
replicates (96-well plate) performed three times.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Influence of cholesterol low conditions on the 
antiferroptotic activity of the 7-DHC/DHCR7 axis. a, Quantification of 
cholesterol in FBS samples treated with fumed silica (20 g/L). Results are 
representative of one batch preparation used throughout this experiments.  
b, Relative quantification of 7-DHC and Cholesterol levels in HT1080 cells 
expressing a control and a DHCR7 targeting sgRNA grown in normal and 
delipidated FBS (dlFBS). c, Assessment of the response to RSL3 of DHCR7-
deficient and proficient cells in FBS and dlFBS containing the indicated 
metabolites. d, Immunoblot analysis of ferroptosis regulators, FSP1, ACSL4 
and GPX4 in cells grown in FBS and dlFBS. e, Immunoblot analysis of LRP8 and 
GPX4 in the indicated cell lines grown in FBS and dlFBS in the presence of the 
specified sterols (10 µM, 48 h). f, Total quantification of selenium by ICP-MS  

in FBS and dlFBS. g, Strategy and validation of A375 LDLR-KO cell lines using 
primers specific for the LDLR transcript. h, Assessment of SREBP2 target genes 
(DHCR7, HMGR, MSMO1 and MVK) in LDLR proficient and deficient cells.  
i, Immunoblot of LRP8 and GPX4 in the indicated cell lines. j, Assessment of 
uptake capacity of fluorescently labelled LDL in LDLR proficient and deficient 
cells. Visualization ( j) and quantification of LDL (k) or cholesterol upon Tasin-1 
(500 nM) treatment for 48 h (l) in LDLR proficient and deficient cells. m, Effect 
of LDLR loss on ferroptosis induction (ML210 + 2 µM iFSP1) in RB38 (500 nM) 
and Tasin-1 (500 nM) treated cells. Data are representative of mean ± s.d. of 
n = 2 (f, g), n = 3 (b, c, l, m), n = 4 (h) or n = 12 (k) technical replicates of a 96-well 
plate (c, m, j, k) or 6-well plate (b, g, h, l, m) performed twice. Cell viability was 
assessed after 72 h using Alamar blue (c, m).
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Extended Data Fig. 6 | Role of B-ring unsaturated sterol in ferroptosis.  
a, Chemical structure of 7-DHC and ergosterol highlighting the conjugated 
double-bond. b, Effect of sterols and squalene supplementation (5 µM) on 
RSL3-induced cell death in the HT1080 cell line. Cell viability was assessed after 
48 h using Alamar blue, data are representative of mean ± s.d. of n = 3 technical 

replicates from one representative of 2 independent experiments. c, Schematic 
representation of the ergosterol biosynthesis pathway in S. cerevisae, 
highlighting the major products reported to accumulate in these strains. d, Spot 
dilutions of the indicated strains of S. cerevisiae treated with the designated 
PUFAs (50 μM).



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Impact and consequence of 7-DHC on phospholipid 
peroxidation. a, Rate of initiation (Ri) in each soy PC liposome composition.  
b, Dynamic light scattering assessment of the impact of different sterols on the 
integrity of liposomes c, Scheme of the formation of PLPC-OOH, DLPC-OOH 
and DLPC-2OOH during autoxidation of soy PC that can be analysed by LC-MS/
MS using MRM. d, The resulting profiles of PLPC-OOH, DLPC-OOH and DLPC-
2OOH formation over time (integrations are relative to an internal standard 
(prostaglandin B2). e, Calculated rates from linear regression of the data related 
to d. f, Representative UV-Vis spectra obtained from a sample of soy PC with 
8 mol% 7-DHC during autoxidation. Spectra were processed by subtracting the 
background trace of vehicle liposomes immediately after the addition of DTUN. 
Loss of 7-DHC was plotted from the 294 nm peak (inset) with concentrations 
determined from a standard curve from liposomes prepared with soy PC with 

inhibitor and added 7-DHC (see Supporting Information). g, Standard curve for 
7-DHC prepared in either 95% EtOH or in soy PC liposomes with inhibitor. h, Time 
course of iron/ascorbate mediated oxidation of Egg-PC and sterol consumption 
in liposomes containing cholesterol, lathosterol or 7-DHC monitored via HPLC-
UV detection (235 nm for PCOOH, 205 nm for cholesterol and lathosterol and 
275 nm for 7-DHC). i, Quantification of 7-DHC and secondary oxidation products 
of 7-DHC in HT1080 SC5D/DHCR7 knockout cells expressing empty vector 
(black) and SC5D (red) upon 200 nM RSL3 with and without 500 nM Lip1 (6 h). 
Data are the mean ± s.d of n = 6 wells of a 10 cm plate from two independent 
experiments, *p < 0.05 two-way ANOVA (i). Each reaction (b, d, e, f, h) was 
repeated three times and is reported as the mean ± s.d for the kinetic plot (d)  
or error propagation from the slopes of d derived from linear regression.



Extended Data Fig. 8 | Impact of ferroptosis inhibitors on oxidant mediated 
liposomal rupture. a, Schematic representation of the CF/liposome assay used 
to monitor vesicle permeability. b, CF release from CF encapsulated liposomes 
generated using different sterols. CF release was stimulated using a mixture of 
iron and ascorbate (10 µM and 100 µM respectively). c, Impact of Lip1 on CF 
release from CF encapsulated liposomes containing cholesterol or 7-DHC.  

d, CF release in vesicles containing different ferroptosis inhibitors (10 µM) 
stimulated using a mixture of iron and ascorbate (20 µM and 200 µM 
respectively) in the absence (left panel) or in the presence of Ferrostatin-1  
(Fer-1; right panel). Data are representative of mean ± s.d. of n = 3 technical 
replicates of 2 independent experiments.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Role of truncated phospholipid in membrane 
permeability. a, Structure of selected truncated PC and related molecules 
tested. b Impact of native, peroxidised and truncated PC species in CF 
permeabilization. c, CF release in liposomes treated with different PC truncated 
species in a time and dose-dependent manner. d, Cell death induction by 
different PC truncated species in HT1080 cells in a time and dose-dependent 
manner. e, C50 of different truncated PL on CF release from liposomes 
containing 7-DHC or cholesterol. f, Schematic representation for the chemical 
basis of the PhotoPC probe: photoactivation leads to the generation of a 
defined mixture between the oxidized derivative PhotoOx-PC and the truncated 

derivative PhotoTrunc-PC. g, CF release in liposomes treated with PhotoPC 
before and after photoactivation in response to dose (fixed 1 h exposure) and 
time (fixed 365 µM). h, assessment of cell death (Draq7 positive) induced by 
equimolar concentrations of PhotoPC and PhotoTrunc-PC in HT1080 cells. 
Data are the mean ± s.d. of n = 6 wells of a 96-well plate from one representative 
of two independent experiments. i, Schematic representations of the events 
leading to the formation of truncated phospholipid species of formation of 
oxidatively truncated (phospho)lipid species and 7-DHC impact on it. 
Proferroptotic players are depicted in red and suppressing events are depicted 
in green.
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Extended Data Fig. 10 | Conjugation at the omega position affects ferroptosis 
sensitivity. a, Lipidomics analysis of WT and ACSL4 KO HT1080 cell lines 
incubated for 16 h with αLNN and γLNN (20 µM). Presented are the total amount 
of PE containing PUFA and the ratio of mono- to polyunsaturated fatty acids 
(MUFA/PUFA) in PE species. Mean values ± s.d. of n = 3 technical replicates 
(10 cm plate) performed twice. b, Fatty acid composition of PE species in WT 
and ACSL4 KO HT1080 cell lines incubated for 16 h with αLNN and γLNN (20 µM). 
Mean values ± s.d. of n = 3 technical replicates (10 cm plate) performed twice.  

c, Assessment of the impact of αLNN and γLNN [20 µM] re-senitization on 
RSL3-induced ferroptosis. Cell viability was assessed after 24 h measuring PI 
incorporation. Mean values ± s.d. of n = 3 technical replicates (6 cm plate) 
performed twice are presented. d. Dose-dependent effect of α-LNN and γ-LNN 
on RSL3 mediated toxicity in HT1080 ACSL4 KO cell lines. Data are the mean ± 
s.d. of n = 6 wells of a 96-well plate from one representative of two independent 
experiments. *p < 0.05; two-way ANOVA.



Extended Data Fig. 11 | Impact of 7-DHC accumulation on BL growth.  
a, Impact of selected pharmacological inhibitors of DHCR7 (RB38) and Lip1 on 
Multiple Myeloma cell line OPM2 and the BL cell lines RAMOS, BL02 and BL30 

grown in the absence of thiols and pyruvate. b, Relative quantification of 7-DHC 
and cholesterol levels in cell lines treated with RB38 and Tasin-1. Data are the 
mean ± s.d. of n = 3 wells, of a 6-well plate from one representative experiment.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Impact of DHCR7 loss in vivo. a, Immunoblot for DHCR7 
in MM1S cells DHCR7-proficient and deficient. Representative of n = 2. b, Dose-
dependent toxicity of ML210 in DHCR7WT or DHCR7KO in the presence of 
indicated treatments. c, Tumour growth upon implantation of MM1S DHCR7WT 
(n = 10) or DHCR7KO (n = 10). Data are mean ± SEM; p value n.s., Mann–Whitney 
test one-tailed. In each box, horizontal lines denote mean values, while the box 
contains the 25th to 75th percentiles of dataset and whiskers mark the 5th and 
95th percentiles. d, Representative luminescence images of mice from c.  
e, Schematic of tail vein injection of DHCR7WT (n = 5) or DHCR7KO (n = 5) BL41 cell 
in mice under selenium-adequate or -deprived diet. f, Immunoblot for GPX4 
from tissues of animals related to e. g, Kaplan–Meier plot displaying tumour-
free survival (TFS) for mice injected with DHCR7WT (n = 5) or DHCR7KO (n = 5) 
BL41 cells. Data represent the mean ± s.e.m.; Mann–Whitney test one-tailed;  
A Log-rank (Mantel–Cox) test was conducted for statistical analysis, p values are 
indicated. h, Luminescence images related to g. i, Immunoblot for DHCR7 in 
SK-N-DZ DHCR7KO and DHCR7WT. j, Relative quantification of cholesterol and 
7-DHC levels in SK-N-DZ cells treated with RB38 and Tasin-1. Data are the mean ± 

s.d. of n = 3 wells from one representative experiment. k, Dose-dependent 
toxicity of ML210 in the indicated cells. l, Flow cytometry analysis of BODIPY 
581/591 C11 oxidation in SK-N-DZ cells induced by RSL3 treatment ([100 nM], 
3 h) and Lip1 500 nM. m, Schematic representation illustrates an orthotopic 
mouse model created by transplanting DHCR7WT or DHCR7KO SK-N-DZ cells into 
the right adrenal gland of NSG mice. n, Kaplan- Meier plot displaying TFS for 
mice injected orthotopically with DHCR7WT (blue, n = 6) or DHCR7KO (red, n = 9) 
SK-N-DZ cells; *p < 0.05, A Log-rank (Mantel–Cox) test was conducted for 
statistical analysis. o, Lung colonization was evaluated (left panel) in mice 
orthotopically transplanted with SK-N-DZ neuroblastoma cells, with DHCR7WT 
(red, n = 6) or DHCR7KO (blue, n = 9), using ex vivo lung bioluminescence analysis 
(right panel);. p, Representative examples of evidence of metastases from o 
(indicated by green circle lines), determined by Hematoxylin and Eosin staining 
from samples of n. Scale bar: 500 µM. Cell viabilities were assessed after 72 h 
using Alamar blue, data are mean ± s.d. of n = 3 replicates from one representative 
of three independent experiments (b, k). RB38 (500 nM) and Tasin-1 (500 nM) 
(b, j, k). Panels created with BioRender.com (e, m).
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Antibodies against antibodies to GPX4 (1:1,000; no. ab125066, Abcam), β-actin (1:10,000; no. A5441, Sigma-Aldrich), ACSL4 (1:200; 

no. sc-271800, Santa Cruz), Flag-Tag (1:1,000; no. F3165, Sigma-Aldrich), DHCR7 (1:1,000, no. PAS-48204, Invitrogen), LRP8 (1:1000, 
no.ab108208, abcam); FSP1 (1:10; rat IgG2a monoclonal antibody raised against recombinant human FSP1 protein, clone 6D8-11); 
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Antibody against ACSL4 (no. sc-271800) was validated for westernblotting in a previous publication (PMID: 27842070) 
Antibody against β-actin (no. A5441) was validated as loading control for westernblotting in a previous publication (PMID: 15809369) 
Antibody against FSP1 was validated for westernblotting in a previous publication (PMID: 31634899) 
Antibody against DHCR7 was validated for westernblotting in a previous publication (PMID: 33422461) 
ntibody against LRP8 was validated for westernblotting in a previous publication (PMID: 32312520)

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) 4-hydroxytamoxifen (TAM)-inducible Gpx4-/- murine immortalised fibroblasts (Pfa1) have been characterised previously 
(PMID: 1876024). Human fibrosarcoma (HT1080) cells and human melanoma MB-435S were acquired from ATCC. The 
multiple myeloma cell line KMS26 was purchased from JCRB. Burkitt lymphoma cell lines were a kind gift of Prof. Gilbert 
Lenoir (International Agency for Research on Cancer – IARC, Lyon, France).

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Cells are tested at least once a yer for mycoplasm contamination by qPCR at Eurofins Genomics.

Commonly misidentified lines
(See ICLAC register)

MDA-MB-435 (SAMN03151832) 

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
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Laboratory animals female NOD.Cg-Prkdcscid Il2rgtm1WjI/SzJ (NSG)-mice (8 to 12 weeks old) were purchased from Charles River, Sulzfeld. 

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Animal studies were in compliance with German Cancer Center Institute guidelines and approved by the district government of lower 
Franconia (protocol number 55.2-2532-2-335) or governmental review board of the state of Baden-Wuerttemberg, 
Regierungspraesidium Karlsruhe, under the authorization number G-176/19, followed the German legal regulations. Experiments 
were conducted in accordance with the US National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen
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Any other potentially harmful combination of experiments and agents

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation 100,000 cells per well were seeded on 6-well dishes (Sarstedt) one day prior to the experiment in the presence of the tested 
lipid. On the next day, cells were washed and treated with the indicated concentration of RSL3 to induce ferroptosis. Cells 
were subsequently incubated with C11-BODIPY (581/591) (1 μM) for 20 min at 37°C before they were harvested by 
trypsinisation. Subsequently, cells were resuspended in 500 μL of fresh PBS (DPBS, Gibco) and analysed using an excitation of 
488-nm (FACS Canto II, BD Biosciences). Data was collected from the FL1 detector (C11-BODIPY) with a 502LP and 530/30 BP 
filter. At least 10,000 events were analysed per sample. Data was analysed using FlowJo Software.

Instrument FACS Canto II

Software For data collection the BF Bioscience was used. 
For data analysis Flowing software was used.

Cell population abundance The abundance of the desired cell population in post-sort fractions was generally > 96% of the total post-sort population. 

Gating strategy Live cell population were separated from cellular debris and dead cells using FSC/SSC.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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