NMR Sample

Sample quantity

NMR has intrinsic-ally poor sensitivity

Concentration

Simple spectra (proton 1D) ~ 50 μM Multidimensional spectra ~0,5 mM

Sample tubes

- 5 mm, 550 μl
- 3 mm, 150 μl
- Shigemi 5 mm, 250 µl

Solubility and stability

- Aggregation, precipitation
- NA better soluble than proteins
- NMR measurements long
 - Run a control spectrum before and after a long experiment (1D, ¹H-¹⁵N HSQC for labeled proteins)

Molecular weight

Increasing molecular weight

Complexity of the spectrum – number of lines, overlap

Increasing linewidths

Remedies Isotope labeling Multidimensional spectra TROSY, MQ

NMR tube

Choice

Volume Quality (geometry)

Cleaning

High quality tubes are expensive, not for single use!

Drying

No high temperatures above 50°C

Concentration, solvent exchange

Lyophylization

May harm samples (esp. proteins) Ultrafiltration Gel filtration Ultracentrifugation

Isotope effect, $H_2O vs D_2O$

No D₂O is 100%

Viscosity

Melting/freezing point of D_2O is $3.8^{\circ}C$

рΗ

Glass electrode shows 0.4 units difference (7.0 in H_2O , 6.6 in D_2O), pH* value

Sample parameters

рΗ

lonic strength

NMR probes (esp. cryoprobes) do not like high salt concentrations (above 100 mM)

Buffer type

Preferably buffer with no NMR signals

Concentration

Oligomerization, precipitation, high viscosity

Temperature

Sharper lines at higher temperatures, but not for exchangeable protons

Chemical shift reference

Internal

Add reference compound to the sample

External

Capillary within the sample tube

Direct

Reference compound measured together with the sample

Indirect

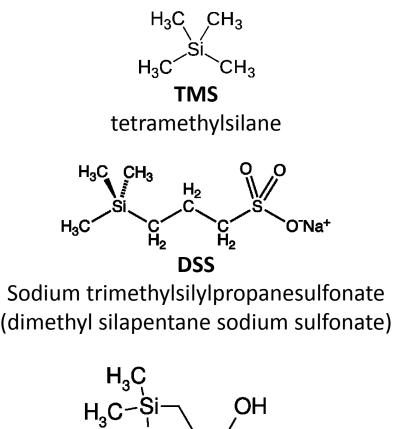
Reference compound measured separately or the chemical shift is calculated

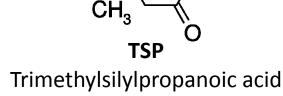
Common reference compounds

Wishart et al. (1995), J. Biomol. NMR 6, 135-140.

^{1}H

TMS 0.00 ppm, not soluble in water TSP around 0, varies slightly with pH DSS 0.00 ppm


¹³C


TMS 1.7 ppm, not soluble in water TSP around 0, varies slightly with pH DSS 0.00

¹⁵N

 $NH_3 0.00 \text{ ppm, bio}$ $CH_3NO_2 \text{ (neat) 381.7, chemistry}$

 H_3PO_4

Contamination

- Paramagnetic contamination
 - Broadens the lines, destroys resolution
 - Cu ,Mn, Cr, Fe, Co
- Microbial contamination
 - Bacteria can eat-up your sample
 - Work clean, add sodium azide (toxic!), EDTA
 - Bacteria do not strive in 100% D_2O