E2011: Theoretical fundamentals of computer science Topic 3: Numeral systems

Vlad Popovici, Ph.D.

Fac. of Science - RECETOX

(ロ) (御) (唐) (唐) (唐) 2000

Outline

2 [Positional numeral systems: decimal system](#page-5-0)

3 [Hexadecimal system](#page-28-0)

ミドマミド

4 0 8

. 0123456789 ०१२३४५६७८९ ۹ ۸ ۷ ۲ ۵ ۸ ۹ ۷ ۰ ۱ ۲ 〇 一 二 三 四 五 六 七 八 九 零 壹 贰 参 肆 伍 陆 柒 捌 玖 $-$ I II III IV V VI VII VIII IX

Figure: Numerals - from Wikipedia

Introduction

Electronic computers/calculators:

- analogic computers
- · digital computers
- hybrid computers

Service ≘⇒ ∍

 \leftarrow

Introduction

Electronic computers/calculators:

- analogic computers
- o digital computers
- hybrid computers

Figure: An analogic computer oscilloscope

Positional notation

Can be traced back to the work of Archimedes (3rd century BC). Only in 12th century, the decimal notation was introduced in Europe (Fibonacci).

Positional notation

Can be traced back to the work of Archimedes (3rd century BC). Only in 12th century, the decimal notation was introduced in Europe (Fibonacci).

 $123456_{10} = 1 \times 10^5 + 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$

How do we extract the digits from a number (radix 10)?

Representation

Sign: if present, whether it is a positive or negative integer MSD: most significant digit LSD: least significant digit

Binary systems (Base-2)

4日下

∢母→

$1010011010₂ =$ $= 1 \times 2^9 + 0 \times 2^8 + 1 \times 2^7 + 0 \times 2^6$ $1 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ $= 512 + 128 + 16 + 8 + 2$ $= 666_{10}$

4 0 8

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

- digits (base-10) \longleftrightarrow bits (base-2)
- kilobit $(Kb) = 1000 = 10³$ bits
- megabit $(Mb) = 1000kb = 10⁶ bits$
- giga, tera, peta, exa, zetta,...
- kibibit $= 1024 = 2^{10}$ bits
- mebibit $= 1024$ Kibit $= 2^{20}$ bits

\bullet 8 bits $=$ 1 byte

- 1 KB = 1024 bytes = 2^{10} bytes = 8192 bits \neq 1 Kb
- 1 MB = 1024 KB = 2^{20} bytes

GB, PB, TB, EB...

From decimal to binary: $42_{10} = ?$

 $42/2 \rightarrow$ quotient: 21 remainder: 0 $21/2 \rightarrow$ quotient: 10 remainder: 1 $10/2 \longrightarrow$ quotient: 5 remainder: 0 $5/2 \longrightarrow$ quotient: 2 remainder: 1 $2/2 \longrightarrow$ quotient: 1 remainder: 0 $1/2 \longrightarrow$ quotient: 0 remainder: 1

...and read from last to first remainder:

$$
42_{10} = 101010_2
$$

 $\left\{ \bigoplus_{i=1}^n x_i \in \mathbb{R} \right| x_i \in \mathbb{R} \right\}$

...or quicker (for small numbers):

$$
4210 = 32 + 8 + 2
$$

= 2⁵ + 2³ + 2¹
= 100000₂ + 1000₂ + 10₂ =
= 101010₂

重

イロト イ押 トイヨ トイヨト

 $00000₂ = 0₁₀$ $00001_2 = 1_{10}$ $00010₂ = 2₁₀$ $00011_2 = 3_{10}$ $00100₂ = 4₁₀$ $00101₂ = 5₁₀$ $00110_2 = 6_{10}$ $00111_2 = 7_{10}$

 $01000₂ = 8₁₀$ $01001_2 = 9_{10}$ $01010_2 = 10_{10}$ $01011₂ = 11₁₀$ $01100₂ = 12₁₀$ $01101₂ = 13₁₀$ $01110₂ = 14₁₀$ $01111_2 = 15_{10}$ $10000₂ = 16₁₀$

イ母 ト イヨ ト イヨ トー

G.

Important properties

 \bullet with *n* bits, maximum number representable is

$$
2^0 + 2^1 + 2^2 + \cdots + 2^{n-1} = 2^n - 1
$$

• it follows that data is represented with limited precision

Bits, bytes, words...

- byte (8 bits) is the basic data unit
- 1 byte is used to represent basic characters (ASCII)
- 2 bytes are used for extended/international caracters (Unicode)
- \bullet 1 integer value may be represented on $2/4/8/16$ bytes: defines the "word"-size for a given computer \rightarrow depends on the *architecture*
- short- and long-words have half-/double- the size of the word
- there are also "doublewords", "quadwords"

Examples ASCII

- American Standard Code for Information Interchange. Characters are represented on 8 bits (1 byte):

- \bullet 'A': 65₁₀ = 41₁₆ = 0100 0001₂, 'B': 0100 0010₂,...
- \bullet '0': 48₁₀ = 30₁₆ = 0011 0000₂,...

 e etc

G.

(何) (ヨ) (ヨ)

Examples

- if "Sign" is reserved, the range is $-2^{31} 1$ to $2^{31} 1$, i.e. −2, 147, 483, 647 to 2, 147, 483, 647
- if "Sign" is not reserved, the range is 0 to $2^{32} 1$, i.e. 0 to 4, 294, 967, 295

Examples IEEE 754

- technical standard for floating point arithmetic

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Additions in base-2

$$
13 + 23 = ?
$$
\ncarry: 1 1 1 1 1 1

\n
$$
0 1 1 0 1
$$
\n
$$
+ 1 0 1 1 1
$$
\n
$$
= 1 0 0 1 0 0
$$

Vlad Popovici, Ph.D. (Fac. of Science - REC[E2011: Theoretical fundamentals of computer science Topic 3: Numeral systems](#page-0-0) 21 / 29

重

イロト イ部 トイヨ トイヨト

Binary arithmetic and logical circuits

Example: single-bit adder:

ミメスミメ

イロト イ団 トイ ヨト イヨト 一番

$$
sum = x \oplus y (XOR)
$$

carry = x · y

Bitwise operations manipulate strings of bits:

- bitwise-NOT: for example, on 4 bits: $NOT = 8$ $(NOT{0111} = 1000)$
- \bullet bitwise-AND: example: 1010&0111 = 0010
- · bitwise-OR, bitwise-XOR, etc.
- \bullet test if a number is even/odd: check whether the least significant bit (index 0) is $0/1$

• *logical shift*: insert 0s to the left (shift right) or to the right (shift) left). Example (on 4 bits):

> $1011 < 1 = 0110$ left shift with one position $1011 >> 1 = 0101$ right shift with one position

- **•** left shift with one position is equivalent to a multiplication by two
- \bullet right shift with one position is equivalent to a (integer) division by two

• arithmetic shift: insert 0s to the right (shift left) and duplicate the most significant bit at left (shift right). Example (on 4 bits):

> $1011 < < 1 = 0110$ left shift with one position $1011 \gg > 1 = 1101$ right shift with one position

Hexadecimal system (Base-16)

 \bullet need more symbols for hexa-digits: A, B,...,F

$$
000002 = 010 = 016
$$

$$
000012 = 110 = 116
$$

$$
000102 = 210 = 216
$$

$$
000112 = 310 = 316
$$

$$
001002 = 410 = 416
$$

$$
001012 = 510 = 516
$$

$$
001102 = 610 = 616
$$

$$
001112 = 710 = 716
$$

$$
01000_2 = 8_{10} = 8_{16}
$$

$$
01001_2 = 9_{10} = 9_{16}
$$

$$
01010_2 = 10_{10} = A_{16}
$$

$$
01011_2 = 11_{10} = B_{16}
$$

$$
01100_2 = 12_{10} = C_{16}
$$

$$
01101_2 = 13_{10} = D_{16}
$$

$$
01110_2 = 14_{10} = E_{16}
$$

$$
01111_2 = 15_{10} = F_{16}
$$

$$
10000_2 = 16_{10} = 10_{16}
$$

4 D F

- 4 bits correspond to 1 hexa-digit
- most of the time, we use hexa notation as it is more compact
- \bullet in many cases, hexa strings/number are prefixed by $0x$ to make clear their meaning
- **e** example: HTML color specification R, G, B : $\#AFA077$:

 $R = 0 \times AF = 1010 1111_2 = 10 \times 16 + 15 = 175$ $G = 0 \times A0 = 1010 0000$ ₂ = 160 $B = 0 \times 77 = 01110111_2 = 119$

Questions?

4 0 8

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

造