Variant calling in targeted sequencing

Eva Budinská autumn 2023

Aim of variant calling

 To define genomic positions with single nucleotide polymorphisms, deletions, insertions or long repetitive sequence insertions specific for the sample

- and if of interest, consequently **call a genotype** (identify whether the sample is heterozygote or homozygote) for the allele at the particular position or **haplotype**.

Variant, genotype and haplotype calling

- Variant calling identifies variable sites in genome
- Genotype calling determines the genotype for each individual at each site (0/0, 1/1 homozygote, 0/1 - heterozygote)
- Haplotype calling determines the haplotype for each individual at each site

	Site 4 Reference: A Variants: T, G	Site 3 Reference: T Variants: A	Site 2 Reference: C Variants: T, TT	Site 1 Reference: A Variants: G, C
Genotype of an individual	A/T	T/T	C/T	A/G
Haplotype 1	A	Т	Т	Α
Haplotype 2	Т	Т	С	G

Typical applications

 Mendelian disorders – identification of causative genes in single gene disorders (germline mutations)

Complex diseases – identification of candidate genes in complex diseases for further functional studies

Somatic mutations – identification of constitutional mutations as well as driver and passenger genes in cancer

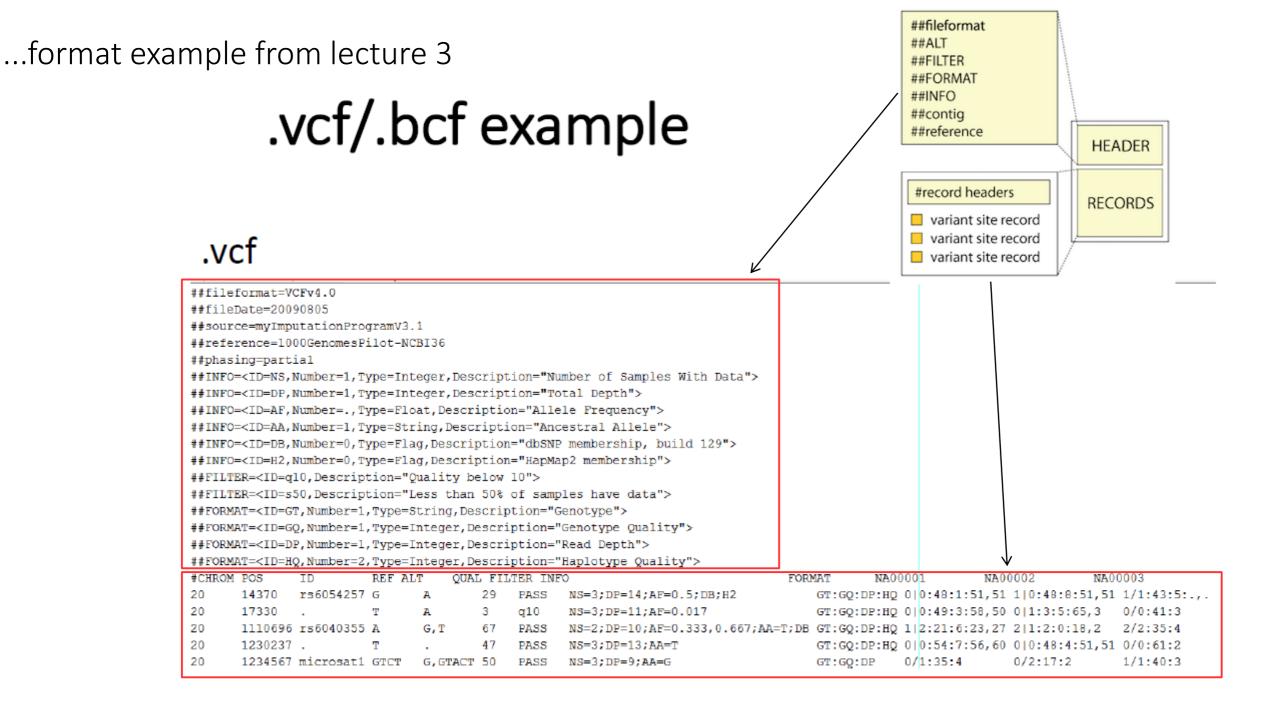
• • •

Whole genome/exome sequencing, targeted sequencing

Results of variant calling

Results of variant calling algorithms are presented in standardized

VCF file (<u>v</u>ariant <u>c</u>alling <u>f</u>ormat).


Variant call format (.vcf) and its binary form (.bcf)

Standard format file for results of variant calling

Developed in 2010 by 1000 genomes project (<u>1000 Genomes | A Deep Catalog of Human Genetic Variation</u> (internationalgenome.org))

Current release: v4.3. (November 2022) - <u>VCFv4.3.pdf</u> (samtools.github.io)

Interpreting the file header

Version of the VCF specification to which the file conforms (important for handling and interpreting files!)

##fileDate=20090805

##fileformat=VCFv4.0

##source=myImputationProgramV3.1

##reference=1000GenomesPilot-NCBI36

Which reference file was used

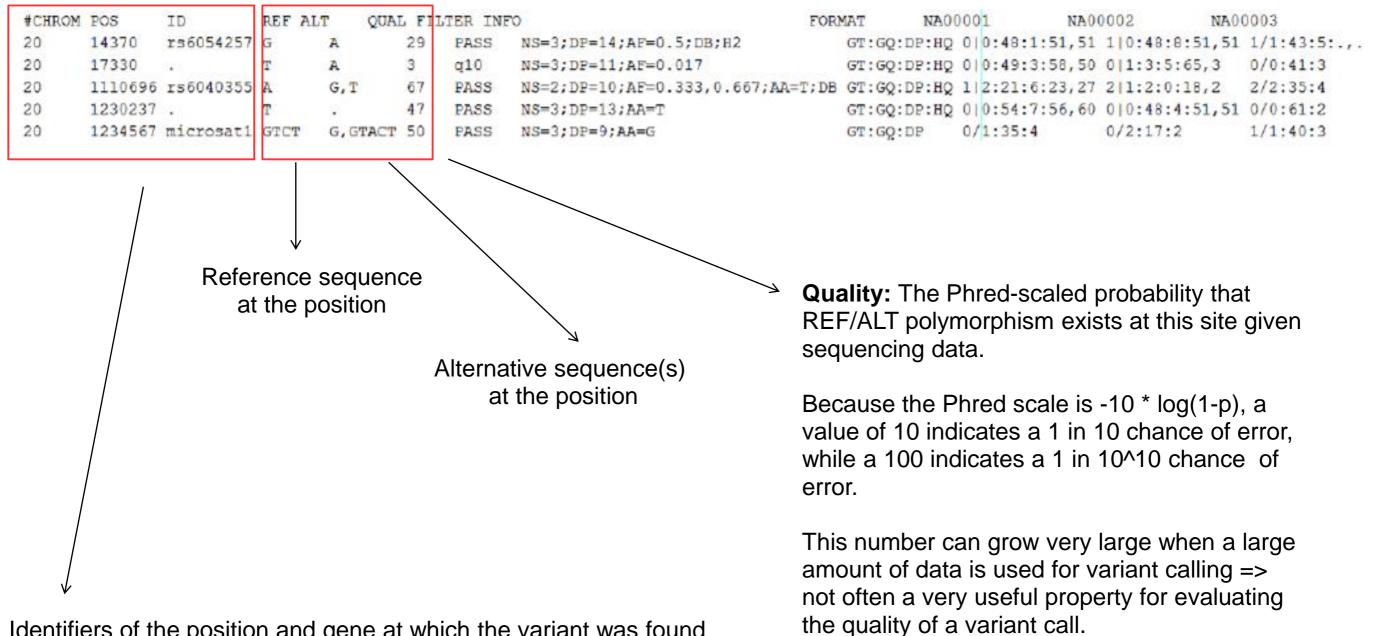
##phasing=partial ##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##INFO=<ID=AF,Number=1,Type=Float,Description="Allele Frequency"> ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> ##INFO=<ID=DB,Number=0,Type=Flag,Description="Ancestral Allele"> ##INFO=<ID=DB,Number=0,Type=Flag,Description="Ancestral Allele"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="Ancestral Allele"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="Ancestral Allele"> ##FILTER=<ID=DB,Number=0,Type=Flag,Description="Ancestral Allele"> ##FILTER=<ID=DB,Number=0,Type=Flag,Description="HapMap2 membership"> ##FILTER=<ID=DE,Number=0,Type=Flag,Description="HapMap2 membership"> ##FILTER=<ID=GQ,Description="Quality below 10"> ##FILTER=<ID=GG,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=GG,Number=1,Type=String,Description="Genotype"> ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> ##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

The filter lines – what type of filters have been applied to the data.

Interpreting the file header - INFO

##fileformat=VCFv4.0 ##fileDate=20090805 ##source=myImputationProgramV3.1 ##reference=1000GenomesPilot-NCBI36 ##phasing=partial ##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data"> ##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth"> ##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency"> ##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele"> ##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129"> ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership"> ##FILTER=<ID=gl0, Description="Quality below 10"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype"> ##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality"> ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth"> ##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">

INFO lines define **shortcuts for various site-level annotations**. These are then later used in the INFO field in the variant specification. Beware, **the definitions may differ** between tools generating vcf files...


Interpreting the file header - FORMAT

##fileformat=VCFv4.0 ##fileDate=20090805 ##source=myImputationProgramV3.1 ##reference=1000GenomesPilot-NCBI36 ##phasing=partial ##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data"> ##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth"> ##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency"> ##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele"> ##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129"> ##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership"> ##FILTER=<ID=g10, Description="Quality below 10"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype"> ##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality"> ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth"> ##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">

FORMAT lines define **how** the genotype and other sample-level **information** is **represented**.

Beware, the definitions may differ between tools generating vcf files...

Interpreting the records:

Identifiers of the position and gene at which the variant was found

Interpreting the records: FILTER

#CHROM	POS	ID	REF	ALT	QUA	LI	ILTER IN	FO	FORM	AT NAO	0001 NA	A00002 N	A00003
20	14370	rs6054257	G		A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2		GT:GQ:DP:HQ	0 0:48:1:51,5	1 1 0:48:8:51,	51 1 <mark>/1:43:5:.,</mark> .
20	17330		т	35	A	з	q10	NS=3;DP=11;AF=0.017		GT:GQ:DP:HQ	0 0:49:3:58,5	50 011:3:5:65,3	0/0:41:3
20	1110696	rs6040355	A		G,T	6	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T	;DB	GT: GQ: DP: HQ	112:21:6:23,2	7 211:2:0:18,2	2/2:35:4
20	1230237		Т			4	PASS	NS=3;DP=13;AA=T		GT:GQ:DP:HQ	010:54:7:56,6	50 0 0:48:4:51,	51 0/0:61:2
20	1234567	microsat1	GTC	г	G, GTACT	50	PASS	NS=3; DP=9; AA=G		GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3
							\downarrow						

Result of quality filters applied for filtering out low quality variant calls. The values are defined in the header:

```
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
```

Let's get more in detail: INFO

#CHROM	POS	ID	REF A	LT	QUAL	FILT	ER INFO	FC	OFM	AT NA00	001 N/	00002 1	E0000A
20	14370	rs6054257	G	A		29	PASS	NS=3;DF=14;AF=0.5;DB;H2		GT:GQ:DP:HQ	0 0:48:1:51,5	1 1 0:48:8:51,	51 1/1:43:5:.,.
20	17330	Sec	т	A		3	q10	NS=3;DF=11;AF=0.017		GT:GQ:DP:HQ	0 0:49:3:58,	0 011:3:5:65,3	3 0/0:41:3
20	1110696	rs6040355	A	G,T		67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;D	DB	GT:GQ:DP:HQ	112:21:6:23,2	7 211:2:0:18,2	2 2/2:35:4
20	1230237		т			47	PASS	NS=3;DP=13;AA=T		GT:GQ:DP:HQ	010:54:7:56,6	0 010:48:4:51,	51 0/0:61:2
20	1234567	microsat1	GTCT	G, GT	ACT	50	PASS	NS=3; DP=9; AA=G		GT: GQ: DP	0/1:35:4	0/2:17:2	1/1:40:3
								antine i constitucione de Bantico, i con					

Various site-level annotations and their values, as defined in the INFO lines in the header.

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=1,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=Float,Description="Ancestral Allele">
##INFO=<ID=AA,Number=0,Type=Float,Description="Ancestral Allele">
##INFO=<ID=AA,Number=0,Type=Float,Description="Ance

Let's get more in detail: FORMAT

#CHROM	POS	ID	REF AL	T QUA	L FILT	ER INFO	>	FOR	MAT NAO	000	1 N/	A000	02 NA0	0003
20	14370	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2		GT:GQ:DP:HQ	0	0:48:1:51,5	51 1	10:48:8:51,51	1/1:43:5:.,.
20	17330		т	A	з	q10	NS=3; DF=11; AF=0.017		GT:GQ:DP:HQ	0	0:49:3:58,	50 0	11:3:5:65,3	0/0:41:3
20	1110696	rs6040355	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=	C;DB	GT:GQ:DP:HQ	11	2:21:6:23,2	27 2	11:2:0:18,2	2/2:35:4
20	1230237		Т		47	PASS	NS=3;DP=13;AA=T		GT:GQ:DP:HQ	0	0:54:7:56,0	60 0	10:48:4:51,51	0/0:61:2
20	1234567	microsat1	GTCT	G, GTACT	50	PASS	NS=3; DP=9; AA=G		GT:GQ:DP	0/	1:35:4	0	/2:17:2	1/1:40:3

.How the genotype and other sample-level information is represented in the sample columns!

```
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
```

FORMAT NA0	0001
GT GQ DP HQ	0 0:48:1:51,51
GT:GQ:DP:HQ	0 0:49:3:58,50
GT:GQ:DP:HQ	1 2:21:6:23,27
GT:GQ:DP:HQ	0 0:54:7:56,60
GT: GQ: DP	0/1:35:4

Sample NA0001, first line variant:

•Genotype: 0|0 (homozygote for reference allele)

•Genotype quality: 48

Read depth: 1

.Haplotype quality: 51 and 51

More info about vcf files

https://gatk.broadinstitute.org/hc/en-us/articles/360035531692-VCF-Variant-Call-Format

http://www.1000genomes.org/node/101

VCFv4.3.pdf (samtools.github.io)

Help files of the tools generating vcf files!

Variant identification

Tools can be (very roughly) divided based on what they can best do:

- Germline callers central part of finding causes of rare inherited diseases
- Somatic callers mainly cancer studies
- **CNV identification tools** large structural modifications
- SV (structural variants) identification tools inversions, translocations or large indels (insertions-deletions)

Variant calling – the basic steps after alignment

- The pileup step use SAMtools to generate counts of insertions, deletions and substitutions at each covered position in the BAM/SAM file (efficient in terms of time and memory)
- 2. Estimation of background error rates (whatever the source)
- 3. Calling variants
- 4. Filtering variants
- 5. Calling genotypes
- 6. Calling haplotypes

The variants

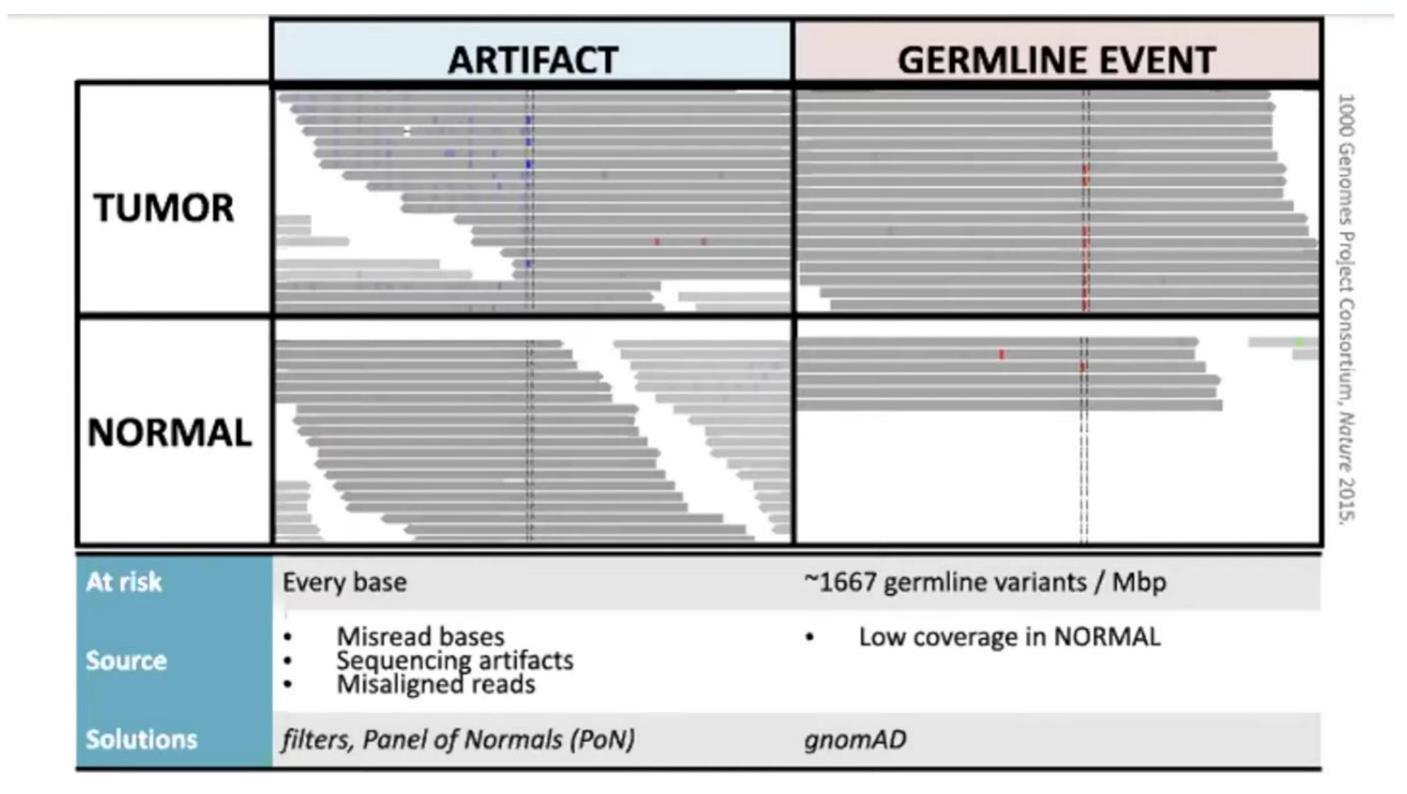
· Are **real mismatches** (from the perspective of alignment)

• We want to **keep these reads**

 Depending on goal of the study, the aligner must be able to handle them very properly (e.g. if we want to detect SNPs or SNVs)

Source of errors in variant calling

 NGS data suffer from high error rates that are due to multiple factors, including <u>base-</u> calling and <u>alignment errors</u>


 Low-coverage sequencing (<5X per site per individual) – high probability that only one of the two chromosomes of a diploid individual has been sampled at specific site

- · Accurate variant and genotype calling are difficult
- · It is crucial to **quantify uncertainty** of the results

Instrument specific errors

	Main error source	First-pass error rate	Final error rate
Illumina	Substitution	~ 0.1	~ 0.1
PacBio	Indel	~ 13	<
Oxford Nanopore	Deletions	>4	4
Ion Torrent	Indel	~	~
SOLiD	A-T bias	~ 5	<0.1
454	Indel	I	Ι

http://www.molecularecologist.com/next-gen-table-3c-2013/

VCF tools

- Different methods of calling vcf, often designed on specific NGS tools/data types not necessarily compatible!
- To distinguish between real variants and technical artifacts (DNA polymerase and sequencing errors), the background error rate must be estimated
- The background error rate is not constant and can vary at different positions => each position has a specific error rate
- Variant callers differ also based on the method estimating the background error rate and whether they use specific methods to LOCALLY REALIGN the reads to perfect the precision

Table I: Variant identification

Name	OS	BAM/SAM input	Other inputs	Output	Identifies	Data set	Result ^a
Germline callers							
CRISP	Lin	Yes	-	VCF	SNP, INDEL	KTS	24 034 SNPs, 259 INDELs
GATK (UnifiedGenotyper)	Lin	Yes	-	VCF	SNP, INDEL	KTS	49 476 SNPs, 1959 INDEL
SAMtools	Lin	Yes	FASTA	VCF	SNP, INDEL	KTS	21 852 SNPs, 332 INDELs
SNVer	Lin, Mac, Win	Yes	-	VCF	SNP, INDEL	KTS	22105 SNPs, 234 INDELs
VarScan 2	Lin, Mac, Win	No	pileup/mpileup	VCF, VarScan CSV	SNP, INDEL	KTS	34984 SNPs, 1896 INDE
Somatic callers							
GATK	Lin	Yes	-	VCF	INDEL	WES	151 INDELs
(SomaticIndelDetector)							
SAMtools	Lin	Yes	FASTA	BCF	SNP, INDEL	WES	Canceled ^b
SomaticSniper	Lin	Yes	-	VCF, somatic sniper output	SNP, INDEL	WES	6926 SNPs
VarScan 2	Lin, Mac, Win	No	pileup/mpileup	VCF, VarScan CSV	SNP, INDEL, CNV	WES	1685 SNPs, 324 INDELs
CNV identification tools							
CNVnator	Lin	Yes	FASTA	CSV	CNV	cnv.sim	39 CNVs
RDXplorer	Lin, Mac	Yes	FASTA	CSV	CNV	cnv.sim	4 CNVs ^c
CONTRA	Lin, Mac	Yes	FASTA	VCF, CSV	CNV	WES	3 CNVs
ExomeCNV	Lin, Mac, Win	Yes	pileup + BED + FASTA	CSV	CNV, LOH	WES	137 CNVs
SV identification tools							
BreakDancer	Lin, Mac	Yes	config file	CSV, BED	INDEL, INV, TRANS, CNV	WGS (tumor + normal)	6219 DELs, 0 INSs, 7 INVs, 17 303 ITX, 5037 CTX
Breakpointer	Lin	Yes	-	GFF	INDEL	WGS (tumor)	d
CLEVER	Lin	Yes	FASTA	CLEVER format	INDEL	WGS (tumor)	d
GASVPro (GASVPro-HQ)	Lin, Mac	Yes	-	clusters file	INDEL, INV, TRANS	WGS (tumor)	2529 DELs, 207 INVs
SVMerge	Lin	Yes	FASTA	BED	INDEL, INV, CNV	-	Aborted ^e

Pabinger et al. (2013) Survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform

Somatic variant callers – for tumours

- Background error estimation, tools use:
 - matched normal / tumour samples
 - control samples to model the error noise to provide the variant calling tool with the built-in model
 - use information from databases of germline SNPs

Somatic callers: GATK – Mutect2 Strelka2 smCounter2 UMI-VarCal

UMI based (somatic) variant calling

Assumption: reads that have the same UMI should be identical

- Main approach:
- 1. Perform a majority vote within a UMI family
- 2. Build a consensus read for each UMI family
- 3. Apply a statistical method (like Beta distribution) to model background error rates at each position and apply standard filters to call final variants

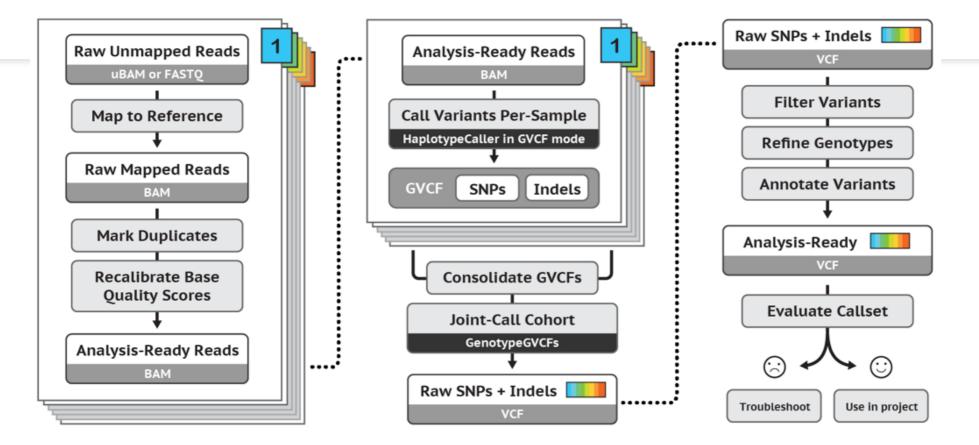
DeepSNVMiner MAGERI smCounter2 UMI-VarCal

UMI-VarCal

- UMI-VarCal:
 - **Does not rely on SAMtools (like MAGERI)**, uses innovative homemade pileup algorithm specifically designed to treat the UMI tags in the reads
 - After the pileup, a Poisson statistical test is applied at every position to determine if the frequency of the variant is significantly higher than the background error noise.
 - Finally, an analysis of UMI tags is performed, a strand bias and a homopolymer length filter are applied to achieve better accuracy
 - UMI-VarCal is faster than both raw-reads-based and UMI-based variant callers

GATK – Genome Analysis Toolkit

GATK (broadinstitute.org)


Genome Analysis Toolkit

Variant Discovery in High-Throughput Sequencing Data

GATK – Genome Analysis Toolkit

Best Practices for SNP and Indel discovery in germline DNA - leveraging groundbreaking methods for combined power and scalability.

Genotype calling methods

• **Cutoff-based** methods (early methods)

 simple: based on SNP and genotype calling on separate analyses of data from each individual

Probabilistic methods

• based usually on multiple samples and assigning probabilities for a given genotype

Cutoff-based genotype calling methods

Simple: based on SNP and genotype calling on separate analyses of data from each individual **Steps:**

- 1. filtering step in which only high-confidence bases are kept (Qphred>20)
- 2. genotype calling counting number of times each allele is observed, using fixed cutoffs (e.g. if the proportion of the alternative allele is between 20-80%, heterozygote is called)

Used mainly for <u>high sequencing depths (>20X)</u>, so that the probability of a heterozygous individual falling outside the selected range(20-80%) is small

- Empirically determined cutoffs can be used
- Usually used in targeted sequencing
- Does not provide measures of uncertainty in the genotype inference

Probabilistic genotype calling methods

- For moderate to low sequencing depths (mainly WGS, WES) genotype calling based on fixed cutoffs will typically lead to under-calling of heterozygous phenotypes
- Several probabilistic methods were developed that use the quality score to provide a <u>posterior probability</u> for each genotype:

<u>P(X | G) – genotype likelihood</u> for genotype G can be computed (X represents all of the read data for a particular individual and site)

P(G) – genotype prior

- From these two, Bayes' formula is used to calculate P (G | X) the posterior probability of genotype G
- The genotype with the highest posterior probability is generally chosen and this probability is used as a measure of confidence.
- Advantages:
 - higher accuracy
 - natural framework for incorporating information regarding allelle frequencies and patterns of LD (linkage disequilibrium)

Calculating genotype likelihood *P*(*X*/*G*)

- · Can be computed from quality scores for each read
- · X_i data in read I for a particular individual and particular site with genotype G
- P(X_i | G) is given by rescaling of the quality core of X_i and the genotype likelihood
 P(X | G) can be calculated directly from the data by taking the product of P(X_i | G) over all i
- See for instance:
 - https://www.broadinstitute.org/gatk/media/docs/Samtools.pdf

Calculating genotype priors

• Can be performed using single or multiple samples

- **Single-sample:** Prior-genotype probability may be chosen to assign equal probability to all genotypes, or it can be based on external information (e.g. the reference sequence, SNP databases or an available population sample)
 - In **SOAPsnp** tool, a prior is chosen by the use of **dbSNP**
 - Example: if a G/T polymorphism is reported in dbSNP, the prior probabilities are set to be 0.454 for each of the genotypes GG and TT; 0.0909 for GT and less than 10e-4 for all other genotypes
- **Multiple-samples:** Priors derived by joint analysis of multiple individuals by analysis of allele or genotype frequencies estimated from larger data sets e.g. using *maximum likelihood*

Tools for genotype calling

Software	Available from	Calling method	Prerequisites	Comments	Refs
SOAP2	http://soap.genomics.org. cn/index.html	Single-sample	High-quality variant database (for example, dbSNP)	Package for NGS data analysis, which includes a single individual genotype caller (SOAPsnp)	15
realSFS	http://128.32.118.212/ thorfinn/realSFS/	Single-sample	Aligned reads	Software for SNP and genotype calling using single individuals and allele frequencies. Site frequency spectrum (SFS) estimation	-
Samtools	<u>http://samtools.</u> <u>sourceforge.net/</u>	Multi-sample	Aligned reads	Package for manipulation of NGS alignments, which includes a computation of genotype likelihoods (samtools) and SNP and genotype calling (bcftools)	53
GATK	<u>http://www.</u> <u>broadinstitute.org/gsa/</u> <u>wiki/index.php/The_</u> <u>Genome_Analysis_Toolkit</u>	Multi-sample	Aligned reads	Package for aligned NGS data analysis, which includes a SNP and genotype caller (Unifed Genotyper), SNP filtering (Variant Filtration) and SNP quality recalibration (Variant Recalibrator)	32,33
Beagle	http://faculty.washington. edu/browning/beagle/ beagle.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation, phasing and association that includes a mode for genotype calling	42
IMPUTE2	<u>http://mathgen.stats.</u> ox.ac.uk/impute/ impute_v2.html	Multi-sample LD	Candidate SNPs, genotype likelihoods	Software for imputation and phasing, including a mode for genotype calling. Requires fine-scale linkage map	44
QCall	ftp://ftp.sanger.ac.uk/pub/ rd/QCALL	Multi-sample LD	'Feasible' genealogies at a dense set of loci, genotype likelihoods	Software for SNP and genotype calling, including a method for generating candidate SNPs without LD information (NLDA) and a method for incorporating LD information (LDA). The 'feasible' genealogies can be generated using Margarita (<u>http://www.sanger.</u> <u>ac.uk/resources/software/margarita</u>)	54
MaCH	<u>http://genome.sph.umich.</u> <u>edu/wiki/Thunder</u>	Multi-sample LD	Genotype likelihoods	Software for SNP and genotype calling, including a method (GPT_Freq) for generating candidate SNPs without LD information and a method (thunder_glf_freq) for incorporating LD information	-

A more complete list is available from http://seganswers.com/wiki/Software/list. LD, linkage disequilibrium: NGS, next-generation sequencing.

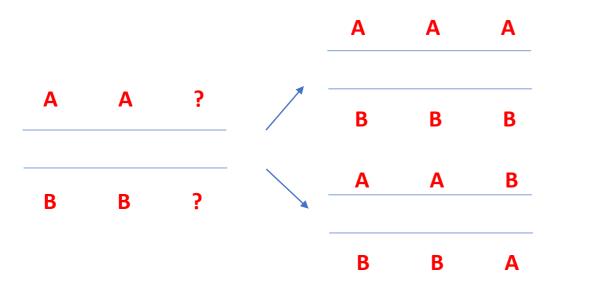
Nielsen et al. (2011): Genotype and SNP calling from next-generation sequencing data. Nature Reviews Genetics 12, 443-451

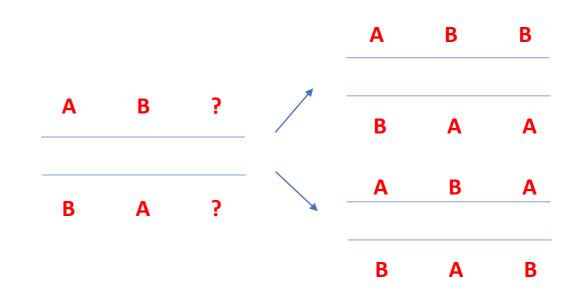
Haplotype calling / haplotype phasing

- The exponential growth problem....
- Example **two** heterozygous genotypes (A/B)

Brian Browning | Haplotype phasing: methods and accuracy - YouTube

Haplotype calling / haplotype phasing


- The exponential growth problem....
- Example **three** heterozygous genotypes (A/B)?



Brian Browning | Haplotype phasing: methods and accuracy - YouTube

Haplotype calling / haplotype phasing

- The exponential growth problem....
- Example three heterozygous genotypes (A/B)?

Brian Browning | Haplotype phasing: methods and accuracy - YouTube

Haplotype phasing algorithms

• Main approaches:

- Clark's algorithm
- EM algorithm (Arlequin, PL-EM)
- Coalescent-based methods and hidden Markov models (MACH, IMPUTE2, PHASE, BEAGLE)

• <u>Haplotype phasing: Existing methods and new developments - PMC (nih.gov)</u>

From: <u>Computational methods for chromosome-scale haplotype reconstruction</u>

Approach	Tools	Data	Advantages	Disadvantages				
Reference-based phasing								
Molecular haplotyping	WhatsHap [<u>44]</u> , HapCut2 [<u>45]</u> and ProbHap [<u>46]</u>	Long reads such as PacBio, Hi-C of individual	Can phase de novo and rare variants	Limitations in complex regions such as centromeres, HLA, etc.				
Single-cell phasing	CHISEL [<u>47]</u> , Satas et al. <u>[48]</u> , RCK <u>[49]</u>	Single-cell short-read	High precision at single-cell, detection of rare alleles	Engineering tricks required to scale to > million cells				
Polyploid phasing	HapTree [<u>50]</u> , Hap10 [<u>51</u>], WhatsHap- polyphase [<u>52]</u> , H-PoP [<u>53]</u>	Local phasing	Can phase de novo and rare variants	Limitations in repetitive regions and not optimized for ploidy > 5				
De novo assembly								
Diploid assembly	Falcon Unzip [23], Falcon phase [54]	Long reads and Hi-C of individual	Local phased contigs	No chromosome-scale assembly and computationally expensive				
	DipAsm [<u>55</u>], Porubsky et al. [<u>56</u>]	Long reads and Hi-C of individual	Chromosome-scale diploid assembly	Collapsed assembly not suitable for repetitive regions				
	Hifiasm, HiCanu [<u>57]</u> , SDip [<u>58]</u>	HiFi reads of individual	High consensus accuracy and continuity	No chromosome-scale assembly				
	pstools	Hifi and Hi-C reads	High-quality chromosome-scale haplotype assembly	Only designed for haplotyping diploids				
	TrioCanu [<u>59]</u> , Hifiasm+trio, WHdenovo [<u>60]</u>	Long reads of trios	Local phased contigs	Require family information				
Polyploid	SDA [<u>61]</u> , SDip [<u>58]</u>	Long reads of individual	Local phased contigs	Need to be optimized for whole genomes				
assembly	POLYTE [62]	Illumina short reads	Local phased contigs	Does not scale well to whole genomes				
Strain-resolved metag	enome assembly							
De novo (re-) assembly	IDBA-UD [<u>63]</u> , DESMAN [<u>64]</u>	Metagenome short reads	No prior knowledge required	Low sensitivity: rare haplotypes can remain undetected				
	OPERA-MS [<u>65</u>]	Metagenome using short and long reads	High continuity	Computationally expensive				
SNV-based assembly	ConStrains [<u>66]</u> , StrainFinder [<u>67</u>], Gretel [<u>68</u>]	Metagenome short reads	Computational efficiency	Assembly accuracy depends on variant calling				
Read binning	MetaMaps [<u>69]</u>	Metagenome long reads	Computational efficiency	Accuracy depends on database				

Is genotype/haplotype calling necessary?

- Attention sometimes, it is not of interest to call a genotype e.g. if heterogenous tissues are sampled and we can expect different clones!
 - Example: cancer cells one clone from thousands can regrow into metastasis!

Variant annotation

- We have the possibility of predicting the functional impact of variants in an automated fashion
- This is very important for biological interpretation of the results!
- · Not all the tools are able to annotate all types of variants
- · Output: usually vcf file, with information on annotation in the INPUT field

Example of annotated .vcf file

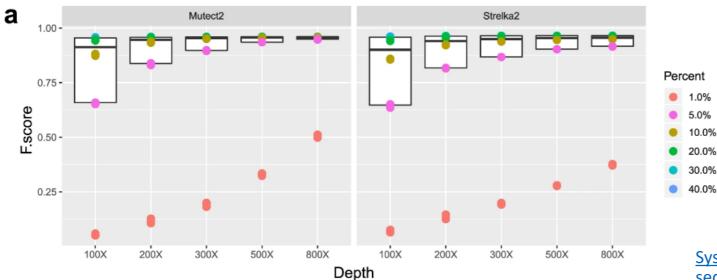
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT
chr1	868329		A	С	25.56	LowQual	AC=2;AF=1.00;AN=2;DP=2;FS=0.000;MLEAC=2;MLEAF=1.00;MQ= 99.00;QD=12.78;SOR=0.693;ANN=C intron_variant MODIFIER S AMD11 SAMD11 transcript NM_152486.2 Coding 4/13 c.305+ 1860A>C	GT:AD:DP:FT:GQ:PL
chr1	1665702		Т	С	62.55	PASS	AC=2;AF=1.00;AN=2;DP=2;FS=0.000;MLEAC=2;MLEAF=1.00;MQ= 60.00;QD=31.27;SOR=2.303;ANN=C intron_variant MODIFIER S LC35E2 SLC35E2 transcript NM_182838.2 Coding 5/5 c.732+4 27A>G ,C intron_variant MODIFIER SLC35E2 SLC35E2 tra nscript NM_001199787.1 Coding 6/6 c.732+427A>G	GT:AD:DP:FT:GQ:PL
chr1	1665740		т	С	66.55	PASS	AC=2;AF=1.00;AN=2;DP=2;FS=0.000;MLEAC=2;MLEAF=1.00;MQ= 60.00;QD=33.27;SOR=2.303;ANN=C intron_variant MODIFIER S LC35E2 SLC35E2 transcript NM_182838.2 Coding 5/5 c.732+3 89A>G ,C intron_variant MODIFIER SLC35E2 SLC35E2 tra nscript NM_001199787.1 Coding 6/6 c.732+389A>G	GT:AD:DP:FT:GQ:PL

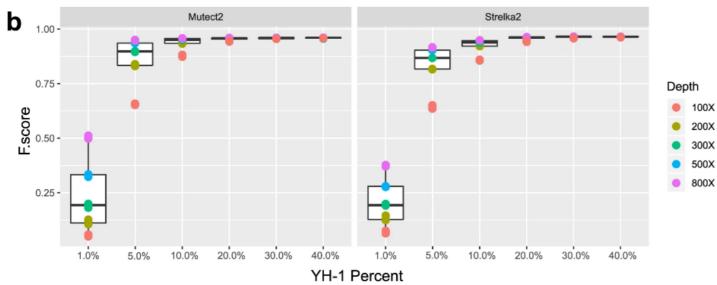
Variant annotation tools

 Pabinger et al. (2013) Survey of tools for variant analysis of next-generation genome sequencing data.
 Brief Bioinform

Table 2: Variant annotation

Name	OS	Input	Output	SNP	INDEL	CNV	GUI	CLI	Web	Function/Location Parameters	DB IDs	Number of scores
ANNOVAR	Lin, Mac, Win, web interface	VCF, pileup, CompleteGenomics, GFF3-SOLiD, SOAPsnp, MAQ, CASAVA	ТХТ	Yes	Yes	Yes	No	Yes	No	9 (func) + II (exonic-func)	Yes	GERP++ conservation, LRT, MutationTaster, PhyloP conservation, PolyPhen, SIFT
AnnTools	Lin, Mac	VCF, pileup, TXT	VCF	Yes	Yes	Yes	No	Yes	No	5 (position) + 4 (functional class)	Yes	-
NGS-SNP	Lin, Mac	VCF, pileup, MAQ, diBayes, TXT	ТХТ	Yes	No	No	No	Yes	No	17	Yes	Condel, PolyPhen, SIFT
SeattleSeq	web interface	VCF, MAQ, CASAVA, GATK BED, custom	VCF, SeattleSeq	Yes	Yes	No	No	No	Yes	II(dbSNP) + 5 (GVS)	Yes	GERP, Grantham, phastCons, PolyPhen
snpEff	Lin, Mac, Win	VCF, pileup/TXT (deprecated)	VCF, TXT, HTML overview	Yes	Yes	No	No	Yes	No	34	Yes	_
SVA	Lin	VCF, SV.events file, BCO	CSV	Yes	Yes	Yes	Yes	Yes	No	17 (SNP), 17 (INDEL), 10 (CNV)	Yes	-
VARIANT	web interface	VCF, GFF2, BED	web report, TXT	Yes	Yes	No	No	Yes	Yes	26	Yes	-
VEP	Lin, web interface	VCF, pileup, HGVS, TXT, variant identifiers	ТХТ	Yes	Yes	No	No	Yes	Limited	28	Yes	Condel, PolyPhen, SIFT


Additional resources


• <u>Best practices for variant calling in clinical sequencing | Genome</u> <u>Medicine | Full Text (biomedcentral.com)</u>

Specific issues in variant calling

The effect of sequencing depth and mutation frequency on performance of variant callers

From: Systematic comparison of somatic variant calling performance among different sequencing depth and mutation frequency

Systematic comparison of somatic variant calling performance among different sequencing depth and mutation frequency | Scientific Reports (nature.com)

F-score box-scatter plot. The box-scatter plot of F-score, the colors represent different mutation frequency (a) and sequencing depths (b).

Base calling algorithms

• **Reducing the error rate of base calls** and **improving the accuracy** of the per-base quality score (Phred) have important implications for assembly, variant detection and downstream population-genomic analyses.

• Aside of NGS platform provided base calling algorithms, several other have been developed to **optimize data acquisition, improving by 5-30%** the error rates:

- · Pyrobayes (454 Roche)
- Rsolid (SOLiD)
- · BayesCall, Ibis (Illumina)

Alignment

• The **accuracy of alignment** has a **crucial** role in variant detection.

- · Incorrectly aligned reads may lead to errors in SNP and genotype calling
- Alignment algorithms need to be:

 able to cope with sequencing errors and potentially real differences (point mutations and indels) between the reference genome and the sequenced genome

 able to produce well calibrated alignment quality values (variant calls and their posterior probabilities depend on these scores)

Alignment - mismatches

• The amount of **sequence identity** required between each read and the reference sequence is determined by a <u>trade-off</u> between accuracy and length

• The **optimal** choice of tolerable number of **mismatches** depends on the **organism** and also on the **genome part!**

• e.g. *Drosophila melanogaster* is more variable than human – using mapping criteria for human on *Drosophila* may lead to a severe loss of sequencing depth for *Drosophila*. Vice-versa, using *Drosophila melanogaster* mapping criteria on human would lead to large amount of incorrectly aligned reads

• MHC complex – very variable between individuals – consider combining alignment and assembly!

Steps increasing the precision

 Pair-end reads are highly recommended, if not even a requirement for WES and WGS to overcome the problem of ambiguity

 Reads that can only be mapped with many mismatches should be discarded from the analysis => variants backed only by such reads should not be considered

 Multiple reads originating from only one template might be sequenced, interfering with variant calling statistics => remove the PCR duplicates after alignment in WGS and WES (not in targeted sequencing!!)

Which aligners?

Bowtie – cannot perform gapped alignment => cannot find short indels => think of Bowtie2!

BWA

BWT vs hash-based: BWT are faster, BUT – not as sensitive as hash-based => can introduce mapping biases in regions with high variability*

According to a comparative study*, **Novoalign** and **Stampy** currently produce the most accurate overall results, being at the same time fast enough

However, Stampy not applicable to SOLiD colour reads

SHRiMP2 and BFAST – hash based, capable of dealing with SOLiD colour reads

Stampy*

Mapping hash-based with optional speedup using BWA

•No support of color reads

.Combines the speed-up of BWT and the sensitivity of hash-based aligners

http://www.well.ox.ac.uk/project-stampy

.for download you need to register

*Lunter, G. & Goodson, M. (2011) Stampy: a statistical algorithm for sensitive and fast mapping
of Illumina sequence reads. Genome Res. 19: 936-939

Stampy + BWA

- Steps:
- 1. Create BWA index for the same reference genome as used by Stampy
- bwa index
- 2. Map the reads using BWA in the usual way and use samtools to convert the resulting SAM file into a BAM file
- bwa aln
- bwa samse or sampe
- samtools view
- 3. Remap the BAM file using Stampy, but keep the well-mapped reads
- ./stampy.py -g hg18 \
- -h hg18 \
- -- bamkeepgoodreads -M bwa.bam

After alignment

• Step 1: Post-alignment quality control (assessment of target coverage, removal of duplicates and non-unique alignments, ...)

- Step 2: Realignment around indels variant calling specific step
- Step 3: Quality score recalibration variant calling specific step

Assessment of target coverage

- QC step very specific for targeted sequencing
- Target coverage is the selection of targets working?
- Specific files used: "bait list" and "target list" (both are .bed files, provided by company supplying the enrichment kit)

• **Baits** are **oligonucleotides** that retrieve specific RNA or genomic DNA used for selection/enrichment of target regions. The desired DNA or RNA molecules hybridize with the baits, and others do not

. Targets are sequences of interest

Bait file

browser		chr20:31022175-31025175		
track	name="Amplicons"	description="Agilent	HaloPlex	- 00100-1360266744
chr1	36931779		AM_1360266744_000014	1000 -
chr1	36931837	36931987	AM_1360266744_000013	1000 -
chr1	36931915	36931987	AM_1360266744_000035	1000 -
chr1	36931915	36931987	AM_1360266744_000036	1000 -
chr1	36931917		AM_1360266744_000002	1000 -
chr1	36931917	36931984	AM_1360266744_000003	1000 -
chr1	36931932	36932026	AM_1360266744_000005	1000 -
chr1	36931964	36932206	AM_1360266744_000006	1000 -
chr1	36931987	36932150	AM_1360266744_000023	1000 -
chr1	36931987	36932163	AM_1360266744_000031	1000 -
chr1	36932037	36932377	AM_1360266744_000016	1000 -
chr1	36932081	36932407	AM_1360266744_000018	1000 -
chr1	36932133	36932301	AM_1360266744_000008	1000 -
chr1	36932150	36932326	AM_1360266744_000022	1000 -
chr1	36932163	36932331	AM_1360266744_000004	1000 -
chr1	36932171	36932282	AM_1360266744_000032	1000 -
chr1	36932171	36932282	AM_1360266744_000033	1000 -
chr1	36932179	36932312	AM_1360266744_000015	1000 -
chr1	36932206	36932327	AM_1360266744_000020	1000 -
chr1	36932326	36932620	AM_1360266744_000019	1000 -
chr1	36932345	36932452	AM_1360266744_000011	1000 -
chr1	36932377	36932486	AM_1360266744_000029	1000 -
chr1	36932377	36932588	AM_1360266744_000009	1000 -
chr1	36932385	36932609	AM_1360266744_000034	1000 -
chr1	36932408	36932743	AM_1360266744_000021	1000 -
chr1	36933138	36933525	AM_1360266744_000010	1000 -
chr1	36933257	36933450	AM_1360266744_000026	1000 -
chr1	36933269	36933464	AM_1360266744_000012	1000 -
chr1	36933287	36933525	AM_1360266744_000007	1000 -
chr1	36933401	36933551	AM_1360266744_000024	1000 -
chr1	36933401	36933551	AM_1360266744_000025	1000 -
chr1	36933440	36933604	AM_1360266744_000001	1000 -
chr1	36933455	36933578	AM_1360266744_000030	1000 -
chr1	36933511		AM_1360266744_000017	1000 -

Target file

browser	position chr20:3	31022175-31025175
track name="Covered"		loPlex - 00100-1360266744 - Genomic regions expected to be amplified" color=0,128,0
chr1	36931784	36932738 CSF3R-EX17
chr1	36933143	36933794 CSF3R-EX14
chr1	43614692	43614837 MPL-EX10
chr1	43614839	43615124 MPL-EX10
chr1	115256144	115256891 NRAS-EX3
chr1	115258444	115259007 NRAS-EX2
chr2	25456907	25457527 DNMT3A-EX23
chr2	25458503	25458740 DNMT3A-EX22
chr2	25458838	25459000 DNMT3A-EX22
chr2	25461921	25462232 DNMT3A-EX20
chr2	25462966	25463747 DNMT3A-EX19
chr2	25466606	25466878 DNMT3A-EX16
chr2	25466934	25467369 DNMT3A-EX15
chr2	25467974	25468349 DNMT3A-EX13
chr2	25470299	25470739 DNMT3A-EX8
chr2	25504929	25505885 DNMT3A-EX4
chr2	198265765	198265910 SF3B1-EX17
chr2	198265926	198266352 SF3B1-EX17
chr2	198266565	198267035 SF3B1-EX15
chr2	198267114	198267972 SF3B1-EX13-14
chr2	209112884	209113562 IDH1-EX4
chr4	106154888	106157698 TET2-EX3
chr4	106157699	106158699 TET2-EX3
chr4	106190402	106190600 TET2-EX9
chr4	106190601	106191158 TET2-EX9
chr4	106193346	106194219 TET2-EX10
chr4	106195883	106197319 TET2-EX11
chr5	170837340	170838094 NPM1-EX11
chr7	148506237	148506678 EZH2-EX18
chr7	148507123	148507730 EZH2-EX17
chr7	148523339	148524004 EZH2-EX8
chr9	5069827	5070135 JAK2-EX12
chr9	5073590	5073890 JAK2-EX14
chr11	119148695	119149676 CBL-EX8-9
chr13	28592417	28592834 FLT3-EX20
chr13	28592884	28593029 FLT3-EX20
chr13	28607865	28608562 FLT3-EX14
chr15	90631500	90632121 IDH2-EX4
chr15	90632127	90632272 IDH2-EX4

Assessment of target coverage

- Tools: picard **CollectHsMetrics**
- java -jar picard.jar CollectHsMetrics \
- I=your.bam \
- O=result.txt \
- R=reference_sequence.fasta \
- BAIT_INTERVALS=bait_list.bed \ TARGET_INTERVALS=target_list.bed \

CollectHsMetrics result

BAIT_SET	bait_list-hg19
GENOME_SIZE	3137161264
BAIT_TERRITORY	40153
TARGET TERRITORY	39499
BAIT DESIGN EFFICIENCY	0.983712
TOTAL READS	2386714
PF READS	2386714
PF UNIQUE READS	2386714
PCT PF READS	1
PCT PF UQ READS	1
PF UQ READS ALIGNED	2218647
PCT PF UQ READS ALIGNED	0.929582
PF UQ BASES ALIGNED	301496020
ON BAIT BASES	300199768
NEAR BAIT BASES	4532
OFF BAIT BASES	1291720
ON TARGET BASES	299546114
PCT SELECTED BASES	0.995716
PCT_OFF_BAIT	0.004284
ON BAIT VS SELECTED	0.999985
MEAN BAIT COVERAGE	7476.396982
MEAN_DAIT_COVERAGE	7564.341983
PCT USABLE BASES ON BAIT	
	0.961291
PCT_USABLE_BASES_ON_TARGET	
FOLD_ENRICHMENT	77794.270733
ZERO_CVG_TARGETS_PCT	0
FOLD_80_BASE_PENALTY	5.43806
PCT_TARGET_BASES_2X	0.981088
PCT_TARGET_BASES_10X	0.975594
PCT_TARGET_BASES_20X	0.970961
PCT_TARGET_BASES_30X	0.967366
PCT_TARGET_BASES_40X	0.966759
PCT_TARGET_BASES_50X	0.960024
PCT_TARGET_BASES_100X	0.947138
HS_LIBRARY_SIZE	
HS_PENALTY_10X	0
HS_PENALTY_20X	0
HS_PENALTY_30X	0
HS_PENALTY_40X	0
HS_PENALTY_50X	0
HS_PENALTY_100X	0
AT_DROPOUT	0
GC_DROPOUT	0
SAMPLE	
LIBRARY	
READ_GROUP	

http://broadinstitute.github.io/picard/picard-metric-definitions.html#HsMetrics

Coverage using bedtools

- coverageBed -b file.bam \
- -a targets.bed \
- > result.txt

Coverage using bedtools

Result:

- chromosome
- target start position
- target end position
- name of target region
- **number of features** in bam file that **overlapped** (by at least one base pair) with target region
- **number of bases** in target region that had non-zero coverage by reads in bam file
- the length of target region
- the **fraction of bases** in target region that had non-zero **coverage** by reads in bam file

	chr1	36931784	36932738 CSF3R-EX17	91507	954	954	1
	chr1	36933143	36933794 CSF3R-EX14	44893	651	651	1
	chr1	43614692	43614837 MPL-EX10	2347	145	145	1
	chr1	43614839	43615124 MPL-EX10	3904	285	285	1
\frown	chr1	115256144	115256891 NRAS-EX3	82924	747	747	1
5	chr1	115258444	115259007 NRAS-EX2	56610	563	563	1
	chr2	25456907	25457527 DNMT3A-EX23	42888	620	620	1
	chr2	25458503	25458740 DNMT3A-EX22	11359	237	237	1
	chr2	25458838	25459000 DNMT3A-EX22	2861	162	162	1
	chr2	25461921	25462232 DNMT3A-EX20	46034	311	311	1
	chr2	25462966	25463747 DNMT3A-EX19	55207	781	781	1
	chr2	25466606	25466878 DNMT3A-EX16	28075	272	272	1
	chr2	25466934	25467369 DNMT3A-EX15	21767	435	435	1
	chr2	25467974	25468349 DNMT3A-EX13	13040	375	375	1
	chr2	25470299	25470739 DNMT3A-EX8	36354	440	440	1
	chr2	25504929	25505885 DNMT3A-EX4	62549	956	956	1
	chr2		198265910 SF3B1-EX17	596	145	145	1
	chr2	198265926	198266352 SF3B1-EX17	34659	426	426	1
	chr2	198266565	198267035 SF3B1-EX15	30254	420	420	1
	chr2		198267972 SF3B1-EX13-14	57978	858	858	1
	chr2		209113562 IDH1-EX4	49583	678	678	1
	chr4	106154888	106157698 TET2-EX3	298848	2810	2810	1
	chr4	106154666	106158699 TET2-EX3	82831	1000	1000	1
	chr4	106190402	106190600 TET2-EX9	4927	198	198	1
	chr4	106190402	106190000 TET2-EX9	4927	557	557	1
	chr4	106193346	106194219 TET2-EX10	65442	873	873	1
	chr4	106195883	106197319 TET2-EX10	155161	1436	1436	1
	chr5	170837340	170838094 NPM1-EX11	36743	754	754	1
	chr7		148506678 EZH2-EX18	20911	441	441	1
			148507730 EZH2-EX17		607	607	1
	chr7	148507123 148523339	148524004 EZH2-EX8	14583	665	665	1
	chr7	5069827	5070135 JAK2-EX12	53981	308	308	1
	chr9	5073590	5070155 JAK2-EX12 5073890 JAK2-EX14	15705 31107	300	300	1
	chr9	119148695	119149676 CBL-EX8-9		981	981	1
	chr11 chr13	28592417	28592834 FLT3-EX20	67515 59587	417	417	1
	chr13	28592884	28593029 FLT3-EX20	59567	145	145	1
		28607865	28608562 FLT3-EX14	72465	697	697	1
	chr13 chr15	2000/005 90631500	90632121 IDH2-EX4	67014	621	621	1
	chr15	90632127	906322721DH2-EX4	427	145	145	1
	chr17	7576767	7577268 TP53-EX8	31452	501	501	1
	chr17	7577284	7577742 TP53-EX7	46051	458	458	1
	chr17	7577846	7577991 TP53-EX6	40031	145	145	1
	chr17	7578011	7578801 TP53-EX6	69459	790	790	1
	chr17	74732734	74733292 SRSF2-EX1	38674	558	558	1
	chr18	42529674	42533521 SETBP1-EX3	413922	3847	3847	1
	chr19	33791826	33793828 CEBPA-EX1	50204	1604	2002	0.8011988
	chr20	31021959	31025369 ASXL1-EX12	380502	3410	3410	1
	chr21	36164381	36164435 RUNX1-EX8	731	54	54	1
	chr21	36164436	36165136 RUNX1-EX8	35827	700	700	1
	chr21	36252534	36253341 RUNX1-EX4	50873	807	807	1
	chr21	36258938	36259662 RUNX1-EX3	46332	724	724	1
	chr21	44514140	44515084 U2AF1-EX6	103336	944	944	1
	chr21 chr21	44514140	44515064 02AF1-EX6 44515253 U2AF1-EX6	899	944 145	944 145	1
	chr21	44515106	44515255 02AF1-EX6 44524819 U2AF1-EX2	66511	894	894	1
	CIIIZT	44020820	44324013 UZAF I-EAZ	00011	094	094	1

Visualization of coverage

) of bases in covered (target) regions that had non-zero coverage fro

Removing duplicates?

• Multiple reads originating from only one template (PCR effect) might be sequenced

- This interferes with variant calling statistics => remove the PCR duplicates
- However a duplicate could be PCR effect or reading same fragment twice, there is no way to tell.

• The degree to which we expect duplicate fragments is highly dependent on the **depth of the library** and the **type of library** (whole genome, exome, transcriptome, ChIP-Seq, etc.).

• We **do not remove duplicates** in amplicon based targeted sequencing – here we expect high number of duplicate reads by design!

Defining a duplicate

· Different ways of definition of duplicates:

• Reads with identical sequence:

- + reduces the pool of reads before mapping
- accurate removal is dependent on low error rate (if an error, then the read is not considered a duplicate)

. Reads with the same mapping position:

- + not influenced by error rate
- reads at the same position may come from different DNA fragments (diploid genoma and polymorphism present...)
- · Paired-end reads and longer reads help to correctly identify duplicates
- . The best way to deal with duplicates that correspond to PCR amplification bias is to reduce their generation in the first place
- . UMIs! unique molecular identifiers

Marking and removing duplicates

picard MarkDuplicates – the most recommended tool

samtools rmdup/rmdupse – alternative

• "Essentially what Picard does (for pairs; single-end data is also handled) is to find the 5' coordinates and mapping orientations of each read pair. When doing this it takes into account all clipping that has taking place as well as any gaps or jumps in the alignment. You can thus think of it as determining "if all the bases from the read were aligned, where would the 5' most base have been aligned". It then matches all read pairs that have identical 5' coordinates and orientations and marks as duplicates all but the "best" pair. "Best" is defined as the read pair having the highest sum of base qualities as bases with Q >= 15."

Indels

- Difficult to handle
- Complicated mapping and statistics
- Often necessary to perform **realignment** around indels
- Before realignment

ATCGATCGCTAAAAC

GATCGCAAAA-C

• After realignment

ATCGATCGCTAAAAC

GATCGC-AAAAC

Insertions/deletions – a lots of troubles

GCGGAGagaccaacc GCGGAGag-accaacc |||||| => |||||| GCGGAGggaaccacc GCGGAGggaacc-acc

GCGGAGagaccaacc GCGGAGaga-ccaacc |||||| => |||||| GCGGAGggaaccacc GCGGAGggaacca-cc

Indels – a real example

AML data, NPM1 gene, patient heterozygous for short insertion CATG:

wt: ATT CAA GAT CTC <u>TG</u>G CAG TGG ||| ||| ||| ||| mut: ATT CAA GAT CTC <u>TG</u>C ATG GCA GTG G

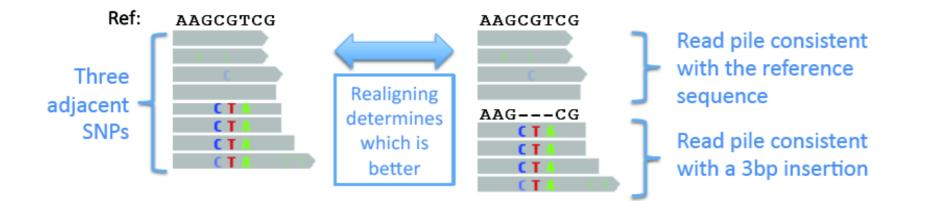
The NGS identified insertion TGCA due to incorrect alignment:

wt: ATT CAA GAT CTC <u>TG</u>G CAG TGG ||| ||| ||| mut: ATT CAA GAT CTC <u>TGC ATG</u> GCA GTG G

pindel

- · Common variant calling tools are not designed to find long repetitive inserts!
- **Pindel** is a very good alternative mainly for targeted sequencing data.
- <u>http://gmt.genome.wustl.edu/packages/pindel/</u>
- Generally, it is recommended to combine multiple tools, based on the biological questions and data type!

Realignment around indels


• These artifact mismatches can harm base quality recalibration and variant detection (unless a sophisticated caller like the HaplotypeCaller or MuTect2 is used)

Three types of realignment targets

- · Known sites
- · Indels seen in original alignments
- · Sites where evidence suggests a hidden indel

Local realignment identifies most parsimonious alignment along all reads at a problematic locus

1. Find the best alternate <u>consensus sequence</u> that, together with the reference, best fits the reads in a pile (maximum of 1 indel)

2. The score for an alternate consensus is the total sum of the quality scores of mismatching bases

3. If the score of the best alternate consensus is sufficiently better than the original alignments (using a LOD score), then we accept the proposed realignment of the reads

12/4/12

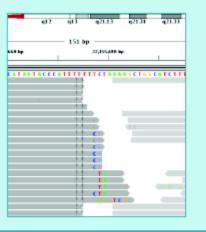
9

https://www.broadinstitute.org/gatk/events/slides/1212/GATKwh0-BP-2-Realignment.pdf

Did the realignment work properly?

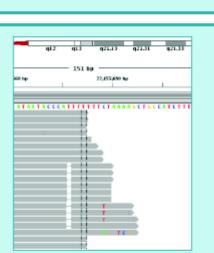
- Indel Realigner changes the CIGAR string of realigned reads but maintains the original CIGAR (with OC tag)
 - So it's very easy to check that realignment was performed and/or how many reads were adjusted
- BUT no formal measure to assess the accuracy or completeness of the realignment process

https://www.broadinstitute.org/gatk/events/slides/1212/GATKwh0-BP-2-Realignment.pdf

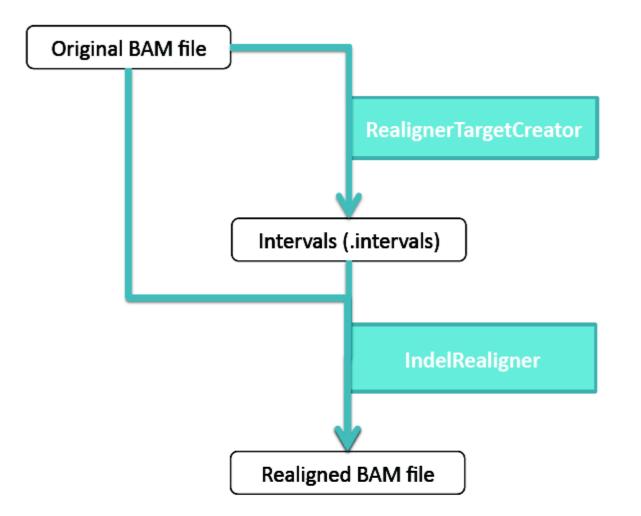

Realignment around indels

· GATK

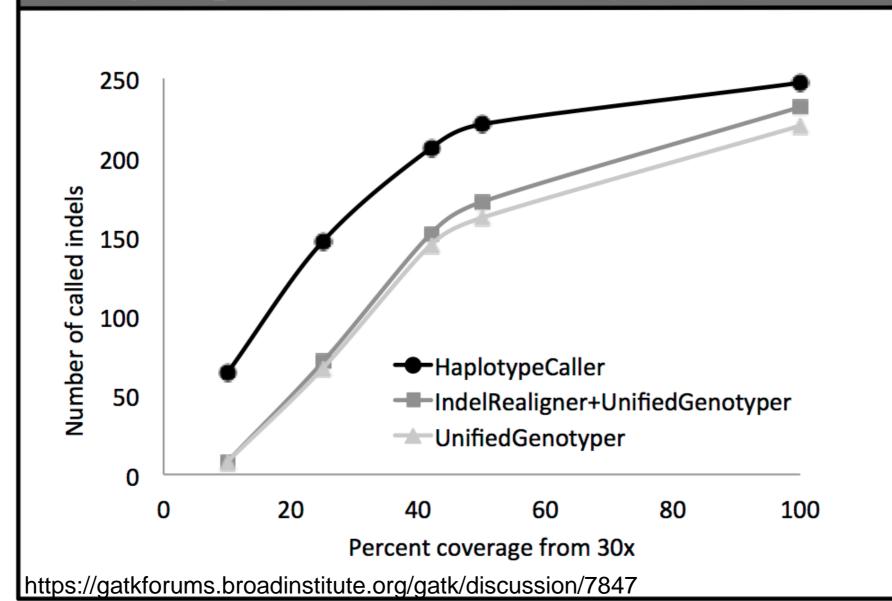
- · 2 step process:
- Determining (small) suspicious intervals which are likely in need of realignment (RealignerTargetCreator tool)
- · Running the realigner over those intervals (IndelRealigner)
- **SMRA** realigning reads in color space (SOLiD)


Indel Realignment steps/tools

- Identify what regions need to be realigned
 - → RealignerTargetCreator


 Perform the actual realignment

→ IndelRealigner


https://www.broadinstitute.org/gatk/events/slides/1212/GATKwh0-BP-2-Realignment.pdf

Indel Realignment workflow

https://www.broadinstitute.org/gatk/events/slides/1212/GATKwh0-BP-2-Realignment.pdf

Illustration B.2: HaplotypeCaller boosts indel detection. Data is for the 1 Mbp region between 10:96,000,000-97,000,000, for the PCR-free WGS NA12878 sample described in Tutorial#7156 that has duplicates already marked. The 30x coverage depth BAM was downsampled using PrintReads and the –dfrac parameter set to 0.50, 0.42, 0.25 and 0.10. Downsampled data was used directly with HaplotypeCaller, UnifiedGenotyper or with indel realignment then UnifiedGenotyper. Number of indels called is according to the *n_indel* metric of VariantEval's IndelSummary module. *Oshlee May 2016*

Long indels

 However – GATK does not call well longer indels! - these analyzed by pindel, which needs realignment!

Recalibration of base quality scores

- Phred-like quality scores issued by the sequencing platforms may often deviate from the true error rate
- Having accurate quality scores is essential for the modern SNP calling algorithms, as they integrate the Phred scores of the bases covering the site to be examined into their scoring function
- Main idea: estimate true base quality based on known sites without SNPs
- Recalibration tools/approaches:

.SOAPsnp (http://soap.genomics.org.cn/soapsnp.html).GATK, ...

Recalibration of quality scores

- · All recalibrating algorithms use a comprehensive database of known SNPs.
- If no such database is available, one can first identify candidate polymorphic sites that are highly likely to be real and use the remaining sites for the recalibration procedure – in this case, another round of SNP calling should be performed with recalibrated quality scores.
- Also in targeted sequencing most of the targets is expected to have variants. In this case, the recalibration is not recommended (e.g. true SNPs would be evaluated as mismatch rate)

SOAPsnp

• Exploits sites in the **reference genome** without any reported SNPs. On these sites, it computes the <u>empirical</u> <u>mismatch</u> rate as an <u>estimate for the true base quality.</u>

- For a:
- given machine provided <u>quality score</u>
- <u>sequencing cycle</u> (position of base in the read) and
- <u>substitution type</u> (e.g. A->G: A in reference and G in read)
- it calculates the average mismatch rate with respect to the reference genome
- This mismatch rate is then used as the <u>recalibrated quality score</u> by adding to the raw quality scores the residual differences between empirical quality scores and the mismatch rates implied by the raw quality scores

GATK

• Similar concept as SOAPsnp:

- · 1. bases are grouped with respect to several features (raw quality, dinucleotide content)
- · 2. empirical mismatch rate is computed and used to correct the raw quality score

Additional resources

- Edge effects in calling variants from targeted amplicon sequencing | BMC Genomics (springer.com)
- Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing | Genome Medicine | Full Text (biomedcentral.com)
- <u>Systematic benchmark of state-of-the-art variant calling pipelines</u> <u>identifies major factors affecting accuracy of coding sequence variant</u> <u>discovery | BMC Genomics (springer.com)</u>
- <u>Toward better understanding of artifacts in variant calling from high-</u> <u>coverage samples | Bioinformatics | Oxford Academic (oup.com)</u>