Manifestations of Light-Matter
Interactions

* Reflection
* Refraction
* Scattering
* Absorption
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Absorption

*Absorption spectrum of a red textile
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Absorption

Beer-Lambert Law

EINLEITUNG

Io IT i HOHERE OPTIK
0 % AUOTSY DESR
—t ¢ molar concentration [mol ']

[ optical pathlength [cm]

£ molar decadic extinction coefficient

Example: ¢ =102 M, ¢ =10*mol' - | - cm™!
= T=001, A=2= 99% of the light is

absorbed within the first 2 mm of the solution

August Beer
(1825-1863)
OD ~ 2: 1% transmission oD Lo adiusted with
. can be adjusted wit
OD ~ 1: 10% transmission )

.. concentration
OD ~0.01: 98% transmission



Absorption Spectra: Why the € and 7 vary with the band?
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Electronic structures for various states are generated assuming
the molecule is stationary and it is in its lowest energy state

hv
R > R
LU —— °
HO [ BN ) [ ]
(HO)? (HO)'(LU)'
R ¥, ®,

Electron jump between orbitals generally takes ~ 10715 to 10716 s
Nuclear vibrations take ~ 10713 to 10714 s

Spin frequency even at very high magnetic field occurs in ~ 10712 s



Light as an oscillating electric field
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hy (N = 1002 A) + Hz(lsag)z e Ho(lsog; 2pmy)
[hv + Hz(JE;') —>H, (1 T1,)]
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Rules for absorption and emission are the same

Absorption
Excited level
f |
° S AE — hv
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Probability of light absorption and emission
Fermi's Golden Rule

VP10 D.x. S

Enrico Fermi

kos ~Pi p 2 [<W4|P_,,|'P>]° Nobel Prize, 1938
T
R + hv — *R 021 <¥,(R)| P, | ¥,(*R)>2
*R—>R+hv h
kogs allowedness of —
absorption or emission } Koua

Wg

p density of states g| ¥i I Kpock ————
AE,

P, perturbing Hamiltonian W,




Oscillator Strength-Absorption
ESUSERIL S D.x.S
Probability of light absorption and emission are related to the oscillator strength “f”

A perfectly allowed transition has =1

_ Orbital Overlap
Electronic (®@) . Je
Orbital Symmetry
Vibronic (%) Nuclear position f,
Spin (S) Electron Spin f.

How probable (®. . S), would ‘look like’ (®. x. S),?



Electronic transitions: Overlap and
symmetry of orbitals involved

The electronic factor f, may be subclassified in terms of different
kinds of forbiddenness:

(1) Orbital overlap forbiddenness, which results from poor spatial
overlap of the orbitals involved in the electronic transition,
example, the n,t* transition in ketones, for which the HO and LU
are orthogonal to one another and the overlap integral <n | *> is
close to zero.

(2) Orbital symmetry forbiddenness, which results from orbital
wavefunctions (involved in the transition) that overlap in space but
have their overlap integral canceled because of the symmetry of the
wave functions. Examples transitions in benzene, naphthalene, and
pyrene.



Electronic factor - Orbital overlap

No orbital overlap n and =*
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Long-Wavelength Absorption Bands (Corresponding to

HO — LU Transitions) of Some Typical Organic Chromophores

Chromophore

C-C

C=C

C=C-C=C
C=C-C=C-C=C
C=0

C=C-C=0
C=C-C=0
Benzene
Pyrene

Anthracene

Amax(nm)

<180
180
220
260

280
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350
380

8lIlaX

1000
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20

30
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200
510
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Transition type



Zero Order to First Order Through Vibronic Coupling

Still pure p (b)

Bent

6 < 120°|

|

Two atoms move
down, plane destroyed

Vibronic interaction
has a small effect

All angles 120°

H
o <= oo
vibration
T T Strictly planar
Pure p sp” N =p
T= pure m,n* T = (1, t*<—>7,6%) S
(nolmn) =0

Vibronic interaction

significant
i et
Variations /\OO
Nonplanar
Ny=sp"
(nolm)#0

Vibrational mixing could change the shape of the zero-order orbital and lead to

slight overlap between perpendicular orbitals (e.g., ‘n

",oand ‘w and ‘mx’)



Vibronic mixing results in state mixing

Due to vibration an n, n* S; state is no longer pure but contains a finite
amount of , n* character mixed in so the zero order wavefunction is not
valid and the first order wavefunction may in fact be:

Mixing
/ coefficient

firstorder . y(S)) = y(n, =) + M(m, 1)

P

zero order zero order

n, t* T, T
A=| <y, Hlwy,>
Ea'Eb

In general, A is the result of vibrational mixing (break down of
Bonn-Oppenheimer approximation)



Result of vibrational - electronic mixing (vibronic coupling)

21 xl 21wkl
: n a2l T nla?msl + )\ n2rlox!
nt* transition nt* transition
forbidden becomes weakly
% v’ (V2 allowed
nznz JE>x<O n23132 J'E*O

As per Bonn-Oppenheimer Vibration mixes the states,
approximation no longer pure states



30
20
w

10

Cyclanone

absorption
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Symmetry based selection rules
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The absorption spectra of conjugated dienes in Intensities of Electronic Transitions in Molecular Spectra

he vacuum ultra-violet . .
the vacu u € (1) III. Organic Molecules with Double Bonds. Conjugated Dienes
By W. C. Price axp A. D. WALsH RopERT S. MULLIKEN
Physical Chemistry Laboratory, Cambridge Ryerson Physical Laboratory, University of Chicago, Chicago, Illinois
(Received December 9, 1938)
(Communicated by R. G. W. Norrish, F.R.S.—Received 14 August 1939)



Optical density —

Selection Rules (Electronic part)
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Orbital Symmetry (nn*, e.g., benzene, pyrene)

The two orbitals involved in the transition can’ t have the same
symmetry, i.e., g to g or u to u transition is forbidden

Symmetry can be destroyed by vibration and these symmetry forbidden
transitions can become weakly allowed due to vibrational mixing.



Probability of Absorption and Emission

Probability of light absorption is related to the oscillator strength f

Theoretical oscillator Experimental
-~ 9 .
strength f 4.3x10 J e dv absorption

|

Area under € vs. wavenumber plot

Emission follows the same rules as absorption



Relationship between absorption intensity (and fluorescence lifetime)

Strickler and Berg “Relationship between Absorption Intensity and Fluorescence
Lifetime of Molecules” J. Chem. Phys. 1962, 37, 814.

Strickler-Berg relation

The relation of the radiative lifetime of the molecule and the absorption
coefficient over the spectrum

~2 2
1 1%

N
- — max ~ d"’
K T  3.42-10° Ig(v) Y

n: refractive index of medium
v : position of the absorption maxima in wavenumbers [cm™!]
& : absorption coefficient

Tn : radiative lifetime



Same Rules for Excitation & De-excitation

S, S,




*R —*E

0
€ ke

AE =*E -Ey = hv

+hv -hv
k.(s7h Example Transition type € max f
10” p-Terphenyl S, %) =Sy 3x10* 1
0% Perylene Si(m,t*) =S, 4x 104 107!
107 | .4-Dimethyl-benzene  S,(w,7*)— S, 7x10*> 1072
106 Pyrene Si(w,m*) =S, 5x10> 1072
10° Acetone Siin,@*) =S, 10 10~4




Radiative

0 ~9—2 — =
rate constant ke =3 %10 Vofgd" =V, |

1/79=k0 ~¢ . AV?* ~10%, ..

Experimental and Calculated Radiative Lifetimes
for Singlet-Singlet Transitions

Compound 0 (x10%) 1 (x 107
Anthracene 13.5 16.7
Perylene® 4.1 4.6
9,10-Diphenylanthracene 8.9 8.8
Acridone 14.9 14.1
Fluorescein 4.7 4.0
9-Aminoacridine 14.6 14.3
Rhodamine B 6.0 6.0
Acetone 10,000 1,000
Perfluoroacetone 10,000 5,000

Benzene 140 600



Electronic spectra of larger molecules
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Shapes of Absorption Spectra: medium dependent
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Energy

Franck-Condon principle and vertical transitions

Franck-Condon Principle:

Vibronic Transitions

J. Franck E. Condon
1882-1964 1902-1974
Nobel Prize, 1925

The ground state (E,) supports a large number of
vibrational energy levels. At room temperature,
only the lowest vibrational level is populated,
and electronic transitions originate from the v=0
vibrational level.

Franck-Condon principle is based on the fact
that electrons move faster than nuclei that are
heavier.

Internuclear Distance



Franck-Condon principle

An electronic transition occurs without changes in the positions of the nuclei in the
molecules and its environment

v=4—->0
M .
Absorption
v=0—>0 spectrum
N\
%

\oF—+—
\ ! /
_ \L_= / v =1 0
AEwbi V=0

Energy

QM harmonic oscillator QM anharmonic oscillator

Vibrational overlap integral decides the intensity of absorption



Potential energy

Relative position of energy surfaces and Franck-
Condon principle control the shape of the absorption
and emission spectra
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Energy —

Relative position of energy surfaces and Franck-Condon principle
control the shape of the absorption and emission spectra

Vertical or Franck—Condon
allowed transitions

0 — 0 The most probable
Franck—Condon transition

l

0—-0

0—1

0-2

0->3
0—4

vV (cm™)

Spectrum broadened by
solvent interactions

Energy —

Compressed
excited state

0 — 2 The most probable
Franck—Condon transition

i

T 0—-2
0—-3

Viem') —

Spectrum broadened
by solvent interactions

v

viem) —

Energy —

B —> X + Y dissociation
€ Continuum of
absorption
0-5 (0—6, 07, etc.)
0—4
0-3

Vem") —
Photoablation & Lasik

use this part of the
spectrum



Stoke's shift: Absorption and
Emission Spectra

(@) (b)
_ G.G. Stokes (1819-1903)
Absorptlon‘ Fluorescence s
Characteristic{ﬁ N Characteristic e
of upper, | of lower state =
state | 0.0 4
(0.0) » The shortest >
N wavelengthinthe ¢ 5
fluorescence %
spectrum is the
longest wavelength
in the absorption e
spectrum 7 Electronic
i ground state
|
\ v=0
Wavelength

Owing to a decrease in bonding of the molecule in its excited state compared to that of the ground
state, the energy difference between S, and S, is lowered prior to fluorescence emission. This is

known as Stoke’s shift.



Energy

Absorption and Emission Spectra
Mirror Image Rule, Franck-Condon Principle, and Stoke’s shift
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https://www.youtube.com/watch?v=ULCTTxeHI6o&t=0s
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Vavilov's rule

The quantum yield of fluorescence (and the quantum yield of
phosphorescence) are independent of initial excitation energy.
Emission originates from the lowest vibrational level.

El excited singlet states
5 . .
3 vibrational
[ 4
S, 2 energy
0 levels
IC
: (~10714,..107%s)
s, i y: ISC
1, (~10719...10%s)
0
) W
'-:’) c’"fﬂ 8 1
'To £o g o
= A A
Wapsh | T €. : 3-,‘”"
e $6§ 6o
S oT§37
2 JCEL
5  ——
S, e
0 ‘
iz o L
ground state

excited
triplet state

S. Vavilov



Singlet-Triplet Crossing and Phosphorescence
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Triplet State and Phosphorescence

S. Vavilov A. Terenin Porter
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Singlet-Triplet Transitions
Role of Spin-Orbit Coupling

—1 —T >
A T, A T, +A S5,
R v
SO S()

Spin-Orbit coupling mixes the states,
no longer pure states



Observed Zero-point Motion-

Rate Constant Limited Rate Constant “Fully Allowed Rate” (3.7)
kobs — k:,u X fc X fv X fS
e — i —
Prohibition to maximal Prohibition factors due to changes in
caused by “selection rules electronic, nuclear, or spin configuration

koo < V| Pyip| ¥z >7 < Y| P =2
k — max ~ % 1H¥sol¥2 % [< X |X‘> >2]
obs [ AE?, AE?, Az

- -

- e

.

Vibrational overlap

Vibrational coupling SPi"‘Orbit;] coupling  granck-Condon factors



Absorption and Emission

SINGLET

\ ' TRIPLET
g% é% N
SRR | R ccooe o s, e N s Y
SINGLET

(a) Absorption {h) Re-emission (¢) Fluorescence (d) Phosphorescence



intensity (1)

Phosphorescence

singlet-triplet splitting
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Fluorescence:

- High radiative rate constant, 10-10 to 10-8 s-!
- Precursor state (S9) has short lifetime
- Generally not susceptible to quenching

Phosphorescence:

- Low radiative rate constant, 10 to 10 s!
* Precursor state (T;) has long lifetime
* Very much susceptible to quenching
- Emission quantum yield depends on
S; to T; crossing




Organic Glass for Phosphorescence

VISCOSITY OF LOW TEMPERATURE GLASSES
(Adapted from Greenspan and Fischer 20%)

Solvent Approximate viscosity
in poise at — 180°C
1-Propanol/2-propanol (2:3) 6 x 1012
Ethanol/methanol 2 x 1012

Ethanol/methanol + 4.5 %, water -
Ethanol/methanol + 9% water —
Iso-octanefisononane 3 x 1010

Methylcyclohexane/cis/trans-decalin 1 x 1014
Methylcyclohexane/toluene 7 x 10°
Methylcyclohexane-isohexanes (3:2) 3 x 108
Methylcyclohexane/methylcyclopentane 2 x 105
Methylcyclohexane/iso-pentane -

Methylcyclohexane-iso-pentane (1:3) 1 x 103
2-Methylpentane 7 x 104
2-Methyl tetrahydrofuran 4 x 107

Ether/iso-pentane/ethanol (5:5:2) 9 x 108

Be chemically inert

Have no absorption in the region of optical pumping
Have a large solubility for the studied material

Be stable (don't crack) to the action of light

Have a good optical quality



Emission Quantum Yield

Source

' Detector

h
\.

Sample

Ground State
(So)

hv

Emission Quantum Yield (D)

# of photons emitted

# of photons absorbed

Singlet Excited
State (S,)

4

>

A
1



Competition with fluorescence

Iabs E p -III
S0+hv >Sl T S/;\mk\ST%\E k:‘/'%
k T
S, ——=S§,+hv ﬂ T
S ke ST £S>S,)| |k ke &S,~T,)| |k Sk
1 1
S k. > S S, Y v
! 0 DO @O
) k15,1
g (kf +kisc +kic +)[S1]
1
Ty = F o+k +k + 1/19=k ~ g AV? ~ 10% .,
f isc ic =

Lifetime Radiative lifetime



Excitation

Excited State Decay

hosphorescence «— Ntersystem ___  delayed
Phose = crossing fluorescence

Radiative Decay fluorescence

internal

emission conversion

intramolecular
charge transfer

conformational
change

electron
transfer

photochemical
transformation

transfer

energy

excimer transfer
formation

exciplex
formation

Non-emissive Decay
Non-radiative Decay

# of photons emitted

# of photons absorbed



Factors Controlling Quantum Yield of Fluorescence
Rigid vs non-rigid molecules

Bond rotation
‘_, ﬁ ! / \

25°C 0.05 0.00 1.0
77K 0.75 0.75 1.0 1.0

Molecular rigidity enhances @y

Loose Bolt ~ &

0.011




Kasha's rule

“The emitting level of a given multiplicity is
the lowest excited level of that multiplicity”

Kasha, Characterization of Electronic Transitions in Complex _\y
Molecules, Faraday Soc. Discussion 9, 14-19 (1950)

Michael Kasha
(1920 — 2013).

: > Fluorescence occurs only

from S, to Sy;

<1 Phosphorescence occurs
only from T to Sy;

S, and T, emissions are
extremely rare.



https://pubs.rsc.org/en/content/articlelanding/1950/df/df9500900014

Energy Gap Law
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Exceptions

Absoption Emission
o So=S2 $—S, @
10 - Ny # Y
\ 5"' Azulens
10*- §
10°-
10°— '
W\; =,
I [ T
300 400 500

A({nm) —

K, [S,=84)

k'(SZ"s‘]:

+

k'(s’.SO )!

|
|

|

S, (80.9 kcel/mole)
kKelS2~5,)
$, (40.9 kcal / mole)

k‘c ( S\‘So)

So

ke(S;~Sg) = 142107
(S,-5,) 2 14x10%

ke {S)=Sg) = 1.3 x10°®
kielSp=Sy ) = 7 2108
5, =Sg) = 1.2x10"

M. Kasha; G. Viswanath, Confirmation of the anomalous fluorescence of azulene.

J. Chem. Phys. 1956, 24, 574.
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TOk% —
T ——
Ordering of -

. JOTCHk
excited states e s
depends on chain i
length

Absorption

Nl » A &

Intensity

R. L. Christensen et. al., J. Phys. Chem. 1990, 94, 7429
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Pyrene as an exemplar of excimer formation
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Why excited state complexes are more stable?
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Normalized fluorescence intensity

Excited state complexes: Exciplexes
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Delayed Fluorescence
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Fig. 1.11 [Illustrating production of delayed thermal fluorescence
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Delayed Fluorescence
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Photoluminescence of
Solutions: With Applications
to Photochemistry and
Analytical Chemistry

C A: Parker

1968

Third Edition

Principles of
Fluorescence Spectroscopy

Joseph R. Lakowicz

e 4.5 Springer

Bernard Valeur and SWILEY-VCH
Mirio N. Berberan-Santos

Molecular Fluorescence

Principles and Applications



https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=C+A%3A+Parker&text=C+A%3A+Parker&sort=relevancerank&search-alias=books

Intrinsic fluorophore and extrinsic fluorophore

® Intrinsic fluorophores are those which occur naturally

® Extrinsic fluorophores, fluorescence probes

4 Intrinsic and Extrinsic Fluorophores

* Intrinsic or Natural Fluorophores

Proteins: Tryptophan, Tyrosine

Protein Fluorescence Spectroscopy:
Binding of ligands
Protein-protein association
Denature

Cofactors: NADH—NAD, FMN, FAD

* Extrinsic Fluorophores

Fig.1. Fluorescent probe represents a molecular reporter in the
. biological sample.



Pyrene Emission at Room Temperature
Vibrational Pattern
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Comparison of Pyrene Emission in Different Solvents:
I,/I3 as Polarity Probe
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Solvent Polarity Probe

Solvent Polarity: The emission wavelength generally increases with solvent
polarity.

Solvent Reorganization: The energy of S, after solvent reorganization
generally decrease with solvent polarity.

Absorption

20N
H// / \‘ \
\

H = Hexane

Bu H

CH = Cyclohexane

T = Toluene

NORMALIZED ABSORPTION
NORMALIZED EMISSION

EA = Ethyl acetate

1 b 4 1 1 >
400 500 600 700

WAVELENGTH (nm) Bu = Butanol



Solvation Dynamics

®@ ©  SOLVENT
—o0 DIPOLE

NONPOLAR SOLUTE UNSOLVATED SOLVATE
RANDOM SOLVENT HIGH ENERGY LOW ENERGY



Franck - Condon

Relaxed State

Franck -Condon
Principle

)/ RS, is unchanged
hv,

R%.
O




Dynamic Stokes shift

> ins
=
g ....3Nns
: ! N, o o*® i
(' -
th-‘ 1 : =_r: 1 | .P/._"‘WAVELENGTH(nm)
| = v ..
R~ N k3 = -
! I
13 3
Yy VVvvy I bt )

TIME (ns)

I'(aA,t)

WAVELENGTH (nm)




3 (C-152A)

Wavelength (nm)

Wavelength (nm)

Wavelength (nm)

420

460

500

Wavenumber (cm'1) X10

540

T T T T
@ ¥ o o
=] o < o

)
o
10
o
]
T
@
o

1.0

Ajsuajul pasijewaoN

420
¢ 3000 ps
2

1 -
) X10

@® O0ps
T
20
Wavenumber (cm’

460

500

540

—_—
O
S

T T T T T T
S ® © ¥ o 9o
- o o o o o

Kjsuajul pasijewaoN

420
1

460
|

540 500
1 1
a)
® O0ps
081 m 5ps
A 50 ps
¢ 3000 ps
Wavenumber (cm'1) X10

(

T T T
¥ q <
© ©o o o

.0
.61

-

Ayisuajul pasijewaoN



Normalised intensity
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Viscosity Probes

Viscosity Probes = An increase in the viscosity of the medium surrounding a

fluorophore can restrict conformational freedom and alter the quantum yield
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Supramolecular Sensors: Proton

Cation
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Mechanism of PET Signaling
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Metal ion sensing
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Use of Excimer Emission in Ca*" Sensing

[Ca>t )M

Nakamura ef al. J. Phys. Chem. B, 2001, 105, 2923 SR

» A fluorescent host with anthracene moiety at each end of a
linear polyether chain

» Upon addition of Ca** fluorescence spectrum changes from
monomer emission to excimer emission



Chalfie, Shimomura and Tsien

The Nobel Prize in Chemistry 2008 was awarded for the
discovery and development of the

Martin Chalfie Osamu Shimomura Roger Y. Tsien
Columbia University Marine Biological Laboratory University of California,
and Boston University Medical School San Diego

The Nobel Prize in Chemistry 2008
www.nobelprize.org



Fluorescent Protiens

Green fluorescent proteins can be
expressed in living organisms
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Rabbit expressing GFP



Modifications of Green Fluorescent Protein

Mutants = Mutations in the amino acid sequence can be exploited to regulate the
absorption and emission properties of the chromophore
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