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The NGS 
analysis 
pipeline



Step 0: 
base calling 
(image analysis) 
+ base quality 
control



Step 0: base calling 
(image analysis)

• The identity of each base of a cluster is read off from 
sequential images 

• One cycle -> one image 



The PHRED score

Qphred = - 10 x log10P(error)

• The Phred quality score is the negative ratio of the error probability to the reference level of P = 1 expressed 
in Decibel (dB). 

• The error estimate is based on statistical model providing measure of certainty of each base call 
in addition to the nucleotide itself 

• These statistical models base their error estimate on: 
• Signal intensities from the recorded image 
• Number of the sequencing cycle 
• Distance to other sequence colonies 

• Phred score is recoded using ASCII in fastq file 

Phred score Probability of 
incorrect base 
call

Base call

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10 000 99.99%

50 1 in 100 000 99.999%

60 1 in 1 000 000 99.9999%



Phred score encoding in 
ASCII

https://en.wikipedia.org/wiki/FASTQ_format



FASTQ format • Combines sequence and base call quality information. 

• Typical file extension:.fastq

• Four lines per sequence (read): 
• ID (starting with @) 
• Sequence line 
• Another ID line (starting with +)
• Base qualities (one for each letter in the sequence) 



Step 1: 
Read quality 
control and 
data filtering



Before we dive in…

… let’s review few concepts and expressions



The steps of Illumina 
sequencing

1. Fragment genomic DNA, e.g. with a sonicator.

2. Ligate adapters to both ends of the fragments.

3. PCR amplify the fragments with adapters

4. Spread DNA molecules across flowcells. Goal 
is to get exactly one DNA molecule per 
flowcell lawn of primers. This depends purely 
on probability, based on the concentration of 
DNA.

5. Use bridge PCR to amplify the single molecule 
on each lawn so that you can get a strong 
enough signal to detect. Usually this requires 
several hundred or low thousands of 
molecules.

6. Sequence by synthesis of complementary 
strand: reversible terminator chemistry.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/


Sources of errors:
adapters

Sequencing random fragments of DNA is 
possible via the addition of short 
nucleotide sequences which allow any DNA 
fragment to:

● Bind to a flow cell for next generation 
sequencing

● Allow for PCR enrichment of adapter 
ligated DNA fragments only

● Allow for indexing or 'barcoding' of 
samples so multiple DNA
libraries can be mixed together into 1 
sequencing lane (known as
multiplexing)

• In step 2, adapters are ligated to the end of the fragments

From:
http://tucf-genomics.tufts.edu/documents/protocols/TUCF_Understanding_Illumina_TruSeq_Adapters.pdf



Sources of errors:
PCR duplicates
• In step 3 we are intentionally creating multiple 
copies of each original genomic DNA molecule so that 
we have enough of them.

• PCR duplicates occur when two copies of the same 
original molecule get onto different primer lawns in a 
flowcell. 

• In consequence we read the very same sequence 
twice!

Higher rates of PCR duplicates e.g. 30% arise when you have too little 
starting material such that greater amplification of the library is needed 
in step 3, or when you have too great a variance in fragment size, such 
that smaller fragments, which are easier to PCR amplify, end up over-
represented.

Dense lawn
of primers

Adapter

Adapter

DNA fragment

Find beautiful explanation of probabilities  and much more at: https://www.cureffi.org/2012/12/11/how-pcr-duplicates-arise-in-next-generation-sequencing/



Sources of errors:
sequencing by synthesis –
the fluorescence

• In step 5 we amplify the signal and detect the
fluorescence of each base
• The assumption is that in a cycle, every
molecule on the flowcell is extended by one base

• The reality:
• Some molecules are not extended or their

base has no fluorescent dye
• The previous fluorescent dye is not cleaved –

the signal from the cluster after a few cycles 
is a mix of signals from previous bases



Sequencing 
coverage

Coverage in DNA sequencing is the number of unique reads 
that include a given nucleotide in the reconstructed sequence. 



Depth of coverage 
(coverage depth / 
mapping depth)

How strongly is the genome "covered" by sequenced fragments 
(short reads)?

Per-base coverage is the average number of times a base of a genome is sequenced (in other words, how many 
reads cover it). 

The coverage depth of a genome is calculated as the number of bases of all short reads that match a genome 
divided by the length of this genome. It is often expressed as 1X, 2X, 3X,... (1, 2, or, 3 times coverage).

Average coverage of the genome (Av) 

Av = (NxL)/G

G - length of the original genome
N - number of reads
L - average read length



Breadth of coverage 
(covered length)

What proportion of the genome is "covered" by short reads? 
Are there regions that are not covered, even not by a single 
read?

Breadth of coverage is the percentage of bases of a reference genome that are covered with a certain depth. 
For example: "90% of a genome is covered at 1X depth; and still 70% is covered at 5X depth."



Sequencing coverage

• Deep sequencing refers to the general concept of aiming for high number of unique reads 
of each region of a sequence.



Step 1: Read quality 
control and data 
filtering

• Uses the output file with information about the quality of base 
calls (.fastq)

• First step in the pipeline that deals with actual sequencing data 
in base or color space 

• Several metrics are evaluated, not all of them use the Phred score information:
• Distribution of quality scores at each sequence, Sequence composition, Per-sequence and 

per-read distribution of GC content, Library complexity, Overrepresented sequences

• Initial overview – already in base calling SW 
• More quality overview – SW solutions SolexaQA, FastQC



Main quality control points

1. Base quality
2. Sequence composition – sequence content across bases should not change 

with cycle (exception are targeted sequencing SNP experiments)
3. Per-sequence and per-read distribution of GC content (shift from expected 

can indicate contamination by rRNA for instance)
4. Library complexity (too many duplicates?)
5. Overrepresented sequences –may represent highly expressed genes, or 

presence of adapters or rRNA contamination or PCR duplicates



Base quality

• Quality of bases (Phred score) should be good 
across all cycles

(all the sequence)



Base quality – an 
excellent example

• Shows distribution (boxplot) of quality 
of bases (Phred scores) across all reads in 
each cycle



Base quality – a more 
common example

• Decrease of quality towards the end of 
reads (late cycles)



Base quality – bad 
example

• …



Base quality - sudden
quality drop

• Indicates problems with flow cell, 
trimming needed



Base quality 
– targeted 
sequencing
• The low quality extremes suggest a 

problem in the beginning of the reads
• (primers?, NNNNN sequences...)



Base quality 
–
microbiome
• This is what it can look like 

with very small sample and 
sequence size



Base call errors in last cycles

• Towards the end of sequencing, the quality drops, signal is 
worse

• We can see it for Illumina and SOLID
• Not very important for RNAseq, but crucial for variant 

calling



SNP calling

CTTAACAGTGTTCAGTAAGTTTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGTTTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGTTTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT



SNP calling

CTTAACAGTGTTCAGTAAGTTTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGTTTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGTTTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT
CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT



SNP error dependent on cycle

These errors are not random and look like 
SNPs (e.g. if there were randomly 
distributed T, C, G and A's, we would 
conclude it is error directly)

We want the SNPs to be distributed 
evenly across cycles

SNPs coming from towards end of the 
read are sign of false positive



SNP error dependent on cycle

These errors are not random and look like 
SNPs (e.g. if there were randomly 
distributed T, C, G and A's, we would 
conclude it is error directly)

We want the SNPs to be distributed 
evenly across cycles

SNPs coming from towards end of the 
read are sign of false positive



Long fragments have lower base quality

We plot the fraction of low quality reads in the 138 samples analyzed in our study. Across all samples the R2 reads 
harbor more low quality reads than the R1 reads. We plot two alternative definitions of ‘low quality’. Reads are called 
low quality if (A) the average Phred score is below 30, or (B) the average mismatch rate of the aligned bases is above 
0.01. Both plots show that the R2 reads harbor more low quality reads and that the fraction of low quality reads is more 
variable across samples.

From: Long fragments achieve lower base quality in Illumina paired-end sequencing

https://www.nature.com/articles/s41598-019-39076-7


Increase of R2 low quality reads as a function of 
the content of long fragments

Increase of R2 low quality reads as a function of the content of long fragments. In (A) we plot for individual samples the difference in low quality read 
content among the R2 and the R1 reads versus the content of long fragments. The plot shows that the more long fragments a samples has the more 
prevalent are low quality reads among the R2 reads. In (B) we directly compare the fraction of low quality reads in R2 and R1 and color-code the content 
long fragments. Low quality reads are defined as reads having a mismatch rate above 0.01 in the bases after alignment. The plotted samples have been 
generated using various protocols on various sequencers in various labs. The dashed lines connect three samples each that have been processed 
identically except with an increasing targeted fragment length.

From: Long fragments achieve lower base quality in Illumina paired-end sequencing

https://www.nature.com/articles/s41598-019-39076-7


Per base sequence 
content

• Sequence content across bases should 
not change with cycle



Per base sequence content – RNAseq –
typical Illumina library

• The primers used in the 
library are typically not 
removed



Per base sequence content – targeted 
sequencing

• In targeted sequencing 
there is much less genes 
being sequenced so the 
base composition of reads is 
non-random



Per base sequence content – a bad 
example?

• This suggests that a single 
sequence makes up a large 
part of the library – this can 
mean rRNA contamination 
in RNAseq



Per base sequence content - microbiome

• … however, it is excepted if 
we sequence 16S rRNA of 
microbiome where one or 
few bacteria strains are 
dominating



Per sequence quality

• All – or at least majority of the 
sequences should have good average 
quality (average Phred score across all 
read bases)



Per sequence quality - RNAseq

• majority of the sequences 
have good average quality



Per sequence quality - microbiome

• Small peaks in lower average 
quality can suggest low quality 
ends on part of sequences –
attention, if small read diversity 
(e.g. microbiome), this can be 
due to highly duplicated reads 
due to too deep sequencing



Per sequence quality – targeted sequencing

• Small peaks in lower 
average quality can suggest 
low quality ends on part of 
sequences – attention, if 
small read diversity (e.g. 
microbiome), this can be 
due to highly duplicated 
reads due to too deep 
sequencing



Per sequence and per 
read GC content

• Mean GC content across 
reads should correspond to 
the overall GC content of the 
genome
• Evan small shifts can indicate 

contamination with GC rich 
sequences (ribosomal RNA 
with high GC content for 
instance)



Per sequence GC content - RNAseq

• A relatively good example of 
GC content



Per sequence GC content – targeted 
sequencing

• This strange theoretical 
distribution is due to high 
amount of NNNNNN 
sequences in the reads



Per sequence GC content – targeted 
sequencing after trimming

• The GC count per read is 
disturbed because of small 
number of genes 
sequenced!



Per sequence GC content – microbiome

• The GC count per read is 
disturbed because of small 
diversity of sequences



Per read GC content – good example

• The GC count per read is 
disturbed because of small 
diversity of sequences



Per read GC content – typical RNAseq

• GC content different in first 
8-10 bases, due to presence 
of primers



Per read GC content – targeted sequencing

• GC content across different 
base positions due to high 
duplication level of reads 
and small diversity



Per read GC content – microbiome

• GC content across different 
base positions due to high 
duplication level of reads 
and even smaller diversity.
• Zero GC in first two bases 

can be due to adapters.



Per base N content

• In ideal case, there should be minimum of N calls in 
the reads

• “The HiSeq2000 produces very few Ns. It is very rare 
to see N content greater than 30%. When Ns are 
produced it is usually the result of some temporary 
instrument issue. For example a small bubble in the 
flow cell may cause focus problems at a certain cycle. 
Downstream processing of Ns depends on your 
analysis software and strategy.”

• Source:
https://www.biotech.wisc.edu/services/dnaseq/seque
ncing/Illumina_old/Illumina_QC_FAQs



Per base N content – ideal case

• …



Per base N content – targeted sequencing

Enrichment for N calls at the 
beginning of the sequence



Sequence duplication level and
overrepresented sequences

• Indicates the library complexity and possible 
contamination

• (the less duplicates, the more complex)
• Too many duplicated sequences means we 

sequenced “too much”.
• Overrepresented sequences may indicate:

• Presence of adapters, presence of contamination 
(rRNA), PCR problems

• This holds, however, mainly for WGS, WES or 
RNAseq



Sequence duplication level – good example
(RNAseq)

● Most sequences occur only 
once



Sequence duplication level – bad example
(RNAseq)?

● Over-amplification! May 
come from highly expressed 
transcripts.



Overrepresented sequences

Overrepresented sequences
● Indicate remaining adapters, PCR duplicates, but also 
can be real sequences!
Always judge based on type of data and check before 
filtering!



Sequence duplication level – targeted 
sequencing

Some reads are present more than 10 times. This is due to 
NNNN sequences and due to few genes sequenced (longer 
genes get more reads)



Quality control exercise

● We continue in our exercise from 1_Preprocessing.sh



Step 1: Read quality 
control and data 
filtering

• Based on the quality measures, we decide to remove low 
quality bases and reads

• Trimming – removes low quality or unwanted bases from reads, thus shortening 
them.  Is applied to increase the number of mappable reads.

• Filtering – removes whole reads that do not meet quality standards (e.g. too 
short etc) 



Trimming reads

• Read trimming is applied to increase the number of mappable reads by:
• Removing low quality bases at the end of the reads that are likely to 

contain sequencing errors
• Removing adapter sequences



Removing adapters

• Important mainly for very short read 
sequences of interest (when the input DNA 
fragment is less than the read length)

e.g. for miRNA with 22nt length the 
adapter gets sequenced more often than for 
RNA sequences, which are much longer

TruSeq Universal Adapter: 5
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 3
TruSeq Indexed Adapter 5
GATCGGAAGAGCACACGTCTGAACTCCAGTCAC NNNNNN ATCTCGTATGCCGTCTTCTGCTTG 3

Here “N” is any nucleotide, and the 6 of them together are a unique sequence which can readily
be identified as unique to 1 library.

What is the sequence of adapters?
Best option: ask which kit was used for preparing libraries

Programs: cutadapt, trimmomatic



Filtering reads

• We can remove whole reads based on:
• quality of its base calls
• its length (too short reads)
• level of duplication
• …



Trimming and filtering - exercise

Trimming and filtering - exercise
● We continue in our exercise from 1_Preprocessing.sh
● We will use grep command to find adapter sequences and
cutadapt to remove them
● We will trim low quality bases
● Independent work: find specific QC problems in your project data
and suggest solutions (what to trim, filter, etc)



Recommended literature

• Fuller et al. 2009: The challenges of sequencing by synthesis 
http://arep.med.harvard.edu/pdf/Fuller_09.pdf
• https://sequencing.qcfail.com/

http://arep.med.harvard.edu/pdf/Fuller_09.pdf

