Bi5444 Analysis of sequencing data

NGS quality control

Eva Budinska

The NGS analysis pipeline

Step 0: base calling (image analysis) + base quality control

Step 0: base calling (image analysis)

- The identity of each base of a cluster is read off from **sequential images**
- One cycle -> one image

The PHRED score

 Q_{phred} = - 10 x $log_{10}P$ (**error**)

- The *Phred* quality score is the negative ratio of the error probability to the reference level of *P* = 1 expressed in Decibel (dB).
- The **error estimate** is based on **statistical model** providing measure of **certainty** of each base call in addition to the nucleotide itself
- These statistical models base their error estimate on:
	- Signal intensities from the recorded image
	- Number of the sequencing cycle
	- Distance to other sequence colonies
- *Phred* score is recoded using ASCII in fastq file

Phred score encoding in ASCII

https://en.wikipedia.org/wiki/FASTQ_format

@D7MHBFN1:202:D1BUDACXX:4:1101:1340:1967 1:N:0:CATGCA

#1=DDFFFHHHHHJJJJJJJJHIJJJJJJJJJGIIIJJJJJJJJIIJIJJJHIIFGIIIIJJJJJJIIEHJIIHHGFFF@?ADFEDDEDCDDBDDBDCDDDDEC

- FASTQ format \overline{P} \overline{P} \overline{P} formation.
	- Typical file extension: . fastq

@D7MHBFN1:202:D1BUDACXX:4:1101:1340:1967 1:N:0:CATGCA #1=DDFFFHHHHHJJJJJJJJHIJIJJJJIJIJGIIIJJJJJJJJIIJIJJJHIIFGIIIIIJJJJJJIIEHJIIHHGFFF@?ADFEDDEDCDDBDDBDCDDDDEC

- Four lines per sequence (read):
	- ID (starting with ω)
	- Sequence line
	- Another ID line (starting with +)
	- Base qualities (one for each letter in the sequence)

Step 1: Read quality control and data filtering

Before we dive in…

… let's review few concepts and expressions

The steps of Illumina sequencing

- 1. Fragment genomic DNA, e.g. with a sonicator.
- 2. Ligate adapters to both ends of the fragments.
- 3. PCR a[mplify the fragments with adapte](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/)rs
- 4. Spread DNA molecules across flowcells. Goal is to get exactly **one DNA molecule** per flowcell lawn of primers. This depends purely on probability, based on the concentration of DNA.
- 5. Use bridge PCR to amplify the single molecule on each lawn so that you can get a strong enough signal to detect. Usually this requires several hundred or low thousands of molecules.
- 6. Sequence by synthesis of complementary strand: reversible terminator chemistry.

Sources of errors: adapters

• In step 2, adapters are ligated to the end of the fragments

Sequencing random fragments of DNA is possible via the addition of short nucleotide sequences which allow any DNA fragment to:

- Bind to a flow cell for next generation sequencing
- Allow for PCR enrichment of adapter ligated DNA fragments only
- Allow for indexing or 'barcoding' of samples so multiple DNA libraries can be mixed together into 1 sequencing lane (known as multiplexing)

From:

Sources of errors: PCR duplicates

- In step 3 we are *intentionally* creating multiple copies of each original genomic DNA molecule so that we have enough of them.
- PCR duplicates occur when **two copies of the same original molecule get onto different primer lawns in a flowcell**.
- In consequence we read the very same sequence twice!

Higher rates of PCR duplicates e.g. 30% arise when you have too little starting material such that greater amplification of the library is needed in step 3, or when you have too great a variance in fragment size, such that smaller fragments, which are easier to PCR amplify, end up over-
represented.

Find beautiful explanation of probabilities and much more at: https://www.cureffi.org/2012/12/11/how-pcr-duplicates-arise-in-next-generation-sequencing/

Sources of errors: sequencing by synthesis – the fluorescence

- In step 5 we amplify the signal and detect the fluorescence of each base
- The assumption is that in a cycle, every molecule on the flowcell is extended by one base
- The reality:
	- Some molecules are not extended or their base has no fluorescent dye
	- The previous fluorescent dye is not cleaved the signal from the cluster after a few cycles is a mix of signals from previous bases

Sequencing coverage

Coverage in DNA sequencing **is the number of unique reads that include a given nucleotide** in the reconstructed sequence.

Depth of coverage (coverage depth / mapping depth)

How strongly is the genome "covered" by sequenced fragments (short reads)?

Per-base coverage is the average number of times a base of a genome is sequenced (in other words, how many reads cover it).

The coverage depth of a genome is calculated as **the number of bases of all short reads that match a genome divided by the length of this genome**. It is often expressed as 1X, 2X, 3X,... (1, 2, or, 3 times coverage).

Breadth of coverage (covered length)

What proportion of the genome is "covered" by short reads? Are there regions that are not covered, even not by a single read?

Breadth of coverage is the percentage of bases of a reference genome that are covered with a certain depth. For example: "90% of a genome is covered at 1X depth; and still 70% is covered at 5X depth."

Sequencing coverage

• **Deep sequencing** refers to the general concept of aiming for high number of unique reads of each region of a sequence.

Step 1: Read quality control and data filtering

- Uses the output file with information about the quality of base calls (.fastq)
- First step in the pipeline that **deals with actual sequencing data** in base or color space

- Several metrics are evaluated, not all of them use the Phred score information:
	- Distribution of quality scores at each sequence, Sequence composition, Per-sequence and per-read distribution of GC content, Library complexity, Overrepresented sequences
- Initial overview already in base calling SW
- More quality overview $-$ SW solutions SolexaQA , FastQC

Main quality control points

- **1. Base quality**
- **2. Sequence composition** sequence content across bases should not change with cycle (exception are targeted sequencing SNP experiments)
- **3. Per-sequence and per-read distribution of GC content** (shift from expected can indicate contamination by rRNA for instance)
- **4. Library complexity** (too many duplicates?)
- **5. Overrepresented sequences** –may represent highly expressed genes, or presence of adapters or rRNA contamination or PCR duplicates

Base quality

• Quality of bases (Phred score) should be good across all cycles

(all the sequence)

Base quality – an excellent example

• Shows distribution (boxplot) of quality of bases (Phred scores) across all reads in each cycle

Base quality – a more common example

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

• Decrease of quality towards the end of reads (late cycles)

Base quality – bad example

• …

Quality scores across all bases (Illumina 1.5 encoding) 34 32 30 28 26 24 22 20 18 16 14 12 10 $\mathbf{8}$ 6 $\overline{4}$ $\overline{2}$ \circ 26 28 $30₂$ 32 34 36 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 38 40 Position in read (bp)

Base quality - sudden quality drop

• Indicates problems with flow cell, trimming needed

Base quality – targeted sequencing

- The low quality extremes suggest a problem in the beginning of the reads
- (primers?, NNNNN sequences...)

Base quality

microbiome

–

• This is what it can look like with very small sample and sequence size

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Base call errors in last cycles

- Towards the end of sequencing, the quality drops, signal is worse
- We can see it for Illumina and SOLID
- Not very important for RNAseq, but crucial for variant calling

SNP calling

TTAACAGTGTTCAGTAAGTT TTCAGTAAGATTCCATGAGCT ACAGTGTTCAGTAAGATTCC TGTTCAGTAAGATTCCATGAG CAGTGTTCAGTAAGTTTCCA GTTCAGTAAGATTCCATGAGC GTGTTCAGTAAGATTCCATGA TCAGTAAGATTCCATGAGCTC AACAGTGTTCAGTAAGTITT AGTAAGATTCCATGAGCTCT CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT

SNP calling

TTAACAGTGTTCAGTAAGTT AACAGTGTTCAGTAAGTTT ACAGTGTTCAGTAAGATTCC CAGTGTTCAGTAAGTITTCCA GTGTTCAGTAAGATTCCATGA TGTTCAGTAAGATTCCATGAG GTTCAGTAAGATTCCATGAGC TTCAGTAAGATTCCATGAGCT TCAGTAAGATTCCATGAGCTC AGTAAGATTCCATGAGCTCT CTTAACAGTGTTCAGTAAGATTCCATGAGCTCT

SNP error dependent on cycle

These errors are not random and look like SNPs (e.g. if there were randomly distributed T, C, G and A's, we would conclude it is error directly)

We want the SNPs to be distributed evenly across cycles

SNPs coming from towards end of the read are sign of false positive

SNP error dependent on cycle

These errors are not random and look like SNPs (e.g. if there were randomly distributed T, C, G and A's, we would conclude it is error directly)

We want the SNPs to be distributed evenly across cycles

SNPs coming from towards end of the read are sign of false positive

Long fragments have lower base

We plot the fraction of low quality reads in the 138 samples analyzed in our study. harbor more low quality reads than the R1 reads. We plot two alternative de low quality if (A) the average Phred score is below 30, or (B) the average mist 0.01. Both plots show that the R2 reads harbor more low quality reads and that the α variable across samples.

Increase of R2 low quality reads as a the content of long fragments

From: Long fragments achieve lower base quality in Illumina paired-end seq

Increase of R2 low quality reads as a function of the content of long fragments. In (A) we plot for in content among the R2 and the R1 reads versus the content of long fragments. The plot shows that prevalent are low quality reads among the R2 reads. In (B) we directly compare the fraction of low long fragments. Low quality reads are defined as reads having a mismatch rate above 0.01 in the b generated using various protocols on various sequencers in various labs. The dashed lines connect identically except with an increasing targeted fragment length.

Per base sequence content

• Sequence content across bases should not change with cycle

Per base sequence content – RNAseq – typical Illumina library

• The primers used in the library are typically not removed

Per base sequence content – targeted sequencing

• In targeted sequencing there is much less genes being sequenced so the base composition of reads is non-random

Per base sequence content – a bad example?

• This suggests that a single sequence makes up a large part of the library – this can mean rRNA contamination in RNAseq

Per base sequence content - microbiome

• ... however, it is excepted if we sequence 16S rRNA of microbiome where one or few bacteria strains are dominating

Per sequence quality

• All – or at least majority of the sequences should have good average quality (average Phred score across all read bases)

Per sequence quality - RNAseq

• majority of the sequences have good average quality

Per sequence quality - microbiome

• Small peaks in lower average quality can suggest low quality ends on part of sequences – attention, if small read diversity (e.g. microbiome), this can be due to highly duplicated reads due to too deep sequencing

Per sequence quality – targeted sequencing

• Small peaks in lower average quality can suggest low quality ends on part of sequences – attention, if small read diversity (e.g. microbiome), this can be due to highly duplicated reads due to too deep sequencing

Per sequence and per read GC content

- Mean GC content across reads should correspond to the overall GC content of the genome
- Evan small shifts can indicate contamination with GC rich sequences (ribosomal RNA with high GC content for instance)

Per sequence GC content - RNAseq

• A relatively good example of GC content

Per sequence GC content – targeted sequencing

• This strange theoretical distribution is due to high amount of NNNNNN sequences in the reads

Per sequence GC content – targeted sequencing after trimming

• The GC count per read is disturbed because of small number of genes sequenced!

Per sequence GC content – microbiome

• The GC count per read is disturbed because of small diversity of sequences

Per read GC content – good example

• The GC count per read is disturbed because of small diversity of sequences

Per read GC content – typical RNAseq

• GC content different in first 8-10 bases, due to presence of primers

Per read GC content – targeted sequencing

• GC content across different base positions due to high duplication level of reads and small diversity

Per read GC content – microbiome

- GC content across different base positions due to high duplication level of reads and even smaller diversity.
- Zero GC in first two bases can be due to adapters.

Per base N content

- In ideal case, there should be minimum of N calls in the reads
- "The HiSeq2000 produces very few Ns. It is very rare to see N content greater than 30%. When Ns are produced it is usually the result of some temporary instrument issue. For example a small bubble in the flow cell may cause focus problems at a certain cycle.
Downstream processing of Ns depends on your analysis software and strategy."
- Source:

https://www.biotech.wisc.edu/services/dnaseq/seque ncing/Illumina_old/Illumina_QC_FAQs

Per base N content – ideal case

 \bullet …

Per base N content – targeted sequencing

Enrichment for N calls at the beginning of the sequence

Sequence duplication level and overrepresented sequences

- Indicates the library complexity and possible contamination
	- (the less duplicates, the more complex)
- Too many duplicated sequences means we sequenced "too much".
- Overrepresented sequences may indicate:
	- Presence of adapters, presence of contamination (rRNA), PCR problems
- This holds, however, mainly for WGS, WES or RNAseq

Sequence duplication level – good example (RNAseq)

● Most sequences occur only once

Sequence duplication level – bad example (RNAseq)?

● Over-amplification! May come from highly expressed transcripts.

Overrepresented sequences

Overrepresented sequences

● Indicate remaining adapters, PCR duplicates, but also can be real sequences!

Always judge based on type of data and check before filtering!

O Overrepresented sequences

rce

Sequence duplication level – targeted sequencing

Some reads are present more than 10 times. This is due to NNNN sequences and due to few genes sequenced (longer genes get more reads)

ACTGGAAGAAATGGATTCCAAAGAGCAGTTCTCTTCCTTTAGTTGTGAAG

GAGCTATGAGCTACGGCCGCCCCCCTCCCGATGTGGAGGGTATGACCTCC

AACCCACCAATTTTTGGTAGCAGTGGAGAGCTACAGGACAACTGCCAGC

CCCATCCTCACCATCATCACACTGGAAGACTCCAGGTCAGGAGCCACTTGCCACCCTGCACACTGG

5500

5425

5424

5355

5317

0.31629936642361456

0.3079605649451738

0.3057752238680652

0.31198619324511073 No Hit

0.31192868426939735 No Hit

No Hit

No Hi

No Hit

Quality control exercise

● We continue in our exercise from 1_Preprocessing.sh

Step 1: Read quality control and data filtering

• Based on the quality measures, we decide to remove low quality bases and reads

- **Trimming** removes low quality or unwanted bases from reads, thus shortening them. Is applied to increase the number of mappable reads.
- **Filtering –** removes whole reads that do not meet quality standards (e.g. too short etc)

Trimming reads

- Read trimming is applied to increase the number of mappable reads by:
	- Removing low quality bases at the end of the reads that are likely to contain sequencing errors
	- Removing adapter sequences

Removing adapters

• Important mainly for very short read sequences of interest (when the input DNA fragment is less than the read length)

e.g. for miRNA with 22nt length the adapter gets sequenced more often than for RNA sequences, which are much longer

What is the sequence of adapters? Best option: ask which kit was used for preparing libraries Programs: cutadapt, trimmomatic

TruSeq Universal Adapter: 5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 3 TruSeq Indexed Adapter 5 GATCGGAAGAGCACACGTCTGAACTCCAGTCAC NNNNNN ATCTCGTATGCCGTCTTCTGCTTG 3

Here "N" is any nucleotide, and the 6 of them together are a unique sequence which can readily be identified as unique to 1 library.

Filtering reads

- We can remove whole reads based on:
- quality of its base calls
- its length (too short reads)
- level of duplication
- …

Trimming and filtering - exercise

Trimming and filtering - exercise

- We continue in our exercise from 1 Preprocessing.sh
- We will use grep command to find adapter sequences and cutadapt to remove them
- We will trim low quality bases
- Independent work: find specific QC problems in your project data and suggest solutions (what to trim, filter, etc)

Recommended literature

- Fuller et al. 2009: The challenges of sequencin http://arep.med.harvard.edu/pdf/Fuller_09.p
- https://sequencing.qcfail.com/