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The NGS 
analysis 
pipeline



Step 4: 
Feature 
detection 
(quantification)



Once we finish the alignment, we can continue 
with the quantification of the features

Important – there are important differences within this and previous steps 
(alignment) in case of targeted gene sequencing experiments or metagenomics. 
These will be discussed more in detail later in separate (focused) lectures.



Step 4: Feature 
detection 
(quantification)

• Creates the final table with read counts for further statistical 
analyses

• A feature of interest differs based on the experiment: 

• gene, exon, intron… (WGS, WES) 

• transcript, isoform (RNA-seq) 

• variant - SNP, insertion, deletion, CNV - (WGS, WES, targeted sequencing) 

• promotor sequence (ChIP-Seq) 

• In transcriptomics NGS experiments, the emphasis is on quantification of known transcripts 
(unless the aim is to get new isoforms) – we quantify the abundance of the RNA. 

• In genomic NGS experiments, the emphasis is more on the detection of structural changes 
(the quantification is the % of alternative alleles found). 



Step 4: Feature 
detection 
(quantification)

• Creates the final table with read counts for further statistical 
analyses

• The final output of this step is always a matrix with: 

• Information about the feature (ID, name, variant…) - annotation 

• Quantification of this feature in each of the samples 



Feature annotation • Gathering all the information about the feature

• Based on the feature type, we are using different information in the annotation files

• RNAseq – ID and name of the gene/transcript, position on the chromosome…

• Variants - specific format .vcf - includes reference allele, variant, annotation, ….

• Meteagenomics – taxonomical assignment of the OTUs (ASVs)

• We are using GTF/GFF files (remember from the previous alignment lecture)

• List of genes, transcripts, exons, introns, CDS, …

• We are using known databases for feature annotation

• Important! Feature annotation can change using different versions of dbs!



GTF/GFF files

• General feature format (.gff) or Gene transfer format (.gtf)

Extensions:

• Gtf/.gff2/.gff3

• GTF files can describe a variety of genomic features, such as genes, 
transcripts, exons, introns, and more. Each feature is represented as a 
separate line in the GTF file, with the relevant attributes specified.

• We need information about what and where it is located in a reference 
genome/transcriptome

• This information is usually stored in an annotation file

• Contains information about each feature and its location

• They are very similar but differ in the “strictness” and/or syntax

• Is often used for gene expression counting, localization of genes, etc.

• There is also .gff1 but it is very rare



GTF/GFF files
• General feature format (.gff) or Gene transfer format (.gtf)

Extensions:

• gtf/.gff2/.gff3

• Structure: A GTF file is a tab-delimited text file with various columns that provide information 
about genomic features. The minimum required columns typically include the following:

• Chromosome/contig name

• Source (the program or database that generated the annotation)

• Feature type (e.g., gene, transcript, exon, etc.)

• Start position (the beginning of the feature)

• End position (the end of the feature)

• Strand (either "+" for the positive strand or "-" for the negative strand)

• Attributes (a set of key-value pairs describing additional information about the feature, including gene and transcript 
identifiers)



Positive vs negative 
strand

• There are several conventions for labeling the two strands of a 
piece of DNA depending on the frame of reference.

• In the human genome, the National Center 
for Biotechnology Information (NCBI) website 
uses the term "positive strand" to refer 
specifically to the strand whose 5' end begins 
at the end of the p arm. Basepair numbering 
starts at the 5' end of this strand. 

https://researchguides.library.vanderbilt.edu/c.php?g=69346&p=816436



GTF/GFF files -
example

• General feature format (.gff) or Gene transfer format (.gtf)

Extensions:

• gtf/.gff2/.gff3

• The files are usually TAB delimited and 1 numbering based

• .gff2–Sanger Institute http://www.sanger.ac.uk/resources/software/gff/spec.html#t_2

• .gtf – Modification of .gff2, sometimes called gff2.5 http://mblab.wustl.edu/GTF22.html

• .gff3 – Sequence Ontology Project http://www.sequenceontology.org/gff3.shtml

http://www.sanger.ac.uk/resources/software/gff/spec.html
http://mblab.wustl.edu/GTF22.html
http://www.sequenceontology.org/gff3.shtml


GTF/GFF files –
comparison of 
different formats

• General feature format (.gff) or Gene transfer format (.gtf)

Extensions:

• gtf/.gff2/.gff3

.gff2

.gtf

.gff3



GTF/GFF files –
comparison of 
different formats

• General feature format (.gff) or Gene transfer format (.gtf)

Extensions:

• gtf/.gff2/.gff3

• GFF3 is preferred to GFF2, its newer and comprises hierarchical 
structure



GTF/GFF files – the 
hierarchy

• Suppose you have a gene, which is a parent feature. 

• This gene may have multiple child features, such as exons and introns. 

• Exons can further contain subfeatures, like coding sequences (CDS) and 
untranslated regions (UTRs).

• In GFF3, this hierarchical relationship is represented using the "Parent" 
and "ID" attributes in the attributes column.

This hierarchical structure is useful for accurately representing the organization of genes and 
their constituent elements in a genome, which is crucial for various bioinformatics analyses, 
including gene prediction, functional annotation, and visualization of genomic data.



Where to get GTF 
files

!IMPORTANT - GTF files downloaded from the UCSC Table Browser have the 
same entries for gene id and transcript id. 
(not suitable for analyses of different isoforms)

To get the correct formatting, select in the output format field “all fields from 

selected table“ and apply UCSC tool genePredToGtf on the resulting file.

Downloading from UCSC Genome Table Browser 
(https://genome.ucsc.edu/cgi-bin/hgTables)

https://genome.ucsc.edu/cgi-bin/hgTables


BED files

• Could be considered as another type of annotation file but is much simpler

• Most often used for visualization in genomic browsers (UCSC Genome Browser: 

https://genome.ucsc.edu/, IGV https://www.broadinstitute.org/igv/, Tablet 

https://ics.hutton.ac.uk/tablet/, …)

• Very often as a results of ChIP-Seq or similar experiments

• Used for targeted experiments to import target regions

 IMPORTANT – in comparison with .gft/.gff2/.gff3 is zero-based

• Has only three mandatory columns – chromosome, start, end

• Everything else is optional

(gtf/.gff2/.gff3 has 8/9 mandatory columns)

• Browser Extensible Data (.bed)

https://genome.ucsc.edu/
https://www.broadinstitute.org/igv/
https://ics.hutton.ac.uk/tablet/


BED file example
• Browser Extensible Data (.bed)

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

https://genome.ucsc.edu/FAQ/FAQformat.html


VCF/BCF files
• Variant Call Format (.vcf)
• Binary Call Format (.bcf) is compressed version of .vcf

• Used in targeted sequencing while calling SNPs/Indels/…

• Contains information about “genetic variations”

• Officially: It contains meta-information lines, a header line, and then data lines each 

containing information about a position in the genome. The format also has the ability to 

contain genotype information on samples for each position.

• Defined format but again not every tool provide all “necessary” fields in the output

• Several versions, current at 4.3

• http://www.1000genomes.org/node/101

• http://samtools.github.io/hts-specs/VCFv4.3.pdf

http://www.1000genomes.org/node/101
http://samtools.github.io/hts-specs/VCFv4.3.pdf


Feature 
quantification

• Counting the numbers of reads that aligned to the feature

• The concept seems simple – lets have a look where the read mapped and then 
count all the reads within the feature 

• For gene-level quantifications, 2 possibilities:
1. Directly count reads overlapping with the gene loci 

2. In the case of transcriptomics, we can quantify on the level of transcripts and then 
aggregate the values per gene 

• But, what about multimapped reads – this is a problem especially for isoforms 
in transcriptome sequencing!



Feature 
quantification – the 
most used SW

• GenomicRanges, IRanges- packages developed by core team of the Bioconductor project (R 
language) - include functions for counting reads that overlap genomic features

• HTSeq-count - function of the HT-Seq Python framework for processing RNA-seq or DNA-
seq data

• BEDTools - a popular tool for finding overlaps between genomic features that can be used to 
count overlaps between reads and features, in C++, much faster, but not specifically designed 
for RNA-seq data, so can count reads for exons or interval features only, similar 
to countOverlaps.

• featureCounts – optimized read count program, fast and flexible, used to quantify reads 
generated from either RNA or DNA sequencing technologies in terms of any type of genomic 
feature

• available either as a Unix command or as a function in the R package Rsubread (the core 
coded in C)

Usually count uniquely mapped reads and relies on 

counting scheme

Available in different languages (R, Python, C++, …)

Important / The SW (usually) evolves over time and gain 

more functions and get faster



Feature 
quantification –
selecting the SW

• When counting reads, make sure you know how the program handles the 
following:

• overlap size (full read vs. partial overlap);

• multi-mapping reads, i.e. reads with multiple hits in the genome;

• reads overlapping multiple genomic features of the same kind;

• reads overlapping introns

• The gene quantification will be strongly affected by the underlying gene models 
that are usually supplied to the quantification programs via GTF or BED(-like)



HTSeq gene-based 
counting schemes

http://www-

huber.embl.de/users/anders/

HTSeq/doc/count.html

Three different modes to tune its

behavior with respect to:

- the multimapping

- the gaps



featureCounts

Also allows to count reads overlapping with individual exons.

If an exon is part of more than one isoform in the annotation file, 
featureCounts will return the read counts for the same exon multiple times (n 

= number of transcripts with that exon).

If we want to assess differential expression of exons, it is highly recommended to 

create an annotation  file where overlapping exons of different isoforms are split 
into artificially disjoint bins before applying featureCounts (e.g. using 

dexseq_prepare_annotation.py script of the DEXSeq package)



Isoform mapping

• Simple count-based approaches tend to ignore reads that overlap with more than one feature

• This is a problem if the aim is to quantify different isoforms (multiple isoform transcripts of the 
same gene may overlap)

• Special SW:  Cufflinks, eXpress, DEXseq, RSEM 

• RSEM is the one that tends to perform best in most comparisons and the statistical 
interpretations and assumptions to handle transcript structures have been widely adopted.



Quantifying gene 
vs transcript
abundance

https://www.semanticscholar.org/paper/Differential-analysis-
of-gene-regulation-at-with-Trapnell-
Hendrickson/55507aba54a92b31a200e8112f088f5c356ed7bc

Cuffdiff SW

https://www.semanticscholar.org/paper/Differential-analysis-of-gene-regulation-at-with-Trapnell-Hendrickson/55507aba54a92b31a200e8112f088f5c356ed7bc
https://www.semanticscholar.org/paper/Differential-analysis-of-gene-regulation-at-with-Trapnell-Hendrickson/55507aba54a92b31a200e8112f088f5c356ed7bc
https://www.semanticscholar.org/paper/Differential-analysis-of-gene-regulation-at-with-Trapnell-Hendrickson/55507aba54a92b31a200e8112f088f5c356ed7bc


The alignment free 
methods for transcript 
quantification!

• “Special” counting – RSEM; (Salmon, Kallisto)

• Mapping to transcriptome and dividing multi mapped reads between all isoforms
• Expression by transcripts summarized to gene expression

• https://f1000research.com/articles/4-1521/v2

Alignment is the most computationally expensive step in 

the whole pipeline.

But what if we skipped this step??

https://f1000research.com/articles/4-1521/v2


Three main steps in the 
alignment free 
transcript 
quantification!

1. The sequences for comparison (reads, 
reference) are sliced up into collections of 
unique (!) k-mers of a given length k.

2. For each pairwise comparison, we count 
the number of times a specic k-mer 
appears in both sequence strings that are 
being compared.

3. To assess the similarity between the two 
strings, some sort of distance function is 
employed (Euclidean distance; identical 
sequences have a distance of zero)

Zielezinski A, Vinga S, Almeida J, and Karlowski WM. Alignment-free sequence comparison: 

Benefits,applications, and tools. Genome Biology, 2017. doi:10.1186/s13059-017-1319-7.



The alignment-free 
transcript 
quantification!

• In practice, Salmon and Kallisto will first generate an index of k-mers from 
all known transcript sequences.

• These transcript k-mers will then be compared with the k-mers of the 
sequenced reads, yielding a pseudoalignment that describes how many k-
mers a read shares with a set of compatible transcripts (based on the 
distances)

• By grouping all pseudoalignments that belong to the same set of 
transcripts, they can then estimate the expression level of each transcript 
model.



The alignment-free 
transcript 
quantification!

• The pseudoaligners rely absolutely on a precise and comprehensive transcript annotation. 

• If a sequenced fragment originates from an intron or an unannotated transcript, it can be falsely 
mapped to a transcript since the relevant genomic sequence is not available. 

• Alignment-based tools will discard reads if their edit distance becomes too large, 
pseudoalignment currently does not entail a comparable scoring system to validate the 
compatibility; therefore there is no safeguard against spurious alignments. 

• For example, that a 100-bp-read can pseudoalign with a transcript with which it shares only a 
single k-mer { if no better match can be found within the universe of the pre-generated cDNA 
index.)

The speed is increased but to a 
cost!



Comparison of 
different algorithms 
for counting features 
in RNAseq data

Feature featureCounts HTSeq-count Cufflinks eXpress DEXSeq RSEM

Developed by Bioconductor team Simon Anders Cole Trapnell's Lab
Lior Pachter's 
Lab

Simon Anders' Lab Bo Li's Lab

Compatibility
SAM, BAM, CRAM 
formats

Primarily works with SAM
SAM, BAM, GTF 
formats

SAM, BAM 
formats

BAM, GFF formats
SAM, BAM 
formats

Parallelization
Supports parallel 
processing

Does not support 
parallelization

Supports parallel 
processing

Supports parallel 
processing

Supports parallel 
processing

Supports parallel 
processing

Annotation 
Formats

GTF, GFF, SAF 
formats

Requires GFF feature type 
format

GTF format GTF format GFF format GFF format

Output Format
Tab-delimited text 
file with counts

Tab-delimited text file with 
counts

Various files and 
tables

Various files
Tab-delimited text 
files and tables

Various files and 
tables

Speed
Known for speed 
and efficiency

Efficient but may be 
slower for large datasets

Slightly slower for 
large datasets

Known for speed 
and efficiency

Slightly slower for 
large datasets

Known for speed 
and efficiency

Handling Options

Various options for 
read counting, 
handling multi-
mapped reads, and 
strandedness

Options for secondary 
alignments, ambiguous 
reads, and stranded data

Performs transcript 
assembly and 
quantification

Efficient and 
accurate 
quantification

Differential exon 
usage analysis

Accurate 
quantification, 
support for 
alternative 
isoforms

Statistical Methods

Employs a counting 
algorithm that 
considers multi-
mapping reads

Employs a counting 
algorithm for read 
assignment

Utilizes a 
likelihood-based 
method for 
transcript 
quantification

Utilizes a 
Bayesian 
framework for 
quantification

Employs statistical 
models for 
identifying 
differentially 
expressed exons

Utilizes an 
Expectation-
Maximization 
(EM) algorithm 
for 
quantification

Supports Isoform 
Counts

No No Yes Yes No Yes

Additional 
Features

Flexible annotation 
format compatibility

Primarily designed for 
SAM files and GFF feature 
types

Transcript assembly 
and differential 
expression analysis

Speed and 
memory 
efficiency

Differential exon 
usage analysis

Support for 
estimating 
isoform 
expression

Documentation
Well-documented 
and actively 
maintained

Well-documented and 
widely used

Comprehensive 
documentation

Documentation 
available

Documentation 
available

Documentation 
available

Generated with help of ChatGPT
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