Radiationless Transitions

- Spin allowed
- Spin forbidden

Chapters 3 & 5 Principles of Molecular Photochemistry: An Introduction NJT, VR and JCS

Transition Between States

Why radiationless transition matters? Competes with fluorescence and phosphorescence

$$\phi_f = \frac{k_f[S_1]}{(k_f + k_{isc} + k_{ic} + ...)[S_1]}$$

Radiation<u>less</u> Transitions

- Changes in electronic, vibrational and spin configurations without the help of a photon
- Energy redistribution--electronic to vibrational

Visualization of vibrational levels within an electronic energy surface

Harmonic

Anharmonic

Relative position of energy surfaces

Matching vs. Crossing Surfaces

For the same energy gap the rates are different for the two types of surfaces

Matching surfaces (e.g., polyaromatics)

Normal coordinates $\{Q\} \rightarrow$

Equilibrium geometries similar

The S_1 and S_0 potentials exhibit small relative displacements. Significant overlaps between their vibrational wave functions are obtained only for small energy separations, ES_1-S_0 . The IC probability decreases exponentially with increasing energy gap. This exponential dependence of the transition probability on E is usually dubbed the **Energy Gap** Law.

Basis of energy gap law during radiationless transition in nested surfaces: Vibrational overlap

Nested or matching surfaces: Extent of vibrational overlap depends on the energy gap

 $f \sim \exp^{-\Delta E}$ $k_{IC} \sim 10^{13} f_{\nu}$ $k_{IC} \sim 10^{13} \exp^{-\alpha \Delta}$

Matching (nested) surfaces Vibrational overlap can be off-set by density of states

Large energy gap favors higher density of states as the vibrational levels that overlap would be in the region with have higher density. Thus energy gap and density of states work in opposite direction.

Dependence of rate of k_{IC} (S₁ to S₀) on energy gap

Dependence of rate of $k_{ISC} T_1$ to S_0 on energy gap

"igure 5.5. Relationship between the energy gap $\Delta E(T_1 - S_0)$ and the logarithm of he rate constant k_{TS} of intersystem crossing in aromatic hydrocarbons (data from 3 krs, 1970).

Conversion of electronic to vibrational energy

Non-radiative deactivation processes

Three step process:(i) upper vibrational to lower vibrational level in excited state(ii) lower vibrational level to upper vibrational of the lower state(iii) upper vibrational of the lower state to lowest vibrational level

Visualization of Electronic Energy to Vibrational Energy Transfer

<u>Intr</u>amolecular vibrational relaxation (IVR) occurs within 10 to 0.1 ps

<u>Inter</u>molecular vibrational energy transfer (VET) from the molecule to the solvent occurs in the time range 100 to 10 ps

Solvent is **hot** (translations and vibrations)

Crossing surfaces

Weak Coupling

Matching vs. Crossing Surfaces

For the same energy gap the rates are different for the two types of surfaces

Basis of Kasha's Rule

Kasha' s Rule

All photophysical and photochemical processes usually start in S_1 or T_1 , irrespective of which excited state or vibrational level is initially produced.

 S_2 to S_1 IC is fast due to possible surface crossing and smaller gap

 S_1 to S_0 IC is slow due to matching surface and larger gap

 S_2 to S_1 IC can be slow if gap is larger and the surfaces don't cross

Energy Gap Law and Azulene Anomaly

Fluorescence occurs only from S_1 to S_0 ; phosphorescence occurs only from T_1 to S_0 ; S_n and T_n emissions are extremely rare (Kasha's rule).

	Φ_{fl}	E _{S1} , kcal/mol	E _{S₂} , kcal/mol	ΔE , kcal/mol
C C C	0.058	36.3	77.0	40.9
	0.031	40.9	80.9	40.0
×	0.014	39.5	77.8	38.3
	0.0081	42.6	79.5	36.9
	0.0034	42.9	77.5	34.6
\bigcirc	~10 ⁻⁴	44.3	77.2	32.9
∖ CO₂Me	ţ			1

TABLE I. Fluorescence Quantum Yields and the Energies of the First Two Excited Singlet States of Substituted Azulenes^a

S₂ to S₁ rate vs Energy Gap

Figure 3. Log-linear energy gap law plots (see text) for azulene (AZ), 1-fluoroazulene (FAZ), and 1,3-difluoroazulene (DFAZ) in several solvents (line A), and for 6-isopropylazulene (IAZ), 1-fluoro-6isopropylazulene (FIAZ), and 1,3-difluoro-6-isopropylazulene in *n*hexane (line B). The data for AZ in several solvents are taken from ref 11.

Role of vibrational level (v_n) on radiationless process

Electronic to Vibrational Energy Transfer

Bond Type	Vibrational Type	Frequency	
C=C	stretch	2200 cm ⁻¹	
C=O	stretch	1700 cm^{-1}	
C=C	stretch	1600 cm^{-1}	
N=N	stretch	1500 cm^{-1}	
C-H	bend	1000 cm^{-1}	
C-C	stretch	1000 cm^{-1}	
C-C	bend	500 cm^{-1}	
С-Н	stretch	3000 cm ⁻¹ ←	_
C-D	stretch	2100 cm⁻¹	

High frequency vibrations are important in radiationless transitions. Vibrational level to match the gap is of lower # with high frequency vibrations.
 Table 5.4
 Some Representative Values of Triplet Energies, Phosphorescence Radiative Rates, Intersystem Crossing Rates, and Phosphorescence Yields^a

Isotope Effect on Rate of T₁ to S₀

Molecule	E_{T}	k_{P}	k _{TS}	$\Phi_{\rm P}$
Benzene- h_6	85	~ 0.03	0.03	0.20
Benzene- d_6	85	~ 0.03	< 0.001	~ 0.80
Naphthalene- h_8	60	~ 0.03	0.4	0.05
Naphthalene- d_8	60	~ 0.03	< 0.01	~ 0.80
(CH ₃) ₂ C=O	78	~ 50	1.8×10^{3}	0.043
$(CD_3)_2C=0$	78	~ 50	0.6×10^3	0.10

a. In organic solvents at 77 K. $E_{\rm T}$ in kcal mol⁻¹, k, in s⁻¹.

C-H stretch C-D stretch 3000 cm⁻¹ 2100 cm⁻¹ Higher vibrational level needed to match; poor overlap, slow decay, large Φ_P

Effect of deuteration on radiationless process (T_1 to S_0)

Figure 5.2 $T_1 - S_0$ intersystem crossing rate k_{GT} (s⁻¹) and Franck-Condon factor F against normalized triplet state energy $(E_T - E_0)/\eta$ for unsubstituted perprotonated and perdeuterated aromatic hydrocarbons. The broken line represents F as derived from phosphorescence spectra. The F-scale is normalized by drawing the two solid lines as tangents to this function (after Siebrand⁸)

Birks book

Decay of singlet oxygen depends on solvent and deuteration

Mikkel Bregnh.j, Michael Westberg, Frank Jensen and Peter R. Ogilby, *Phys. Chem. Chem.Phys.*, **2016**, *18*, 22946

Solvent	Averaged published data ^a	Current data ^b
Benzene- h_6	30.6 ± 0.9	30.4
Benzene-d ₆	640 ± 150	747
Toluene-h ₈	28.6 ± 0.7	30.5
Toluene-d ₈	303 ± 17	314
α,α,α-Trifluorotoluene	62.5	61.7
o-Xylene	21.0 ± 2.0	23.4
Mesitylene	15.5 ± 0.5	16.9
Chlorobenzene	45 ± 3	43.6
Iodobenzene	37 ± 2	38.9
1,2-Dichlorobenzene	_	57.0
1,2,4-Trichlorobenzene	_	93.8
Cyclohexane-h12	23.3 ± 0.5	24.0
Cyclohexane-d ₁₂	450	483
<i>n</i> -Pentane	34.8 ± 0.2	34.8
<i>n</i> -Hexane- <i>h</i> ₁₄	$\textbf{30.8} \pm \textbf{0.6}$	32.2
<i>n</i> -Hexane- <i>d</i> ₁₄	_	586
n-Heptane	28.9 ± 0.5	30.1
<i>n</i> -Octane	_	28.6
<i>n</i> -Decane	27.6	26.5
Methanol- h_4	9.8 ± 0.6	9.4
Methanol-OD	31 ± 5	31.4
Methanol- d_4	246 ± 16	276
1-Propanol	17.2 ± 0.9	15.9
1-Octanol	18.5	17.8
Benzyl alcohol	_	14.4
Acetone-h ₆	48 ± 4	45.6
Acetone-d ₆	770 ± 140	1039
Acetonitrile-h ₃	77 ± 4	81.0
Acetonitrile- d_3	890 ± 330	1610
Benzonitrile	36 ± 4	40.0
H ₂ O	3.7 ± 0.4	3.5 ^e
D ₂ O	68 ± 1^{J}	68.9^{e}

 $\tau_{\Lambda}/\mu s$

Vibrational effects on singlet oxygen lifetime

Figure 14.3 Comparison of the energy levels of ¹∆ to common high frequency X—H and X—D vibrations of solvents. Energies in cm⁻¹.

Table 14.3 Approximate Rate Constants^a for the Deactivation of ¹∆ by Various Kinds of X—Y Bonds in Organic Solvents^b

	Bond Type	$k_{\rm d}({\rm M}^{-1}{\rm s}^{-1})$	Vibrational Energy (cm ⁻¹)
→	O-H	2900	~ 3600
\rightarrow	C-H (aromatic)	1500	~ 3000
\rightarrow	C-H (aliphatic)	300	~ 2900
\rightarrow	O-D	100	~ 2600
\rightarrow	C-D (aromatic)	20	~ 2200
\rightarrow	C-D (aliphatic)	10	~ 2100
	C-F (aromatic)	0.6	~ 1200
	C-F (aliphatic)	0.05	~ 1200

a. Reference 9.

b. The energies of X-D vibrations are typically at 0.73 times the energy of a X-H vibration.

In aromatics because of the large S_1 to S_0 energy gap internal conversion does not compete with k_{ISC} and k_F

Table 4.2 Quantum yields for fluorescence $(S_1 \rightarrow S_0 + hv)$ and intersystem crossing $(S_1 \rightarrow T_1)$ for some aromatic hydrocarbons in ethanol solution (Data from Birks, J. B. (ed.) (1975). Organic molecular photophysics, Vol. 2, Tables 2.6 and 3.4. Wiley, London)

Compound	$\boldsymbol{\phi}_{\mathrm{f}}$	$\phi_{ ext{isc}}$	$\phi_{\rm f} + \phi_{\rm ISC}$		
Benzene	0.04	0.15	0.19 (exception		
Naphthalene	0.80	0.21	1.01		
Fluorene	0.32	0.68	1.00		
Anthracene	0.72	0.32	1.02		
Tetracene	0.66	0.16	0.82		
Phenanthrene	0.85	0.13	0.98		
Pyrene	0.38	0.65	1.03		
Chrysene	0.85	0.17	1.03		

For large aromatic molecules the sum of the quantum yields of fluorescence and ISC is one i.e., rate of internal conversion is very slow with respect to the other two (Ermolaev's rule).

Internal conversion in matching vs. crossing surfaces

For the same energy gap the rates are different for the two types of surfaces

Why it is easier for molecules to move between surfaces at intersections?

Potential energy surfaces for two states (1 and 2) shown above.

The two surfaces cross at X.

At point E the molecule on state 1 is at rest (KE = 0). The same molecule at state 2 has KE equivalent to EZ.

Moving from state 1 to 2 is more likely at X and less probable at E.

Breakdown of Born-Oppenheimer Approximation

Figure 3.22. Large vibrational overlap at the crossing point of approximately degenerate electronic states

Figure 3.23. Vibrational overlap with a large energy difference between states

The energy difference between crossing surfaces may vary from 0 to #.

When the gap is zero the transition between surfaces is more likely due to large vibrational overlap.

Energy gap law works even for crossing surfaces

When the gap is large the transition between surfaces is less likely due to poor vibrational overlap.

Larger the gap smaller the overlap and lower the rate of IC.

However, density of states is larger when the gap is larger. Higher vibrational levels would be closer. This would favor IC.

Breakdown of Born-Oppenheimer Approximation Mixing of surfaces

Breakdown of Born-Oppenheimer Approximation Vibronic mixing enables surface mixing

Intersystem crossing in aromatic molecules $(\pi\pi^*)$ and and olefins $(\pi\pi^*)$

Intersystem crossing in carbonyl compounds (nπ*)

Intersystem Crossing in Diradicals and Radical Pairs

Spin forbidden transitions

- $\mathbf{R}(\mathbf{S}_0) \ + \ \mathbf{h}\mathbf{v} \ \rightarrow \ ^*\mathbf{R}(\mathbf{S}_1)$
- $R(S_0) + h\nu \rightarrow *R(T_1)$
- $*R(T_1) \rightarrow R(S_0) + h\nu$
- * $R(T_1) \rightarrow R(S_0)$ + heat
- $R(S_1) \rightarrow R(T_1) + heat$

Singlet-Triplet Transitions Role of Spin-Orbit Coupling

Spin-Orbit coupling mixes the states, no longer pure states

Breakdown of Born-Oppenheimer Approximation Spin-Orbit coupling enables surface mixing

For the same nuclear configuration there are two electronic and spin configurations. If they don't mix the two will identical energies. SO coupling could lead to mixing and result in avoided crossing.

