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a b s t r a c t 

The paper presents a 3D macroscopic constitutive model for Iron-based shape memory alloys (Fe-SMAs) 

that uses different thermomechanical properties for austenite and martensite, and considers nonlinear 

coupling effects between phase transformation and plasticity. The constitutive equations are derived from 

a potential comprising the Voigt mixture of the free energies of the two phases adapted from the ZM 

model, and a new interaction energy term. The loading conditions for phase transformation and plastic 

deformation are obtained by requiring the governing thermodynamic forces to derive from an appropri- 

ate dissipation potential, in which a quadratic plasticity-dependent term has been introduced to account 

for its suppressive effect on forward transformation. The model is implemented in ABAQUS through a 

user defined material subroutine (UMAT), validated against experimental data taken from the literature, 

and used to simulate partial unloading and investigate the influences of interaction parameters. Finite 

element analysis of a precracked compact tension sample is then carried out under both plane stress and 

plane strain (nonproportional stress fields with strong gradients). The results show highly heterogeneous 

stress distribution in the specimen. The inelastic strain singularity at the crack front is a consequence of 

pure phase transformation at low temperature, pure plasticity at high temperature, and a mix of both at 

intermediate temperatures. During unloading, the crack front accommodates the compression of the sur- 

rounding material by undergoing cyclic phase transformation and/or reversed plasticity, which, in turn, 

induces partial crack closure. If the mechanical loading cycle is operated at low temperature then heating 

leads to complete crack closure due to martensite → austenite transformation, while if it is operated at 

elevated temperature, heating leads to further but not complete crack closure as a result of the thermal- 

induced plasticity. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Shape memory alloys (SMAs) can experience severe inelastic

eformation that can be recovered by heating or unloading, de-

ending on prior loading history. The origin of this unusual behav-

or is a first-order, solid-solid, diffusionless and reversible phase

hange called martensitic transformation, which takes place be-

ween a parent austenite phase (A) and a product martensite

hase (M) ( Chang and Read, 1951; Buehler et al., 1963; Olson and

ohen, 1982 ). Shape recovery can be accomplished by heating,
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iving rise to a “shape memory” effect (SME), or by mechanical

nloading resulting in a pseudoelastic behavior (PE). The shape

emory effect, in particular, was first reported by Chang and Read

1951) in a Au-Cd alloy. It was later observed in many NiTi, Cu, and

e alloys, which are collectively the most used SMAs today. A gen-

ral and detailed overview of shape memory alloys can be found

n Cissé et al. (2016a ) and Cissé et al. (2016b ). 

Compared to Cu-based and Fe-based SMAs, Nitinol is biocom-

atible ( Buehler and Cross, 1969; Shabalovskaya, 1996; Es-Souni

t al., 2005; Bansiddhi et al., 2008 ) and shows higher corrosion re-

istance and more pronounced dependence of the thermomechan-

cal behavior on loading rate ( Araya et al., 2008; Araki et al., 2012 ),

rain size ( Sutou et al., 2013 ) and temperature ( Sutou et al., 2009;

iitsu et al., 2011 ). In contrast, polycrystalline Cu-based SMAs are
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brittle and therefore challenging to use in engineering applica-

tions ( Casciati et al., 2007; Ueland and Schuh, 2012 ). Both al-

loys show high achievable strain recovery ( Otsuka and Wayman,

1999; Miyazaki et al., 1999; Johnson, 2013 ) as well as narrow ther-

mal hysteresis, elevated cost, and low weldability and machinabil-

ity ( Jalaeefar and Asgarian, 2013 ). Moreover, NiTi appears to be

comparable to polycrystalline CuAlBe ( Siredey et al., 2005 ) and

oligocrystalline CuZnAl SMAs ( Ueland and Schuh, 2012 ), but supe-

rior to single crystal and polycrystalline CuZnAl in terms of fatigue

endurance, based on the results of rotary bending tests reported

by Miyazaki et al. (1999) and Vincent et al. (2015) . Fe-based SMAs,

on the other hand, were first investigated by Sato et al. (1982) and

found to exhibit larger hysteresis, higher elastic stiffness and duc-

tility, and lower shape recovery (about 4%) compared to NiTi and

Cu-based alloys ( Cladera et al., 2014 ). They also offer lower cost

and better workability, weldability and machinability ( Kajiwara,

1999 ), which make them attractive for larger and more complex

engineering structures. Yamauchi et al. (2011) distinguished two

main categories of Fe-SMAs: The first category comprises Fe-Pt,

Fe-Pd and Fe-Ni-Co alloys that display thermoelastic phase trans-

formation, similar to NiTi and Cu-based SMAs, with small thermal

hysteresis and high SME (up to 13%) ( Tanaka et al., 2010 ), while the

second category includes Fe-Ni-C and Fe-Mn-Si alloys, character-

ized by nonthermoelastic transformation accompanied with large

thermal hysteresis and moderate SME ranging from 2.5% without

training to 4% for trained material. This low SME in Fe-SMn-Si al-

loys can be improved by training ( Federzoni et al., 1993; Wang

et al., 1995; Zhao, 1999 ), precipitation ( Rong et al., 1995; Kajiwara

et al., 2001; Stanford et al., 2008; Wen et al., 2008 ), heat treatment

and rolling ( Stanford and Dunne, 20 06; Baruj and Troiani, 20 08;

Druker et al., 2011 ) as well as a combination of aging, pre-straining

and training ( Lin et al., 2014 ). 

Phase transformation in NiTi occurs by homogeneous shearing

of the body-centered cubic (BCC) austenite lattice into a hexago-

nal close-packed (HCP) martensite lattice. In the case of Fe-Mn-

Si, the HCP martensitic phase is formed by slippage of the face-

centered cubic (FCC) austenitic microstructure. This mechanism is

based on Shockeley dislocation during which the three-plane stack-

ing sequence (ABC) of FCC changes to a two-plane sequence of

type (ABA). Due to this change, the slippage does not preclude re-

verse transformation, in contrast to plasticity where the initial and

final microstructure have the same crystal lattices despite the re-

arrangement of atoms ( Cladera et al., 2014 ). In addition, Fe-Mn-

Si displays higher ductility compared to NiTi, and a yield strength

that decreases noticeably with increasing temperature ( Khalil et al.,

2013 ). The increased ductility is due to facilitated slippage on

closely packed atomic planes, which have a higher packing factor

in FCC than in BCC crystals. With regard to the influence of mate-

rial composition, Otsuka (1991) found that adding up to 7% (wt%)

Cr improves the corrosion resistance of Fe-Mn-Si alloys. The author

also observed that high Mn concentration stabilizes the austenitic

phase whereas a low Mn concentration promotes the formation of

irreversible body-centered tetragonal (BCT) martensite. This loss of

SME due to lower Mn content can be countered by increasing Si

concentration ( Sato et al., 1982 ). Recently, Peng et al. (2015) found

that SME in Fe-SMAs can also be improved by the addition of car-

bon after thermomechanical treatment. 

In Fe-Mn-Si crystals, twelve martensite variants can be formed

in four habit planes along three directions ( Cladera et al., 2014 ).

However, the energy gap between these variants is very high com-

pared to the plastic gliding energy ( Goliboroda et al., 1999 ), which

makes reorientation of pre-existing martensite variants virtually

impossible. For this reason, the inelastic deformation in Fe-Mn-Si

is mostly due to plastic slip or to stress-induced martensite trans-

formation in the temperature range [ M 

0 
s , A 

0 
s ] , where M 

0 
s and A 

0 
s are,
espectively, the martensite start and austenite start temperatures

t zero stress. 

The current deficiencies in the engineering applications of Fe-

MAs are rooted in the lack of suitable numerical models. In-

eed, recent experimental efforts have confirmed the appropriate-

ess of these alloys for large engineering structures such as smart

omposites ( Watanabe et al., 2007 ) or reinforced concrete beams

 Sawaguchi et al., 2006 ). However, without simulation tools, un-

erstanding and predicting the behavior of such structures may

e complicated and expensive. Contrary to NiTi and Cu-based

MAs, very few constitutive models are available for Fe-SMAs,

ith most still limited to uniaxial formulations and/or simulations

 Nishimura et al., 1997; Goliboroda et al., 1999; Nishimura et al.,

0 03; Lazghab and Wu, 20 05; Cissé et al., 2015 ). Nishimura et al.

1997) derived a uniaxial phenomenological model for polycrys-

alline Fe-SMAs using an exponential flow rule for phase trans-

ormation. Goliboroda et al. (1999) proposed a nonlinear unidi-

ectional model for the thermomechanical behavior of Fe-based

MAs considering transformation-dependent yield strength. The

odel was shown to properly describe the accumulation of inelas-

ic strain during cyclic loading and the nonlinear stress-strain be-

avior of the SMA near the onset of phase transformation. Later,

azghab and Wu (2005) developed a uniaxial model that can sim-

late the shape memory effect and pseudoelasticity of Fe-SMAs in

ension and compression, considering the influence of plastic de-

ormation on phase transformation. Jemal et al. (2009) proposed

ne of the first 3D model for Fe-SMAs, in which the state equa-

ions derive from the expression of a Gibbs free energy density.

he model considers linear hardening during inelastic deforma-

ion, which is not consistent with experimental observations. This

hortcoming was addressed by Khalil et al. (2012) through the

ntroduction of nonlinear hardening terms, which allowed better

greement with experimental data at low loading temperatures.

he model was implemented in Abaqus for structure analysis, but

resents impairments such as quasi-linear plastic hardening, and

otable deviation in the stress-strain loading curve and poor pre-

iction of the shape recovery when coupling between transfor-

ation and plasticity occurs. A more recent attempt was made

y Evard et al. (2016) who proposed a microstructural model for

eMn-based shape memory alloys. However, several restrictions

uch as linear hardening, the lack of experimental validation and

he absence of 3D simulations were reported; thus raising doubts

bout the capability of their model to properly design Fe-SMA de-

ices. In this context of insufficient representation of Fe-SMAs, a

ew nonlinear 3D model is proposed in this manuscript. The free

nergy of the two phases is derived by adapting the approach used

n the ZM model ( Zaki and Moumni, 2007 ) to FeMnSi alloys. A new

xpression of the interaction energy, which is the most important

art in any constitutive model, is proposed to account for the di-

ections of the inelastic strains. The pseudo-potential of dissipa-

ion is expressed with different thermomechanical properties and

onsiders the plasticity-dependence of the critical force of forward

ransformation. The paper is organized as follows: 

• Section 2 is dedicated to the derivation of the constitutive

equations of the model. This is accomplished by first construct-

ing an expression of the Helmholtz free energy density for Fe-

SMAs, which is then augmented to account for constraints on

the state variables using the theory of Lagrange multipliers. The

resulting Lagrangian, considered as a thermodynamic potential,

allows the derivation of the thermodynamic forces used to de-

fine the loading conditions for phase transformation and plastic

deformation, 
• Section 3 presents the time-discrete integration of the constitu-

tive model, 
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Table 1 

Summary of the constitutive equations. 

• Loading functions 

F 

tr 
m = 

G ma 

6 
σ 2 

eq + 

κma 

2 
σ 2 

h + σ : ( ̄ε tr − ε̄ pl ) − ζm (T − M 

0 
s ) − H v ( ̄ε tr : ε 

tr ) ( ε tr : ε tr ) 
n v −1 

2 

− H pv δpv ( ̄ε tr : ε 
pl ) 

[
( ε tr : ε pl ) δpv 

]n pv − σ tr 
m ε L − H s p 

2 + (λ1 − λ2 ) , 

F 

tr 
a = − G ma 

6 
σ 2 

eq −
κma 

2 
σ 2 

h − σ : ( ̄ε tr − ε̄ pl ) + ζa (T − A 0 s ) + H v ( ̄ε tr : ε 
tr ) ( ε tr : ε tr ) 

n v −1 
2 

+ H pv δpv ( ̄ε tr : ε 
pl ) 

[
( ε tr : ε pl ) δpv 

]n pv − σ tr 
a ε L + H x ξ − (λ1 − λ2 ) , 

F 

pl 
a = (1 − ξ ) 

[ 
σ − H p ( ε 

pl : ε pl ) 
n p −1 

2 ε pl − H pv δpv 

[
( ε tr : ε pl ) δpv 

]n pv 
ε tr 

] 
: N pl − < σ pl 

a − βT > . 

• Kuhn–Tucker conditions on the loading functions 

F 

tr 
m ≤ 0 , ˙ ξ ≥ 0 , ˙ ξF 

tr 
m = 0 , 

F 

tr 
a ≤ 0 , − ˙ ξ ≥ 0 , (− ˙ ξ ) F 

tr 
a = 0 , 

F 

pl 
a ≤ 0 , ˙ p ≥ 0 , ˙ p F 

pl 
a = 0 . 

• Kuhn–Tucker conditions on the state variables 

λ1 ≥ 0 , λ1 ξ = 0 , 

λ2 ≥ 0 , λ2 (1 − ξ ) = 0 . 

• Flow rules 

˙ ε tr = 

˙ ξε L N 
tr , with N tr = 

{ 

3 
2 

V dev 
tr 

V eq 
tr 

, if ˙ ξ > 0 , 

ε tr 

ξ
, if ˙ ξ < 0 , 

˙ ε pl = (1 − ξ ) ̇ p N pl , with N pl = 

⎧ ⎨ 

⎩ 

3 
2 

V dev 
pl 

V eq 

pl 

, if σeq � = 0 , 

ε pl 

ε eq 

pl 

, otherwise . 

• Stress-strain relation 

σ = 

[
(1 − ξ ) K −1 

a + ξK −1 
m 

]−1 
: (ε − ε tr − ε pl ) . 
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• Section 4 provides a detailed procedure for calibrating the pa-

rameters of the model from uniaxial tensile tests. The proce-

dure is applied to determine the material parameters corre-

sponding to the experimental results of Khalil et al. (2012) , 
• In Section 5 , the model is first confronted to experimental and

numerical data reported in Khalil et al. (2012) and further nu-

merical investigations are made afterward. 
• In Section 6 , the model is used to predict the thermomechani-

cal response of a precracked compact tension sample at differ-

ent loading temperatures for both plane stress and plane strain

conditions. Important observations relevant to crack closure and

thermal-induced plasticity are discussed. 

. Derivation of the constitutive relations 

The model is developed in a way that is highly imitative of

he framework of generalized standard materials ( Frémond, 2002;

alphen and Nguyen, 1974 ), taking into account the presence of

onstraints on the state variables ( Moumni et al., 2008 ). Due to

he very high yield strength of martensite in Fe-Mn-Si alloys, plas-

ic deformation is assumed to take place exclusively in austenite.

 possible reason is that plastic gliding is easier in cubic lattice

tructures such as FCC austenite because of their high symmetry,

hich gives more closely packed planes in several directions com-

ared to non-cubic lattices like HCP martensite. Therefore, the dis-

ipative processes considered by the model are the stress-induced

artensite transformation and the plastic deformation in austen-

te. The complete set of state variables used to derive the model

onsists of the following: 

• The total strain tensor ε , 
• The temperature T , 
• The local strain tensors ε a for austenite and ε m 

for martensite, 
• The volume fraction of martensite ξ , 
• The local transformation strain tensor ε̄ tr , 
• The macroscopic transformation strain tensor ε tr , 
• The magnitude of cumulated plastic strain p . 
• The average plastic strain tensor of austenite ε̄ pl , 

• The macroscopic plastic strain tensor ε pl . 

.1. Free energy density 

The Helmholtz free energy density 
 of the SMA is obtained

rom those of austenite, 
a , and martensite, 
m 

, by means of a

oigt rule of mixture rule and the incorporation of an interaction

nergy 
int so that 

= ( 1 − ξ ) 
a + ξ
a + 
int . (1)

he experimental results of Khalil et al. (2012) point out different

lastic loading and unloading slopes. This suggests the necessity

o use, contrary to existing Fe-SMA models, different elastic mod-

li for the parent and product phases. From the assumption that

lasticity occurs only in austenite, and following Zaki and Moumni

2007) and subsequent developments in Zaki et al. (2011, 2010) ,

aki (2010) and Ould Moussa et al. (2012) , the free energy density

f austenite, 
a , is taken as 

a = 

1 

2 

(ε a − ε̄ pl ) : K a : (ε a − ε̄ pl ) , (2)

here K a is the elastic stiffness tensor of austenite. The free energy

f martensite, 
m 

, is given by 

m 

= 

1 

2 

(ε m 

− ε̄ tr ) : K m 

: (ε m 

− ε̄ tr ) + C(T ) , (3)

here K m 

is the elastic stiffness tensor of martensite and C ( T ) is a

hemical energy density for phase transformation that varies lin-

arly with temperature T as follows, 

(T ) = ζ ( T − T 0 ) , (4)

here T 0 is the equilibrium temperature of the alloy and ζ
s a parameter controlling the influence of temperature on the

ransformation stress. The experimental work of Nishimura et al.

1999) shows that, in Fe-Mn-Si SMAs, the martensite start line and

ustenite start line have different slopes. To account for this aspect

hat was ignored in existing models, the present work considers

ifferent values of ζ for forward transformation ( ζ m 

) and reverse

hase change ( ζ a ). In addition, the following new expression of the
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Fig. 1. Experimental and simulated stress-strain curves at T = 20, 50 and 130 o C. 
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interaction energy 
int where the orientation of the existing in-

elastic strains is accounted for is proposed: 


int = 

H v 

( n v + 1) 
( ε 

tr : ε 

tr ) 
n v +1 

2 + 

H p 

( n p + 1) 
(ε 

pl : ε 

pl ) 
n p +1 

2 

+ 

H pv 

( n pv + 1) 

[
( ε 

tr : ε 

pl ) δpv 

]n pv +1 
. (5)

In (5) , parameters H v and n v describe the interactions between

martensite variants, H p and n p describe the interactions be-

tween slip systems, H pv and n pv describe the interactions be-

tween martensite variants and slip systems as well as the interac-

tions between and inside grains, and δpv = sgn ( ε tr : ε pl ) . The rates

of macroscopic transformation strain 

˙ ε tr and macroscopic plastic

strain 

˙ ε pl are expressed as follows 

˙ ε 

tr = 

˙ ξ ε̄ tr = 

˙ ξε L N 

tr , (6)

˙ ε 

pl = (1 − ξ ) ̇ ε̄ pl = (1 − ξ ) ˙ p N 

pl , (7)

where εL is the maximum uniaxial transformation strain, ˙ p is the

rate of the magnitude of plastic strain, N 

tr and N 

pl are tensors

which non Mises norms are one and that gives, respectively, the di-

rection of transformation and plasticity. It is worth mentioning that

(6) and (7) are based on the assumptions that the rate of transfor-

mation strain is proportional only to that of the volume fraction

of martensite; and the rate of plastic strain is proportional only to

that of the magnitude of cumulative plastic strain. 
.2. Internal constraints and Lagrangian 

The state variables are subjected to the following physical con-

traints: 

Constraint 1 : the volume fraction of any single phase cannot

be less than 0 or more than 1, which is expressed by the

inequalities 

ξ ≥ 0 and (1 − ξ ) ≥ 0 . (8)

Constraint 2 : the two phases are assumed to be arranged in

series. The total strain tensor is therefore obtained from the

local strain in each phase using Voigt rule of mixture, 

ε = (1 − ξ ) ε a + ξε m 

. (9)

The above linear constraints derive from the following con-

traints potential: 

KT = −λ1 ξ − λ2 (1 − ξ ) − λ : [ (1 − ξ ) ε a + ξε m 

− ε ] , (10)

here λ1 , λ2 , and λ are Lagrange multipliers obeying the Kuhn–

ucker conditions 

1 ≥ 0 , λ1 ξ = 0 , λ2 ≥ 0 , λ2 (1 − ξ ) = 0 , and 

λ : [ (1 − ξ ) ε a + ξε m 

− ε ] = 0 . (11)

he following Lagrangian is then constructed as the sum of

he Helmholtz free energy, interaction energy and constraints
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Fig. 2. Competition between transformation and plasticity. 
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 = 
 + 
KT 

= 

(1 − ξ ) 

2 

[
(ε a − ε̄ pl ) : K a : (ε a − ε̄ pl ) 

]
+ 

ξ

2 

[ (ε m 

− ε̄ tr ) : K m 

: (ε m 

− ε̄ tr ) ] + ξζ (T − T 0 ) 

+ 

H v 

( n v + 1) 
( ε 

tr : ε 

tr ) 
n v +1 

2 + 

H p 

( n p + 1) 
(ε 

pl : ε 

pl ) 
n p +1 

2 

+ 

H pv 

( n pv + 1) 

[
( ε 

tr : ε 

pl ) δpv 

]n pv +1 

−λ1 ξ − λ2 (1 − ξ ) − λ : [ (1 − ξ ) ε a + ξε m 

− ε ] . (12) 

.3. State equations 

From considerations of thermodynamic consistency, the state

quations are derived as follows: 

∂L 

∂ε 

= σ ⇒ λ = σ, (13) 

∂L 

∂ ε a 
= 0 ⇒ (1 − ξ ) 

[
K a : (ε a − ε̄ pl ) − λ

]
= 0 , (14) 

∂L 

∂ ε m 

= 0 ⇒ ξ
[
K m 

: (ε m 

− ε̄ tr ) − λ
]

= 0 , (15) 

∂L 

∂λ
= 0 ⇒ (1 − ξ ) ε a + ξε m 

− ε = 0 , (16) 

∂L 

∂ξ
= A tr , (17) 

∂L 

∂ p 
= A pl , (18) 

∂L 

∂ ε̄ tr 
= ηtr , (19) 

∂L 

∂ ε̄ pl 

= ηpl . (20) 

he martensitic transformation and plastic deformation being

he only dissipative processes, the corresponding thermodynamic

orces A tr and A pl are not zero in general. Using Eqs. (13) –(16) ,

hese thermodynamics forces and the stress-strain relation are
xpressed as follows: 

 tr = 

G ma 

6 

σ 2 
eq + 

κma 

2 

σ 2 
h + σ : ( ̄ε tr − ε̄ pl ) − ζ (T − T 0 ) 

− H v ( ̄ε tr : ε 

tr ) ( ε 

tr : ε 

tr ) 
n v −1 

2 

− H pv δpv ( ̄ε tr : ε 

pl ) 
[
( ε 

tr : ε 

pl ) δpv 

]n pv + (λ1 − λ2 ) , (21) 

 pl = (1 −ξ ) 
[ 
σ−H p ( ε 

pl : ε 

pl ) 
n p −1 

2 ε 

pl −H pv δpv 

[
( ε 

tr : ε 

pl ) δpv 

]n pv 
ε 

tr 
] 

: N 

pl , (22) 

= K eq : 
[
ε − ε 

tr − ε 

pl 
]
, (23) 

 eq = 

[
(1 − ξ ) K 

−1 
a + ξK 

−1 
m 

]−1 
, (24) 

here G ma = 

1 
G m 

− 1 
G a 

and κma = 

1 
κm 

− 1 
κa 

are the differences in in-

erse shear and inverse bulk moduli of the two phases. The von

ises effective stress σ eq and hydrostatic stress σ h are given by 

eq = 

√ 

3 

2 

( σdev : σdev ) , (25) 

h = 

1 

3 

tr (σ) , (26) 

here σdev = σ − σh I is the deviatoric stress. 

.4. Pseudopotential of dissipation and loading conditions 

Within the framework of generalized standard materials, the

hermodynamic forces A tr , and A pl are taken as sub-gradients of a

eal-valued convex pseudo-potential of dissipation D with respect

o the rate variables ˙ ξ and ˙ p . 

efinition 1. a real-valued convex function f : C → R is said to

ave a sub-gradient U at point x 0 in a set C of R 

n if U ∈ R 

n 

erifies the inequality f (x ) ≥ f (x 0 )+ < U , x − x 0 > for all x ∈ C ,

here < ., . > denotes the dot product in R 

n . 

The pseudo-potential D is required to verify the following

athematical properties: 

roperty 1. D = D(u 1 , u 2 , . . . , u n ) must be convex and lower semi-

ontinuous with respect to its variables. 

This means that D : C → R ∪ {−∞ , + ∞} must be an extended-

eal-valued and convex function for which f (x ) ≤ lim i → + ∞ 

f (x i ) at
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Table 2 

Material parameters. 

Parameter Value Parameter Value 

E m 260 GPa E a 130 GPa 

σ tr 
m 130 MPa σ tr 

a 72 MPa 

ζ m 0.086 MPa/ o C ζ a 0.043 MPa/ o C 

β 0.45 MPa/ o C σ pl 
a 250 MPa 

M 

0 
s 0 o C A 0 s 95 o C 

H v 1165.7 MPa n v 0.52 

H p 497.8 MPa n p 0.45 

H pv 19567 MPa n pv 0.48 

H s 50 0 0 MPa H x 13.12 MPa 

ν 0.3 
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any point x ∈ C , for every sequence x 1 , x 2 , x 3 , . . . in C such that

x i converges to x and the limits of f ( x 1 ), f ( x 2 ), f ( x 3 )... exist in

[ −∞ , + ∞ ] . The lower semi-continuity property is guaranteed if D

is continuous. 

Property 2. D must be positive and equal to zero at the origin. 

This means that D(x ) ≥0 , ∀ x = (x 1 , x 2 , . . . , x n ) ∈ C ; and D( x ) =
0 , for x = 0 . 

Property 3. D must be positively homogeneous of degree one for

rate-independent processes. 

This means that D(μ( x 1 , x 2 , . . . , x n )) = μD ( x 1 , x 2 , . . . , x n ) , ∀ μ
> 0. 

The first two requirements on D ensure that the evolution

equations derived within the framework of generalized standard

materials satisfy the second principle of thermodynamics. In this

work, D is defined as follows: 

D( ˙ ξ , ˙ p ) = D 

tr 
α | ˙ ξ | + D 

pl 
a | ˙ p | , (27)

where the functions D 

tr 
α , α = { a , m } , and D 

pl 
a are given by 

D 

tr 
m 

(p) = σ tr 
m 

ε L + ζm 

(T 0 − M 

0 
s ) + H s p 

2 , for ˙ ξ > 0 , (28)

D 

tr 
a (ξ ) = σ tr 

a ε L − ζa (T 0 − A 

0 
s ) − H x ξ , for ˙ ξ < 0 , (29)

D 

pl 
a (T ) = < σ pl 

a − βT > . (30)

To capture more accurately the reverse transformation and avoid

physical inconsistencies, the present work considers two different

critical stresses σ tr 
m 

and σ tr 
a for forward and reverse phase trans-

formations, respectively. It is well known from experiments like

Khalil et al. (2013) that plastic slip has detrimental effect on phase

transformation. In order to take into account this phenomenon that

has been ignored in existing Fe-SMA models, the present work

introduces the new term “H s p 
2 ” in (28) . The incorporation of

the term “H x ξ ” in (29) is motivated by the experimental results

of Nishimura et al. (1999) highlighting a shift of the A s line to-

wards the lower temperature side with the increase of the marten-

site quantity; ζ a being unaffected. In (30) , σ pl 
a is the plastic yield

strength of austenite, and β is a parameter controlling the lin-

ear decrease with temperature of the plastic yield strength, with

< x > = x if x is positive and 0 otherwise. From the relations 

A tr = −∂L 

∂ξ
and A tr ∈ ∂ ˙ ξ D, 

A pl = −∂L 

∂ p 
and A pl ∈ ∂ ˙ p D, 

(31)

the following loading functions are obtained: 

F 

tr 
m 

= A tr − D 

tr 
m 

, for forward phase transformation , (32)

F 

tr 
a = −A tr − D 

tr 
a , for reverse phase transformation , (33)
 c  
 

pl 
a = A pl − D 

pl 
a , for plastic deformation . (34)

onsidering the constraints (8) and (9) , the model is completed by

he following Kuhn–Tucker conditions associated to the dissipative

ariables: 

• F 

tr 
m 

≤ 0 , ˙ ξ ≥ 0 and 

˙ ξF 

tr 
m 

= 0 for forward transformation, 
• F 

tr 
a ≤ 0 , − ˙ ξ ≥ 0 and (− ˙ ξ ) F 

tr 
a = 0 for reverse transformation, 

• F 

pl 
a ≤ 0 , ˙ p ≥ 0 and ˙ p ˙ F 

pl 
a = 0 for plastic deformation. 

The transformation and plastic directions are obtained by us-

ng the generalized normality rule . To this end, we consider the two

ectors 

tr = ξ
[ 
σ − H v ( ε 

tr : ε 

tr ) 
n v −1 

2 ε 

tr − H pv δpv 

[
( ε 

tr : ε 

pl ) δpv 

]n pv 
ε 

pl 
] 
, 

(35)

pl = (1 −ξ ) 
[ 
σ−H p (ε 

pl : ε 

pl ) 
n p −1 

2 ε 

pl −H pv δpv 

[
(ε 

tr : ε 

pl ) δpv 

]n pv 
ε 

tr 
] 
. 

(36)

emark 1. for martensite transformation, we are interested in

efining the flow direction only for the case ξ > 0 . 

emark 2. for plastic deformation, the case ξ = 1 is not at stake

ere, since it corresponds to complete martensitic transformation,

hile plasticity is considered only for austenite. 

Using these two remarks, we define V 

tr = 

1 
ξ
ηtr and V 

pl =
1 

(1 −ξ ) 
ηpl , from which N 

tr and N 

pl are constructed as follows 

 

tr = 

{ 

3 
2 

V dev 
tr 

V eq 
tr 

, if ˙ ξ > 0 , 

ε tr 

ξ
, if ˙ ξ < 0 , 

(37)

nd 

 

pl = 

⎧ ⎨ 

⎩ 

3 
2 

V dev 
pl 

V eq 

pl 

, if σeq � = 0 , 

ε pl 

ε eq 

pl 

, otherwise . 
(38)

n the above two equations, V 

dev 
α and V 

eq 
α are, respectively, the de-

iatoric part and von Mises norm of the first order tensor V 

α , with

= { tr , pl } . 
emark 3. defining the tensors V 

tr = 

1 
ξ+ υ ηtr and V 

pl = 

1 
(1 −ξ )+ υ ηpl ,

ith υ → 0 , would also remove the singularities. 

The constitutive model is summarized in Table 1 . 

. Time-integration of the model 

The proposed model needs to be integrated in commercial soft-

are for the design of Fe-SMA structures. A common way is to im-

lement, in a discrete form, the constitutive equations in a user

efined material subroutine (UMAT) that is appended to “finite

lement”-based software ABAQUS. The time-discrete integration of

he constitutive equations was accomplished using an implicit nu-

erical algorithm ( Zaki, 2012; Gu et al., 2015 ). 

.1. Algorithmic setup 

It is well known in computational mechanics that stability is

uaranteed with backward Euler method (BEM). The BEM have

everal subcategories among which the “Return Mapping Algo-

ithms” (RMA) have the advantage to be implicit not only in time

teps but also in iterations. Therefore, the convexity of the loading

unctions are sufficient conditions to ensure convergence of RMAs.

owever, due to the strong nonlinearity of the model and the

oupling between plasticity and phase transformation, the RMA
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Fig. 3. Recovery of inelastic transformation strain at non zero stress. 
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A  
s implemented in its “convex cutting plane” type rather than its

umbersome“closest point projection” approach. The detection of

ctive loading surfaces and the implementation of appropriate

onsistency conditions are inspired from computational multi-

urface plasticity ( Simo et al., 1988 ). To this end, a time-discrete

ncremental solution procedure is used whereby the load is di-

ided into N increments with a known initial state. Starting with

oad increment at n = 0 , the values of the state variables are cal-

ulated iteratively for n = 1 · · · N using an elastic predictor-inelastic

orrector scheme. If � denotes finite incrementation, the uniaxial

ime-discrete equations of the model can be written as follows: 

1. Initialization: 
Set ε n +1 = ε n + �ε , and T n +1 = T n + �T , 

Set ξ (0) 
n +1 

= ξn , ε 
tr (0) 
n +1 

= ε tr n , p 
(0) 
n +1 

= p n , ε 
pl (0) 
n +1 

= ε pl 
n , and K eq 

(0) 
n +1 

= 

K eq n . 

2. Elastic prediction: 

Calculate σ(0) 
n +1 

= K eq 
(0) 
n +1 

: 

[ 
ε n +1 − ε tr (0) 

n +1 
− ε pl (0) 

n +1 

] 
, 

Set k = 0 

Calculate F 

tr 
m 

(k ) 
n+1 , F 

tr 
a 

(k ) 
n+1 , and F 

pl 
a 

(k ) 

n+1 using the trial state vari-

ables. 

3. Consistency conditions: 

(a) Active loading set 

IF F 

tr 
m 

(k ) 
n +1 < 0 , and F 

tr 
a 

(k ) 
n +1 < 0 and F 

pl 
a 

(k ) 

n +1 < 0 , THEN elastic re-

sponse, 

IF ξ (k ) 
n +1 

< 1 and F 

tr 
m 

(k ) 
n +1 > 0 , THEN direct phase transformation is

assumed to be active, 

IF ξ (k ) 
n +1 

> 0 and F 

tr 
a 

(k ) 
n +1 > 0 , THEN reverse phase transformation

is assumed to be active, 

IF F 

pl 
a 

(k ) 

n +1 > 0 , THEN plastic deformation is assumed to be ac-

tive. 

(b) Increments of internal state variables 

IF transformation without plastic deformation, THEN �ξ(k ) 
n +1 

is given by the consistency condition F 

tr 
α

(k +1) 
n +1 = 0 with

�p 
(k ) 
n +1 

= 0 , and α = { a , m } 
IF plastic deformation without transformation, THEN �p 

(k ) 
n +1 

is given by the consistency condition F 

pl 
a 

(k +1) 

n +1 = 0 with

�ξ(k ) 
n +1 

= 0 , 
IF transformation and plasticity, THEN �ξ(k ) 

n +1 
and �p 

(k ) 
n +1 

are given by the consistency conditions { F 

tr 
α

(k +1) 
n +1 = 0 ,

F 

pl 
a 

(k +1) 

n +1 = 0 } , with α = { a , m } 
Set ε tr (k +1) 

n +1 = ε tr (k ) 
n +1 + �ξ(k ) 

n +1 
ε L N 

tr (k ) 
n +1 

, 

pl (k +1) pl (k ) (k ) pl (k ) 
Set ε n +1 = ε n +1 +(1 −ξ )�p 
n +1 

N 
n +1 

. c  
(c) Positivity of the multipliers 

IF direct transformation and �ξ(k ) 
n +1 

< 0 , THEN reset �ξ(k ) 
n +1 

to

zero, direct transformation is inactive, 

IF reverse transformation and �ξ(k ) 
n +1 

> 0 , THEN reset �ξ(k ) 
n +1 

to

zero, reverse transformation is inactive, 

IF plastic deformation and �p 
(k ) 
n +1 

< 0 , THEN reset �p 
(k ) 
n +1 

to

zero, plasticity is inactive. 

IF �ξ(k ) 
n +1 

or �p 
(k ) 
n +1 

is reset to zero, THEN go to (a) ELSE con-

tinue. 

(d) Consistency with the constraints on the state variables 

IF direct transformation and ξn +�ξ(k ) 
n +1 

> 1 , THEN set �ξ(k ) 
n +1 

= 1 −
ξn , 

IF reverse transformation and ξn +�ξ(k ) 
n +1 

< 0 , THEN set

�ξ(k ) 
n +1 

= −ξn . 

(e) Stress update 

Calculate K eq 
(k +1) 
n +1 

= 

[ (
1 − ξ (k +1) 

n +1 

)
K 

−1 
a + ξ (k +1) 

n +1 
K 

−1 
m 

] −1 

, 

Calculate σ(k +1) 
n +1 

= K eq 
(k +1) 
n +1 

: 

[ 
ε n +1 − ε tr (k +1) 

n +1 
− ε pl (k +1) 

n +1 

] 
. 

(f) Set k = k + 1 , 

(g) Repeat steps (a)-(f) until consistency with the loading con-

ditions and intrinsic constraints on ξ are achieved. 

.2. Consistency conditions 

The consistency conditions allow to compute the increment of

nternal variables, thus to update the stress. From the stress-strain

elations 

σ = K eq ε 

el , 

K eq = 

[
(1 − ξ ) K 

−1 
a + ξK 

−1 
m 

]−1 
, 

⇒ 

{
ε 

el = S eq σ, 

S eq = (1 − ξ ) K 

−1 
a + ξK 

−1 
m 

,

(39) 

he following expressions of the stress increment is established: 

σ = K eq : 
[
�ε −

(
S ma : σ + ε L N 

tr 
)
�ξ − (1 − ξ ) N 

pl �p 
]
, (40) 

here S ma = K 

−1 
m 

− K 

−1 
a . In the following sections we will denote:

 

 

 

 

 

 

 

R ξ = S ma : σ + ε L N 

tr , 

R p = (1 − ξ ) N 

pl , 

F 

tr 
α ,Y = 

∂ F 

tr 
α

∂Y 
, with Y = { ξ , p, T , σ} , 

F 

pl 
a ,Y = 

∂ F 

pl 
a 

∂Y 
, with Y = { ξ , p, T , σ} . 

(41) 

s its name suggests, the objective of the RMA is to find the in-

rements of state variables that will bring back the loading point
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Fig. 4. Influnence of H v and n v on Fe-SMA behavior at T = 20 o C. 
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at which the transformation and/or plastic loading function is pos-

itive on the loading surface. Starting from F 

(0) 
n +1 

> 0 at the elastic

prediction, new increments of stress and internal variables are cal-

culated iteratively and implicitly until convergence is reached, us-

ing 

F 

(k +1) 
n +1 

= F 

(k ) 
n +1 

+ 

∂F 

∂σ

∣∣∣∣
(k ) 

n +1 

: �σ(k ) 
n +1 

+ 

∂F 

∂ξ

∣∣∣∣
(k ) 

n +1 

�ξ(k ) 
n +1 

+ 

∂F 

∂ p 

∣∣∣∣
(k ) 

n +1 

�p (k ) 
n +1 

+ 

∂F 

∂T 

∣∣∣∣
(k ) 

n +1 

�T (k ) 
n +1 

� 0 . (42)

The increments of temperature and total strain being fixed by the

solver during the whole inelastic correction, their variations are

null, i.e. �T (k ) 
n +1 

= 0 and �ε (k ) 
n +1 

= 0 . Hence, applying the multivari-

able chain rule to F 

tr 
α

(k ) 
n +1 and F 

pl 
a 

(k ) 

n +1 , using (40) and (41) , and

gathering the factorial terms of �ξ(k ) 
n +1 

and �p (k ) 
n +1 

, the following

system is established: { 

F 

tr 
α

(k ) 
n +1 + �ξ

(k ) 
n +1 

�ξ(k ) 
n +1 + �p 

(k ) 
n +1 

�p (k ) 
n +1 

� 0 , 

F 

pl 
a 

(k ) 

n +1 + �ξ
(k ) 
n +1 

�ξ(k ) 
n +1 + �p 

(k ) 
n +1 

�p (k ) 
n +1 

� 0 , 
(43)

where, 

�ξ = 

∂ F 

tr 
α

∂ξ
− ∂ F 

tr 
α

∂σ
: 
(
K eq R ξ

)
, (44)

�p = 

∂ F 

tr 
α

∂ p 
− ∂ F 

tr 
α

∂σ
: ( K eq R p ) , (45)
w

ξ = 

∂ F 

pl 
a 

∂ξ
− ∂ F 

pl 
a 

∂σ
: 
(
K eq R ξ

)
, (46)

p = 

∂ F 

pl 
a 

∂ p 
− ∂ F 

pl 
a 

∂σ
: ( K eq R p ) . (47)

he values of �ξ(k ) 
n +1 

and �p (k ) 
n +1 

are obtained by solving (43) as

ollows: 

• IF both phase transformation and plasticity are activated, THEN

solving the system (43) gives ⎧ ⎨ 

⎩ 

�ξ(k ) 
n +1 = 

�p 
(k ) 
n +1 

χ(k ) 
n +1 

F 

pl 
a 

(k ) 

n +1 −
�p 

(k ) 
n +1 

χ(k ) 
n +1 

F 

tr 
α

(k ) 
n +1 , 

�p (k ) 
n +1 

= 

�ξ
(k ) 
n +1 

χ(k ) 
n +1 

F 

tr 
α

(k ) 
n +1 −

�ξ
(k ) 
n +1 

χ(k ) 
n +1 

F 

pl 
a 

(k ) 

n +1 , 

(48)

• IF only phase transformation is activated, THEN solving the first

equation of (43) gives { 

�ξ(k ) 
n +1 = − 1 

�ξ
(k ) 
n +1 

F 

tr 
α

(k ) 
n +1 , 

�p (k ) 
n +1 

= 0 , 
(49)

• IF only plasticity are activated, THEN solving the second equa-

tion of (43) yields { 

�p (k ) 
n +1 

= − 1 

�p 
(k ) 
n +1 

F 

pl 
a 

(k ) 

n +1 , 

�ξ(k ) 
n +1 = 0 , 

(50)

here χ = �ξ�p − �p �ξ . 
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Fig. 5. Influnence of H p and n p on Fe-SMA behavior at T = 130 o C. 
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pl �p a ,T a , σ
.3. Tangent moduli 

The implicit time-discrete integration scheme of the constitu-

ive equations by Newton–Raphson method implies unconditional

tability and quadratic convergence. However, the latter feature is

nsured only by the use of consistent tangent operators. For sim-

licity, the consistent mechanical tangent modulus ( ˆ C = ∂ �σ
∂ �ε 

) and

onsistent thermal tangent modulus ( ˆ Q = ∂ �σ
∂ �T 

) are replaced by the

o-called continuum tangent operators C and Q given by 

C = 

d σ
d ε , 

Q = 

d σ
d T 

; (51) 

he expressions of which are obtained by requiring, as indicated by

he consistency condition, the loading point to remain on the load-

ng surface, i.e. d F = 0 . Using the multivariable chain rule for the

ransformation and plastic loading functions, the following system

s established: 

F 

tr 
α , σ : d σ + F 

tr 
α ,ξ d ξ + F 

tr 
α ,p d p + F 

tr 
α ,T d T = 0 , 

F 

tr 
α , σ : d σ + F 

pl 
a ,ξ d ξ + F 

pl 
a ,p d p + F 

pl 
a ,T d T = 0 . 

(52) 

ubstituting d σ in (52) by 

 σ = K eq : 
[
d ε − R ξ d ξ − R p d p 

]
, (53) 

nd rearranging the factorial terms of d ξ and dp, the following

ew system is obtained: 

F 

tr 
α , σ : ( K eq d ε ) + �ξ d ξ + �p d p + F 

tr 
α ,T d T = 0 , 

F 

pl 
a , σ : ( K eq d ε ) + �ξ d ξ + �p d p + F 

pl 
a ,T d T = 0 . 

(54) 
olving for d ξ and d p as in the previous section, the following con-

inuum tangent moduli are found: 

• IF both inelastic mechanisms are activated, THEN solving the

system gives 

C cp = K eq + 

[
�p 

χ

(
K eq R ξ

)
− �ξ

χ
( K eq R p ) 

]
�

(
K eq F 

tr 
α , σ

)
+ 

[
�ξ

χ
( K eq R p ) − �p 

χ

(
K eq R ξ

)]
�

(
K eq F 

pl 
a , σ

)
, (55) 

Q cp = 

[
�p 

χ
F 

tr 
α ,T −

�p 

χ
F 

pl 
a ,T 

](
K eq R ξ

)
+ 

[
�ξ

χ
F 

pl 
a ,T −

�ξ

χ
F 

tr 
α ,T 

]
( K eq R p ) , (56) 

• IF only phase transformation is activated, THEN the first equa-

tion of (54) gives { 

C tr = K eq + 

1 
�ξ

(
K eq R ξ

)
�

(
K eq F 

tr 
α , σ

)
, 

Q tr = 

1 
�ξ

F 

tr 
α ,T 

(
K eq F 

tr 
α , σ

)
, 

(57) 

• IF only plasticity is activated, THEN the second equation of

(54) yields ⎧ ⎨ 

⎩ 

C pl = K eq + 

1 
�p 

( K eq R p ) �
(

K eq F 

pl 
a , σ

)
, 

Q = 

1 F 

pl 
(

K eq F 

pl 
)
. 

(58) 
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Fig. 6. Influnence of H s on Fe-SMA behavior at T = 50 o C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the present work, the mechanical and thermal problems are

not fully coupled. In other words, the thermomechanical analy-

sis does not consider heat transfer. Therefore, the thermal tangent

modulus is not needed in the simulations. 

4. Determination of the material parameters 

The parameters of the model are calibrated using the tensile

tests of Khalil et al. (2012) . For this purpose, the constitutive rela-

tions are first reduced to their uniaxial formulations and the fol-

lowing new constants are defined 

ˆ H v = 

(
3 

2 

) n v +1 
2 

ε L 
n v +1 H v , (59)

ˆ H pv = 

(
3 

2 

ε L 

)n pv +1 

H pv , (60)

ˆ H p = 

(
3 

2 

) n p +1 

2 

H p . (61)

Parameters such as the M 

0 
s , A 

0 
s , and εL are taken directly from the

DSC experiment and tensile tests. The remaining constants are de-

termined by least square fitting using Matlab. 

Step 1: fitting of the transformation parameters 
The uniaxial stress-strain curves at low loading temperature

( T = 20 o C) where only phase transformation takes place,

and moderate loading temperature ( T = 50 o C) where trans-

formation precedes plasticity, are used to fit the transforma-

tion parameters. 

1. Parameter ζ m 

is determined from the critical transfor-

mation stresses for T = 20 o C and T = 50 o C. If B tr is

the slope of the martensite start line, consistency gives

ζm 

= B tr ε L . 
2. Experiments of Nishimura et al. (1999) show that, de-

pending on the loading conditions, the ratio ζa 

ζm 

varies

between 1.8 and 2.1 for Fe-Mn-Si SMAs. Therefore, in the

present work, we set ζa = 2 ζm 

. 

3. In order to obtain σ tr 
m 

, ˆ H v , and n v , the forward trans-

formation condition F 

tr 
m 

= 0 is written in the form ˆ σ =
f (ξ ) , for T = 20 o C, with 

ˆ σ = 

E ma 

2 

σ 2 + σε L , (62)

f (ξ ) = 

ˆ H v ξ
n v + ζm 

( 20 −M 

0 
s ) + σ tr 

m 

ε L + (λ1 −λ2 ) . (63)

The nonlinear least square curve fitting toolbox of Matlab

is then used to extract the constants, based on bisquare

Levenberg–Marquardt algorithm. 

4. Considering the strain recovery at zero stress for

T = 20 o C, parameter σ tr 
a and H x are obtained by setting
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Fig. 7. Influnence of H pv on Fe-SMA behavior at T = 50 o C. 
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i  
F 

tr 
a = 0 at T = A 

0 
s with ξ = 1 , and F 

tr 
a = 0 at T = A 

0 
s 

at T = A 

0 
f 

with ξ = 0 . It can be easily shown that σ tr 
a =

ζa 
ε L 

(A 

0 
f 

− A 

0 
s ) and H x = − ˆ H v + ζa (A 

0 
f 

− A 

0 
s ) . 

Step 2: fitting of the plasticity parameters 

The uniaxial stress-strain curves at high loading temperature

( T = 130 o C) where only plasticity is activated, and moder-

ate loading temperature ( T = 50 o C) where plasticity catches

up the martensitic transformation are used to fit the gliding

parameters. 

1. Parameter β is determined as the slope of the plasticity

start line, and yields, in turn, the value of σ pl 
a . 

2. For T = 130 o C, the plasticity condition F 

pl 
a = 0 is written

in the form σ = g(p) ,with 

g(p) = 

ˆ H p [ p(1 − ξ ) ] 
n p + σ pl 

a − βT . (64) 

The nonlinear least square curve fitting toolbox of Matlab

is then used to extract the values of ˆ H p and n p . 

Step 3:fitting of the coupling parameters 

The coupling parameters ˆ H pv and n pv are obtained from

stress-strain data at T = 50 o C where both transformation

and plasticity are activated. However, accurate identification

of these parameters requires to know the precise evolution

of the transformation strain and plastic strain during the
loading stage. With only one stress-strain curve available,

the inelastic part of the stress-strain curve is divided into

a segment in which the inelastic strain is due exclusively

to phase transformation, a segment in which it comes from

both transformation and plasticity, and a segment in which

it is yielded by only plastic deformation. The loading con-

ditions F 

tr 
m 

= 0 and F 

pl 
a = 0 , are written in the second seg-

ment, respectively, as ˆ σ = f 1 (ξ , p) and σ = f 2 (ξ , p) , with 

f 1 (ξ , p) = ζm 

(T − M 

0 
s ) + 

ˆ H v ξ
n v + 

ˆ H pv [ p(1 − ξ ) ] 
n pv +1 ξ n pv 

+ σ tr 
m 

ε L − H s p 
2 , (65) 

f 2 (ξ , p) = 

ˆ H p [ p(1 − ξ ) ] 
n p + 

ˆ H pv [ p(1 − ξ ) ] 
n pv ξ n pv +1 

+ 

1 

(1 − ξ ) 
< σ pl 

0 
− βT > . (66) 

Fitting these equations help find the values of ˆ H pv , n pv and

H s ; all other parameters being known. 

The above procedure gives the parameters listed in Table 2 . 

. Uniaxial results 

The model is used to simulate the uniaxial stress-strain behav-

or of Fe-31.6Mn-6.45Si-0.018C (wt%) subjected to a uniaxial tensile
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Fig. 8. Influnence of H pv an d n pv on Fe-SMA behavior at T = 50 o C. 
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loading cycle at different tem peratures, followed by heating above

A f . 

5.1. Validation of the model 

The uniaxial results of the present model are first confronted

with the experimental and numerical data of Khalil et al. (2012) .

Fig. 1 (a) shows that both models give accurate results for low

temperature ( T = 20 o C) where only phase transformation oc-

curs. However at elevated temperature, ( T = 130 o C), the current

model gives better loading prediction compared to Khalil et al.

(2012) which displays a quasi-linear stress-strain loading curve

(see Fig. 1 (c)). This indicates an improvement in the model itself

and/or a better fit of the material parameters. It is worth noth-

ing from the strain recovery that the inelastic strain is due exclu-

sively to phase transformation at T = 20 o C and only to plastic slip

at T = 130 o C. For the crucial case of T = 50 o C in Fig. 1 (b) where

there is coupling between transformation and plasticity, our simu-

lation result is significantly more accurate than the numerical pre-

diction of Khalil et al. (2012) ; not only in terms of the nonlinear-

ity of the loading stress-strain curve but also the recovery of the

inelastic strain. Our model predicts 97% of the experimentally re-

ported inelastic strain recovery while Khalil et al. (2012) is limited

to only 33% . This may results, for example, from the use in the

current model of different critical stress and slopes of transforma-

tion lines between forward and reverse phase changes and a better

interaction energy. This is a significant improvement of the present
ork since poor prediction of the shape memory effect will result

n inaccurate design. 

.2. Some numerical investigations 

The results in the previous section shows clearly that the cur-

ent model predicts efficiently the experimental results and is

ore accurate than Khalil et al. (2012) . The following lines will fo-

us on the numerical investigations of some important aspects of

e-Mn-Si. 

.2.1. Competition between transformation and plasticity 

Because plastic deformation interferes with martensite trans-

ormation in Fe-Mn-Si, the increase of the plastic yield strength

f austenite with decreasing temperature allows improved recov-

ry of inelastic strain at low loading temperatures. Fig. 2 (a) gives

he stress-strain-temperature behavior of the material for differ-

nt loading temperatures T exp . Evolutions of these state variables

ighlight a nonlinear recovery of the inelastic strain during reverse

ransformation by heating. This recovery of the inelastic strain was

ound to decrease when the loading temperature is augmented.

his latter feature is depicted more clearly in Fig. 2 (b), where the

atio of the transformation strain over the total inelastic strain is

hown to evolve in an inverse sigmoid relationship with T . A possi-

le explanation is that while both phase transformation and plastic

ielding occur by shearing, the energy of Shockeley partial disloca-

ions in presence of martensite transformation may become lower
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Fig. 9. Design of the 3D CT sample. 
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han that of plastic dislocation as the temperature decreases. The

arge temperature range [40 o C, 100 o C] within which the coupling

ccurs, raises the importance of having a model that predicts ac-

urately the SME in presence of plastic deformation. 

.2.2. Simulation of partial unloading 

To simulate partial unloadings, the material is loaded up to

50 MPa at constant temperatures T = 20 o C for Fig. 3 (a) and

 = 50 o C for Fig. 3 (b), followed by unloading to σ u = 100 MPa

nd σ u = 50 MPa. Heating is then operated at these constant hold

tresses. The results show that the initial shape is not fully recov-

red even in absence of plastic deformation. This is especially the

ase for T = 20 o C where the closure point of the loop highlights

esidual elastic strain. For T = 50 o C, it can also be seen that the

tain value at the end of the heating stage decreases as the hold
tress increases; corresponding to an augmentation of the residual

lastic strain. 

.2.3. Influence of H v and n v 

The influences of these parameters are investigated at low tem-

erature ( T = 20 o C) for which phase transformation is the only

issipative mechanism. In Fig. 4 (a), it can be seen that higher

alues of H v results in steeper stress-strain curve during forward

ransformation. In fact, H v expresses the resistance of the mate-

ial to further phase transformation, which translates into lower

artensite volume fraction as H v increases (see in Fig. 4 (b)). Sim-

lar analysis using parameter n v indicates higher nonlinearity with

ncreasing n v as shown in Fig. 4 (c). This is especially noticeable at

he beginning of phase transformation where higher values of n v 
esult in more pronounced curvature of the stress-strain plot. The
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Fig. 10. Distributions of stress and strain in the specimen under plane stress conditions at T = 20 o C. 
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observed hardening becomes increasingly linear as n v approaches

1. However, in contrast to H v , the martensite volume fraction aug-

ments as n v increases, thus amounting to lower hardening (see

Fig. 4 (d)). 

5.2.4. Influence of H p and n p 

The effects of these parameters are studied at high tempera-

ture ( T = 135 o C) where only plasticity is activated. As shown in

Fig. 5 , the influence of H p and n p on the evolution of plastic strain

and the overall stress-strain behavior at elevated temperature are
imilar to those observed for H v and n v at low temperature for ξ .

t does appear, however, from comparing Figs. 5 and 4 , that the

odel is more sensitive to variations in H v than H p . 

.2.5. Influence of H s 

Parameter H s accounts for the effects of the plastic slip in the

ctivation of direct transformation. Fig. 6 shows that variation in

he values of H s does not alter the general trend of the stress-strain

urves except the final values of the strains reached at the end

f the loading stage. This can be noticed more clearly in Fig. 6 (b)
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Fig. 11. Distributions of stress and strain in the specimen under plane stress conditions at T = 120 o C. 
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nd (c) where higher values of H s correspond to lower marten-

ite volume fraction and higher magnitude of plastic strain. This

eets theoretical expectation since the greater is the value of H s 

he more severe is the retardation or deceleration effects of the

lasticity on the transformation mechanism. One can see that for

train values between 0.5% and 1.1% the production of martensite

ecreases while plastic slippage increases, while above the critical

train value of 1.1%, only plasticity is activated. 

.2.6. Influence of H pv and n pv 

Parameter H pv and n pv accounts for interaction between grains

nd between martensite variants and plastic slip systems. The sim-

lation results in Figs. 7 and 8 show similar trend than for H s ex-
ept that the model is not very sensitive to n pv , and inverse effects

re observed for H pv . Equations (65) and (66) point out that the

lteration (related to H pv and n pv ) induced by plastic slip on phase

hange is p(1 −ξ ) 
ξ

times the effect of transformation on plasticity.

onsidering the orders of magnitud of p and ξ , one can easily un-

erstand the results. It should be noted that the nonlinearity of

he stress-strain curves when n pv = 1 is related to the other coef-

cients, n v and n p . 

. Finite element analysis of a 3D compact tension sample 

The 3D formulation of the model aims at developing a sim-

lation tool for the design of Fe-SMAs engineering structures.



16 C. Cissé et al. / Mechanics of Materials 107 (2017) 1–21 

Fig. 12. Isosurfaces of transformation zones near the crack tip: plane stress vs. plane strain. 
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A common approach in computational mechanics is to integrate

the model in a “finite element method”-based software such as

ABAQUS. To this end, the constitutive equations are implemented

in a user defined material subroutine (UMAT). In the present pa-

per, we assume a homogeneous distribution of the temperature in-

side the material. Therefore, for a given thermomechanical loading

path, the process starts by applying the mechanical load, the ther-

mal predefined field and the specific boundary conditions. From

the boundary conditions and load increments, the global solver

finds deformation guesses for the nodes by constructing a global

stiffness matrix based on the elastic behavior of the material. The
btained local total strains, together with the values of the inter-

al variables, are used in the UMAT to calculate the local stresses

nd the local tangent stiffnesses. The way how the increment of in-

ernal variables are computed is detailed in Section 3.1 . After con-

ergence of the implicit and iterative integration process, the final

tress values are used to compute the forces acting at each node.

tatic equilibrium is then checked, by requiring the magnitude of

he residual force, i.e. the sum of the force vectors, to be less than

 tolerance value. If it fails, the “Newton–Raphson” method is used

y the global server to find new guesses for the global deforma-

ions from the global tangent stiffness matrix. In the following sec-
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Fig. 13. Isosurfaces of plastic zones near the crack tip: plane stress vs. plane strain. 
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ions, the above procedure is used to show the capability of the

odel to forecast the behavior of 3D structures with highly hetero-

eneous distributions of stress and strain under complex thermo-

echanical loading path. A typical case is the precracked compact

ension sample (CT sample) under mode I loading. 

.1. Design of the CT sample 

Fig. 9 (a) gives the standard dimensions of a CT sample. In this

tudy, we use a reference length W = 20 mm, a pre-crack length

 = W/ 8 and thickness B = W/ 20 . The partitioned geometry of the
T sample is presented in Fig. 9 (b). The geometry was partitioned

n order to generate a structured and efficient mesh as illustrated

n Fig. 9 (c) . The pins that transmit the load of the clevises to the

pecimen are represented by rigid bodies corresponding to refer-

nce points RP1 and RP2. The interaction module of ABAQUS was

sed to couple the RPs with the corresponding half hole surfaces,

nd to specify the crack front, seam and propagation direction. The

rack seam corresponds to a face that is originally closed but can

pen during the analysis thanks to a duplication of its mesh nodes.

t is well known from fracture mechanics that strain singularity de-

elops at crack tips. However, the nature of the material dictates
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Fig. 14. Distributions of stress and strain in the specimen under plane stress conditions at T = 60 o C. 
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the singularity type. For instance, linear elastic materials present

1 / 
√ 

r strain singularity at sharp crack tips, perfectly plastic mate-

rials show 1/ r strain singularity, whereas the strain singularity of

hardening materials such as the studied Fe-SMAs is somewhere in

between. In order to describe correctly the singularity, the crack

tip is meshed using a ring of collapsed elements with a midside

node parameter of 0.25. The first circular partitioned area around

the crack tip is swept meshed with C3D6 triangular prism wedge

t  
lements as shown in Fig. 9 (d). The remaining section parts are

wept meshed with C3D8 hexaedral brick elements using medial

xis algorithm. 

.2. Numerical results and discussions 

The results were obtained by applying, in Mode I, concentrated

orces of magnitude 600 N at RP1 and RP2. The specimen was

hen unloaded and heated above A . The highly heterogeneous
f 
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Fig. 15. variation of the normal components of stress and inelastic strains with the distance. 
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tress distribution as well as the development of inelastic strain

ingularities at the crack tip are shown in Figs. 10 and 11 . As pre-

icted by the uniaxial results, only phase transformation occurred

t low temperature, only plasticity was activated at elevated tem-

erature, and the two mechanisms were competing at intermedi-

te temperatures. Fig. 10 shows, for the loading stage, a high ten-

ile stress concentration (up to 739 MPa) at the crack front, and a

ompressive stress distribution near the specimen face opposite to

he crack. This resulted in maximum volume fractions of tensile-

nduced and compressive-induced martensites of 7.51x10 −1 and

.24x10 −4 , respectively. During unloading, a maximum compres-

ive stress of -797 MPa was reported at the crack front, as a con-

equence of the non-recovery of the initial shape during unloading.

his helped building compressive-induced martensite at the crack

ront. However, assuming a symmetric behavior, the stress reversal

t the crack front induces phase change only for twice the value

f the critical transformation stress. This explains the low amount

f compressive-induced martensite at the crack front, which is

2.5% the value of the tensile-induced one during loading. This

yclic phase transformation reminds, in many ways, the reversed

lasticity discussed in Wolf (1970) , Louat et al. (1993) , Donald and

aris (1999) , Kujawski (2001) and Alizadeh et al. (2007) . It is worth

ointing out that this reversed phase transformation led to a par-

ial but noticeable closure of the crack. The crack closure became

omplete only at the end of the heating process where the M → A
ransformation suppresses all stress concentration and strain sin-

ularity. Therefore, the SME property of the alloy can be used for

he self-healing of precracked Fe-SMA structures . 

Fig. 11 points out similar results at high temperature

 T = 120 o C) where only plasticity was activated. However, in op-

osite to the phase transformation case, stress concentration was

till visible at the end of the heating stage, due to the irrecov-

rability of plastic strain. Nonetheless, the mechanical unloading

enerated reversed plasticity in order to accommodate the com-

atibility requirements between the plastic zone and the surround-

ng elastic region. Compared to the loading stage, the magnitude

f the plastic strain increased by 22.5% after unloading and by

0.1% after heating. The increase of the plastic slip during heat-

ng shows the capability of the model to capture thermal-induced

lasticity. This mechanism which is related to the linear decrease

f the yield stress with increasing temperature engendered addi-

ional crack closure. 

The difference between plane stress and plane strain conditions

as also investigated for the fracture behavior of the specimen.

lane stress conditions were mimicked by fixing the anti-plane

igid body mode on the two sides of the panel, while plane strain

onditions were obtained by restraining the anti-plane displace-

ents. Figs. 12 and 13 give, respectively, the isosurfaces for the

olume fraction of martensite and magnitude of plastic strain. A

ualitative comparison of the contours shows cardioid-like shapes
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for plane stress and lemniscate-like shapes for plane strain with

larger transformation and plastic zones, and higher inelastic strain

values for the first one. From these results, we can conclude that

the fracture of this Fe-SMA would be brittle at room temperature

and ductile at high temperature. 

For moderate temperature ( T = 60 o C), Fig. 14 gives the von

Mises stress distribution at the end of the loading stage as well

as inclined views of the transformation and plastic zones, for both

plane stress and plane strain conditions. The zoom amount indi-

cates that, for this precise temperature, the transformation zone is

larger than the plastic region. Here again, plane stress gives higher

values of stress and inelastic strains than plane strain. 

Finally, the distribution of the stress, transformation strain and

plastic strain in the loading direction are plotted against the dis-

tance from the crack tip in Fig. 15 . The results show for T = 20 o C

and T = 120 o C that these quantities decrease with the distance in

a qualitatively consistent way with nonlinear fracture mechanics

results. 

7. Conclusion 

In this paper, a nonlinear 3D model was proposed for Fe-

SMAs. It takes into account the competition between phase trans-

formation and plastic slip and considers different thermomechani-

cal properties for austenite and martensite. The constitutive equa-

tions were derived from a Helmholtz free energy potential con-

sisting of local phase energies, a new interaction energy density

that takes into account the effect of the orientation, and a con-

straints potential that accounts for restrictions on the volume frac-

tion of martensite using Lagrange multipliers. The integration of

the time-discrete equations was accomplished using an implicit al-

gorithm, in which the detection of active loading surfaces and the

implementation of appropriate consistency conditions are inspired

from computational multisurface plasticity. A specific procedure for

characterizing the parameters of the model is used to determine

a reference set of parameters and carry out experimental valida-

tion using stress-strain-temperature data from Khalil et al. (2012) .

Compared to the work of Khalil et al. (2012) , the simulations show

improved accuracy, especially at intermediate temperature where

pronounced coupling between phase transformation and plastic-

ity is observed. In such case, the present work predicts 97% of

shape recovery contrary to Khalil et al. (2012) where it is about

33%. Finally, the model was used to simulate the thermomechan-

ical response of a compact tension sample. The results point out,

as in the uniaxial case, that the lower the loading temperature the

higher the phase transformation, and the higher the loading tem-

perature the higher the plastic deformation. The model was able to

capture cyclic plasticity and martensitic transformation during un-

loading, thermal-induced plasticity during heating, as well as the

related crack closure. The stress and inelastic strains in the loading

direction were plotted as functions of the distance from the crack

tip. The figures show qualitative agreement with nonlinear fracture

mechanics. The obtained results demonstrate the capability of the

present model to design properly Fe-SMA devices. Robustness of

the present model and algorithm may be tested in more compli-

cated cases with, for instance, surface-to-surface contacts. 
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