

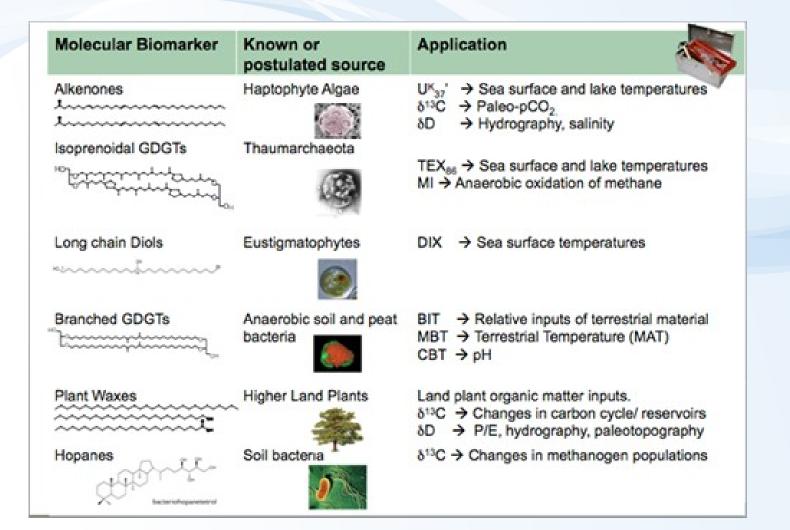
BIOMARKERS AND TOXICITY MECHANISMS 10 – BIOMARKERS Introduction

Luděk Bláha, PřF MU, RECETOX www.recetox.cz

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

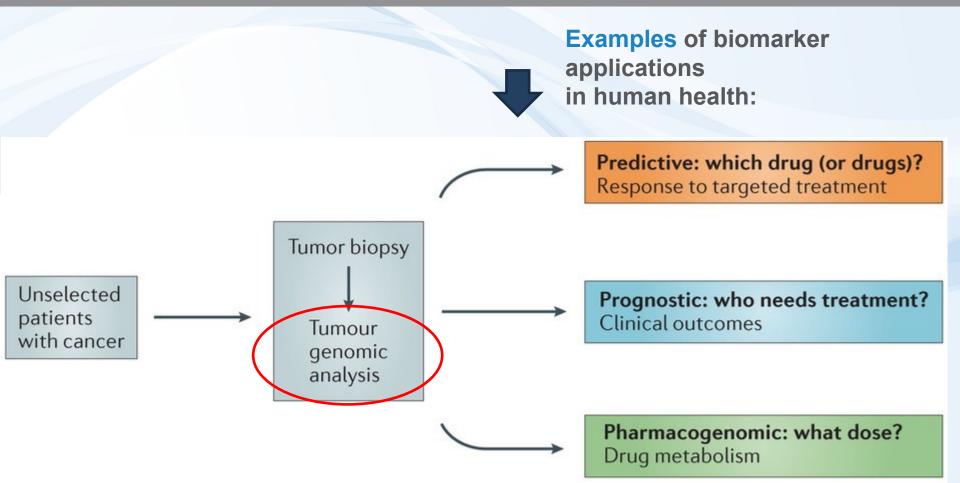
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Definition and applications


 markers in biological systems with a sufficiently long half-life which allow location where in the biological system change occur and to quantify the change.

Various definitions and applications of "biomarkers"

- Ecology / Geology
- Human health and diseases
- Toxicology (special focus in this class)



Biomarkers in ECOLOGY / GEOLOGY

Biomarkers in HUMAN HEALTH

Nature Reviews | Drug Discovery

Biomarkers in TOXICOLOGY

Identification of markers that inform/predict about long-term risks

- **Human**: chronic health –e.g. early stages of liver steatosis, carcinogenesis
- **Ecotoxicology:** early markers of ecotoxic effects
- BIOMARKER
- change which occurs as a response to "stressors" (xenobiotics, disease, temperature...)
 extending the adaptive response beyond the normal range

In vivo biomarkers:

- changes measured in stressed organisms, i.e. in vivo ("classical biomarkers" in toxicological research)
- In vitro biomarkers
 - in vitro testing characterizing potencies of xenobiotic to induce specific biological activity (or toxicity mechanism)
 - = biological potencies (markers of potential hazards)

Biomarkers - classification

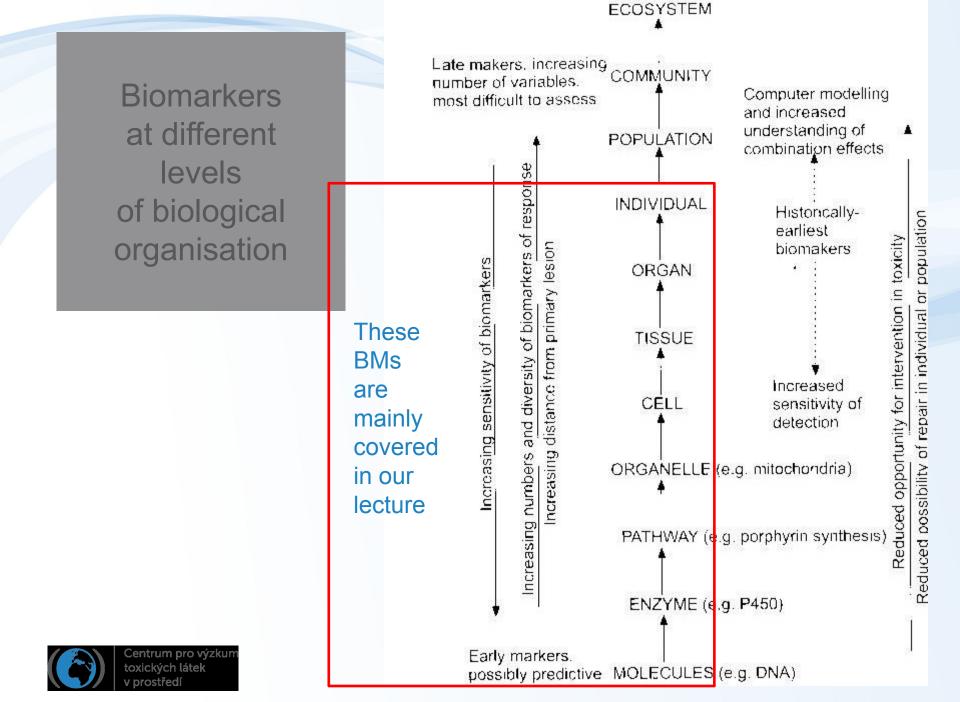
Categorization by US National Academy of Sciences

- Biomarkers of exposure
- Biomarkers of response or effect
- Biomarkers of susceptibility

Continuum exists among biomarkers

<u>Example:</u> adducts of a toxicant bound to nucleotide ? biomarker of exposure (proof of toxicant) ? biomarker of response or effect (modified nucleotide = effect)

Various biomarker types


Specific (selective) in vivo biomarkers

- Biomarkers selectively reflecting specific types (mechanisms) of toxicity
 - E.g. inhibition of AcCholE : exposure = organophosphates; effect = neurotoxicity
- + provides specific information
- multiple biomarkers need to be measured in parallel when searching for a cause of intoxication

• Non-specific (non-selective) in vivo biomarkers

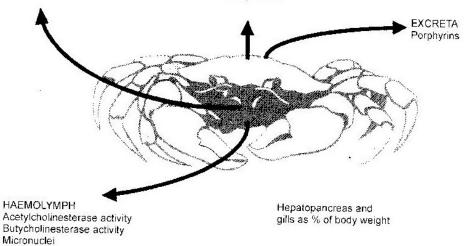
- Biomarkers of general stress
 - E.g. induction of Heat Shock Proteins (hsp)
- + general information about stress
- sensitive to many "stressors" (chemicals, temperature, salinity ...)

Sampling biological materials for biomarker analyses

Non-destructive (non-invasive)

- blood / haemolymph collection & analyses
- skin, feather, hair, urine ...

(life of the organism not affected)


Destructive (invasive)

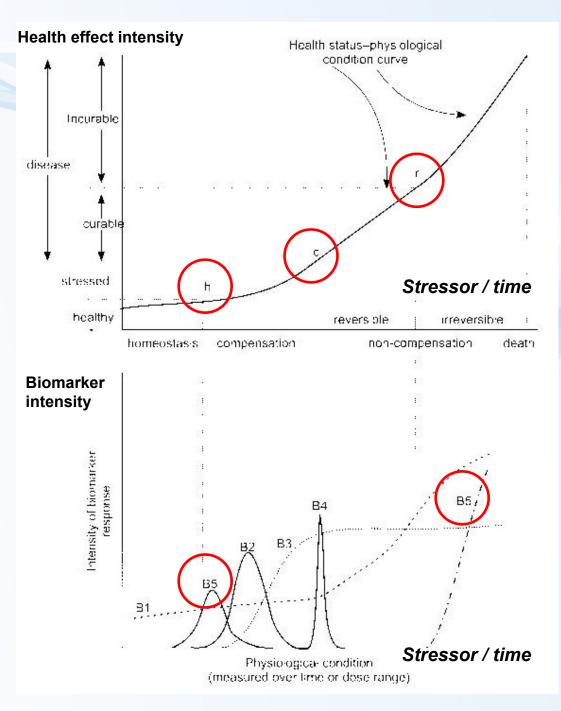
- whole animal
 - → research should follow 3R principles (Replacement, Reduction and Refinement)
 - \rightarrow maximum use of the biological material
- multiple biomarker evaluation

GILLS Benzopyrene mono-oxygenase activity NADH ferricyanide reductase activity Micronuclei (mutagenicity) total proteins

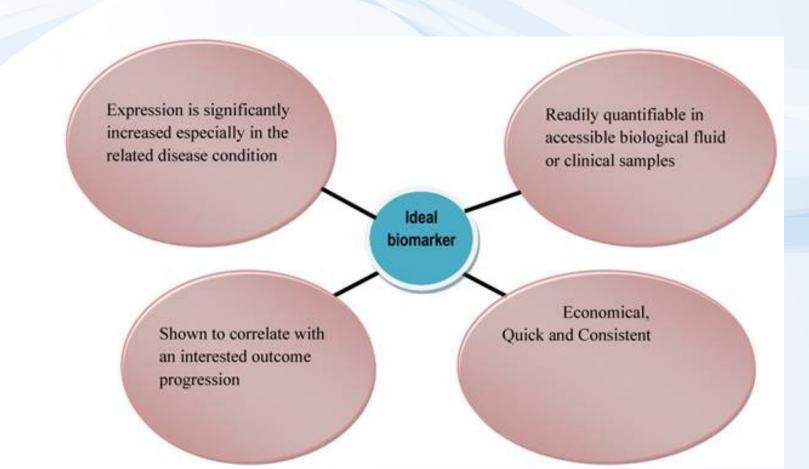
Total proteins

HEPATOPANCREAS Benzopyrene mono-oxygenase activity Ethoxyresorufin-O-deethylase NADPH cytochrome c reductase NADH cytochrome c reductase SDS-PAGE for P450 Alkaline unwinding assay (DNA damage) Porphyrins Total proteins

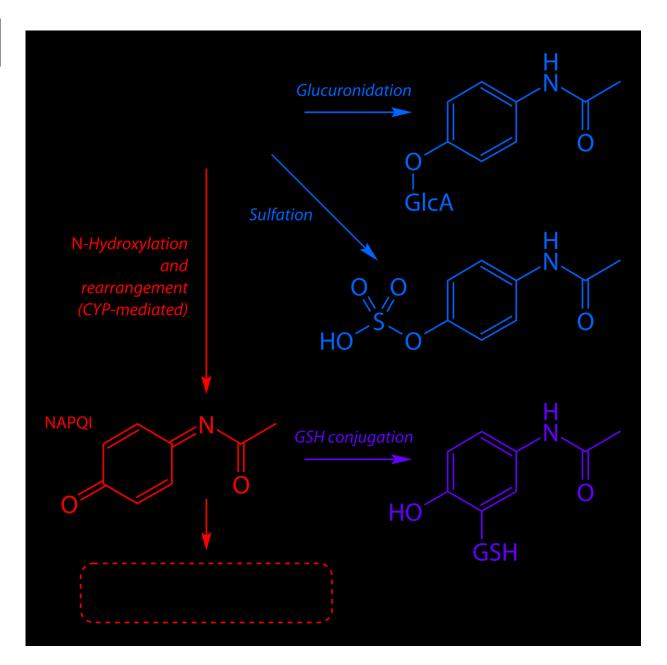
Biomarkers & Exposure

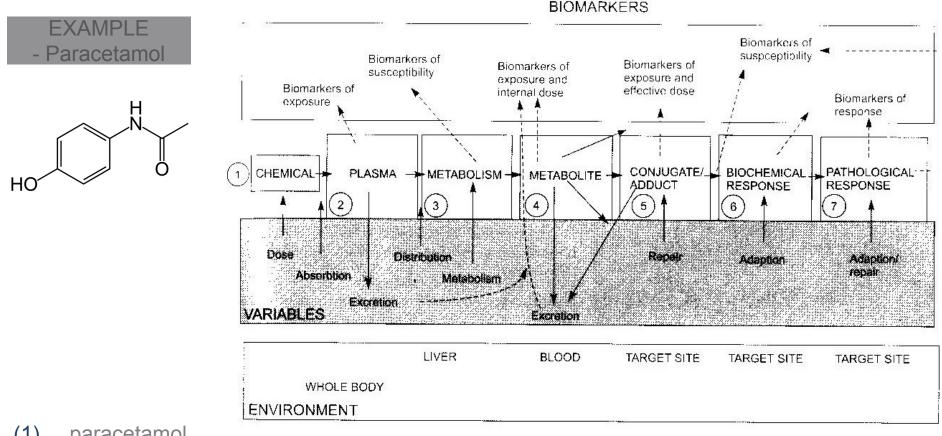

h: homeostatic conditionsc: reversible stager: irreversible effects of pollutants

Various biomarker profiles


- temporal changes-B2; B4
- repeated occurrence (B5)
- continuous increase (B1)
- increase with maximum (B3)

: B1 + B3 are candidate biomarkers !


Ideal biomarker



Centrum pro výzkum toxických látek v prostředí

EXAMPLE - Paracetamol

- paracetamol (1)
- (2)parent compound measurement - biomarker of exposure
- (3)activation to reactive metabolite (N-ac-p-benzoquinone, NAPQI) by CYP → reaction with GSH / measurement – levels of CYPs; levels of GSH – susceptibility
- (4) GSH-NAPQI conjugate – exposure, susceptibility
- NAPQI-protein adducts \rightarrow toxicity: **exposure**, effective dose (5)
- adaptations: GSH depletion, inhibition of protein synthesis **biomarkers of response** (6)
- (7)protein alkylation \rightarrow degeneration of hepatocytes: necrosis
 - \rightarrow increase concentrations of bilirubin in plasma + inflammation response / effect

Biomarkers in toxicology – examples / overview (some are discussed in detail in following lectures)

Table 1 Examples of different biomarkers illustrated with specific examples and examples of the stressor which may result in the biomarker changes

Type of biomarker	Biomarker	Specific example	Stressor
Exposure	DNA adducts Protein adduct DNA fragments	Styrene oxide- <i>0</i> ⁶ guanine N ⁷ -Guanyl-aflatoxin B ₁ 7,8-Dihydro-8-oxoguanine	Styrene exposure Dietary aflatoxin Reactive oxygen species
Exposure and effect (response)	Protein adducts Enzyme inhibition Urinary metabolites	Carboxyhaemoglobin Acetylcholinesterase inhibition Mercapturic acids	CO inhalation Organophosphates Buta-1,3 diene, allyl chloride
Effect (response)	Serum/plasma enzymes	AST (aspartate aminotransferase) LDH (lactate dehydrogenase) ALT (alanine aminotransferase) ALP (alkaline phosphatase) CK or CPK (creatine kinase)	Xenobiotics causing necrosis Xenobiotics causing necrosis Hepatotoxic compounds Bile duct toxins Heart/muscle toxins
	Serum/plasma biochemistry	Urea (changes) Protein (reduced, e.g. albumin) Bilirubin	Hepatotoxic and nephrotoxic compounds Hepatotoxic compounds Liver injury
	Clotting time	Prothrombin	Warfarin (rodenticide)
	Urinary metabolites	Glucose, raised creatinine, GSH conjugates	Pancreatic abnormalities, kidney damage
	Raised antioxidant levels	Liver glutathione	Reactive oxygen species Polycyclic aromatic hydrocarbons
	Enzyme induction	P450 induction	Cadmium, heat
	Stress proteins	hsp 60, hsp 70, hsp90 Metallothionein	Heavy metals, e.g. cadmium
	Protective proteins	Antibodies, e.g. IgG	Antigens
	Allergic response	Dermatitis	Nickel
	Histology	Chromosomal aberrations, micronuclei	Genotoxic agents
	Clinical observations	Heart rate, temperature, sleeping time	Barbiturates
	Population studies	Breeding patterns, migrations	Climate change
Susceptibility	Phenotype	Acetylator phenotype ($NAT2$)	
	Oncogenes	Dominant oncogenes (ras, mic)	
	~~~~~	Recessive suppressor gene (p52)	_
	'Cancer' genes	Breast-ovary cancer gene (BRCA 1)	H

