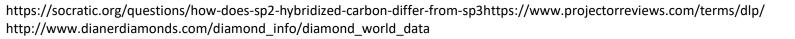
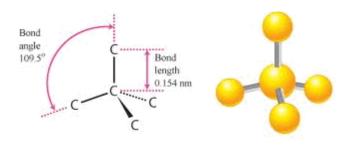
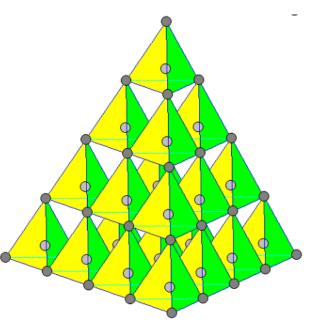
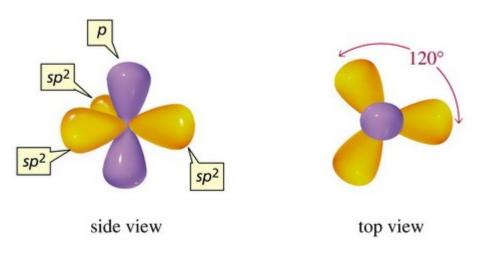

7. Carbon Nanostructures

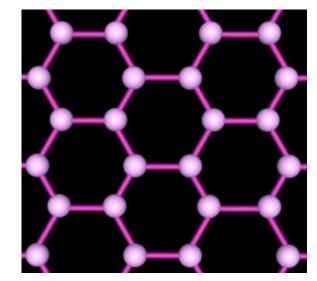

Repetition from the Last Lecture

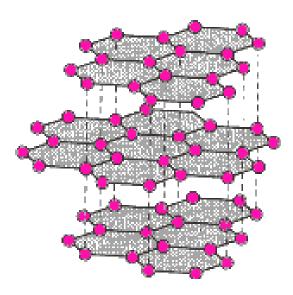

- Name the 3 basic steps of micromachining.
- List at least 3 techniques of NEMS fabrication.
- What forces are used by the NEMS gyroscope?
- Where is the MEMS component located in a DLP projector?
- List 3 basic fluid pumping options in microfluidic applications.


Carbon – Orbital Hybridisation

- sp³
- 4 sp orbitals pointing to the corners of a regular tetrahedron
- Tetrahedral diamond structure






Carbon – Orbital Hybridisation

• sp²

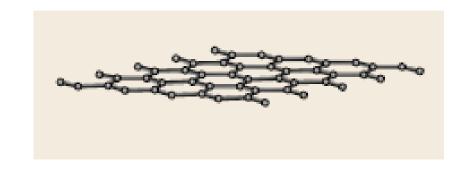
- 3 sp orbitals pointing to the corners of an equilateral triangle, 1 p orbital perpendicular to the plane of the triangle
- Graphite structure

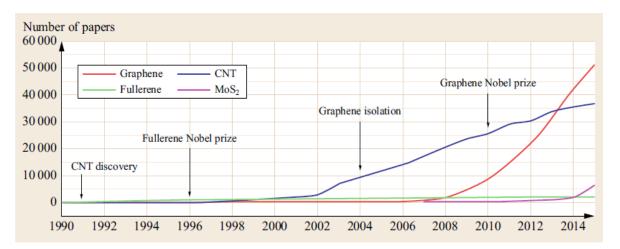
Diamond and Graphite Properties

Diamond

- Insulator
- Hardest material (10 on the Mohs scale)

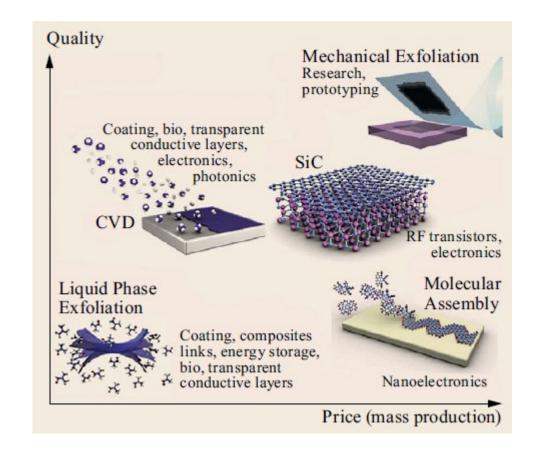
Graphite

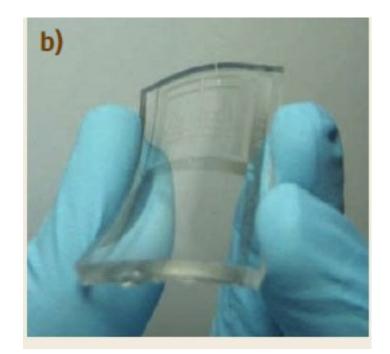

- Excellent electrical conductor
- Soft material (1.5 on the Mohs scale) due to π bonding mediated by 2 p_z orbitals



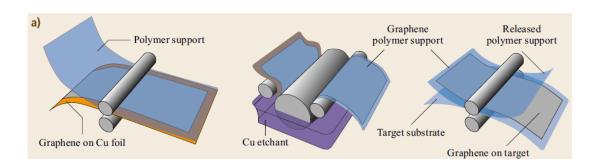
https://sustainable-nano.com/2014/02/18/the-atomic-difference-between-diamonds-and-graphite/

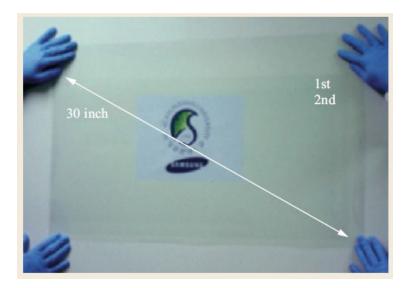
Graphene


- Single layer of sp² graphite
- 2D material electrons can only move in the plane of the material and not perpendicular to it
- 2004 prepared, 2010 Nobel Prize
- The base material for other carbon allotropes – carbon nanotubes and fullerenes
- Yet discovered last transformed into another energetically more favorable allotropes during production

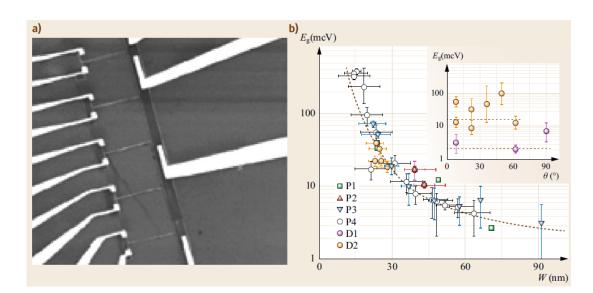

Graphene production

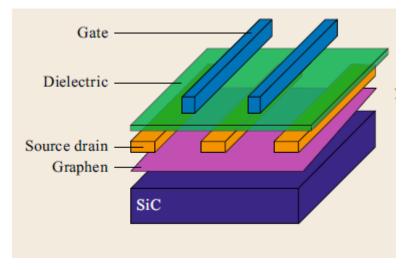
- Micromechanical exfoliation
 - Preparation from graphite using adhesive tape (first preparation method)
- Chemical vapour deposition (CVD)
 - Deposition from hydrocarbon gas on a suitable metal substrate (Ni, Cu)
- Thermal decomposition of carbides
 - High temperature annealing of carbides (> 1000°C) and graphitisation of their surface
- Chemical exfoliation in solvent
 - Production of either pure graphene but only in very small pieces or graphene oxide


Graphene Properties


- Mechanical properties measurements have shown a Young's modulus of ~1 TPa, extremely high material stiffness and also high intrinsic strength – the strongest ever measured
- The motion of electrons can be described by the Dirac relativistic equation (Schrödinger equation for 3D materials). Confirmation of quantum electrodynamics – the interaction of electrons and periodic structure - electrons described as massless particles (Dirac fermions) moving at a constant velocity of approximately 10⁶ m/s. Klein paradox – they can tunnel through an energy barrier of any height and thickness with probability of 1 – electrons can propagate long distances (microns) in graphene even in the presence of defects or other potentials.
- Light absorption in the visible region is only 2.3% – transparent conductive material
- Chemical activity is entirely surface dependent (every carbon atom that forms graphene is on the surface) – extreme sensitivity.

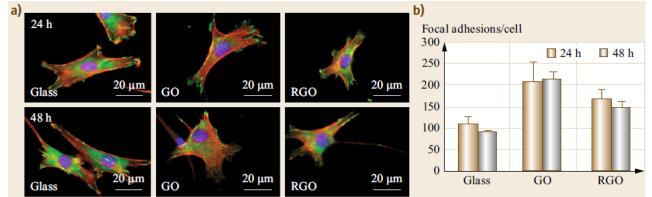
Graphene Applications


- Structural and electrical composites
 - Improving the mechanical properties of materials while increasing their conductivity. Often in the form of thin films (organic photovoltaics, photocatalysis, electrochemical catalysis...)
- Transparent conductive coatings
 - Replacement of current ITO (indiumtin-oxide) coatings
 - Retain their properties even when mechanically stretched by up to several percent – flexible electronics

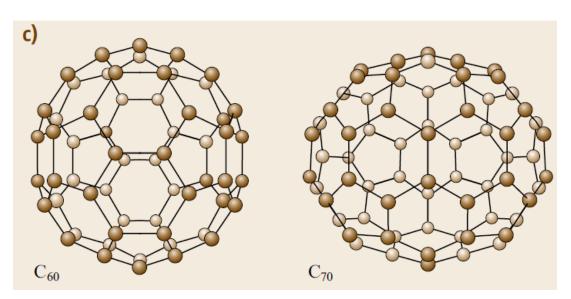


Graphene Applications 2

- Chemical sensors
 - High chemical sensitivity due to large surface area, low electrical noise due to high electron mobility
 - Detection limit in ppb (parts per billion) detection of warfare chemicals and explosives.
- Electronic components
 - Conductive graphene can be made into a semiconductor – e.g. by limiting the movement of electrons in one direction of the surface (graphene nanoribbons) – forbidden band dependent on the thickness of the ribbon; possibly by an external electric field. Use for FET.
 - Production of graphene quantum dots for SET – Coulomb blockade.

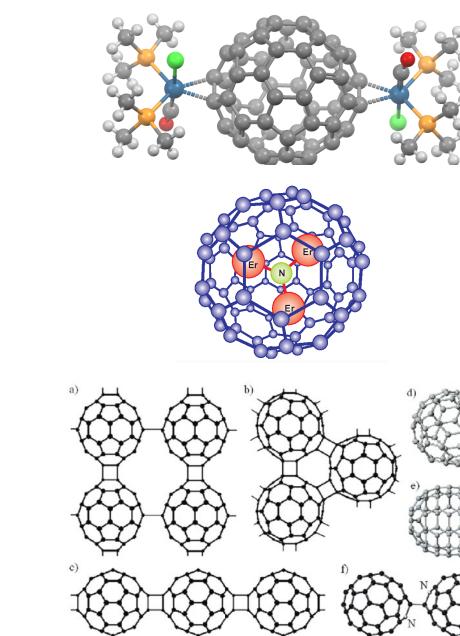


Graphene Applications 3


- Photonics and optoelectronics
 - Graphene has a much larger range of absorbed wavelengths compared to conventional semiconductors. At too large wavelengths (typically > 1 micron), semiconductors are transparent (photons have lower energy than the forbidden band width energy).
 - Combined with low noise, graphene is ideal for photodetectors.

- Biomedical applications
 - Biocompatible material
 - Very small < 100 nm flakes with bound drug can penetrate directly into the cell
 - Photothermal treatment of tumors
 - Cell growth

Fullerenes


- Spherical molecules (clusters) composed of five- and six-atom rings of carbon atoms.
- 1985 mass spectroscopy of the products of carbon disk laser sputtering in high vacuum revealed the molecule C₆₀.
 Separation of a single graphene layer to form a sphere to minimize energy.
- 1996 Nobel Prize in Chemistry

 C_{60} – soccer ball C_{70} – rugby ball

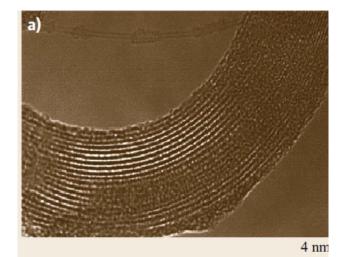
Fullerene Properties

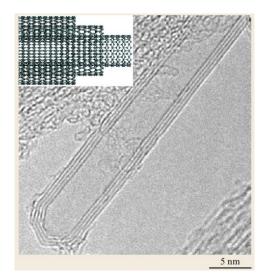
- Extremely mechanically stable (up to 3000 atm)
- Chemically stable, slightly electronegative (can accept several electrons)
- Semiconductors
- Possible modifications:
 - External surface modification (exohedral fullerenes)
 - Placing an atom, molecule, cluster inside (endohedral fullerenes)
 - Arrangement into 2D and 3D structures

https://en.wikipedia.org/wiki/Transition_metal_fullerene_complex

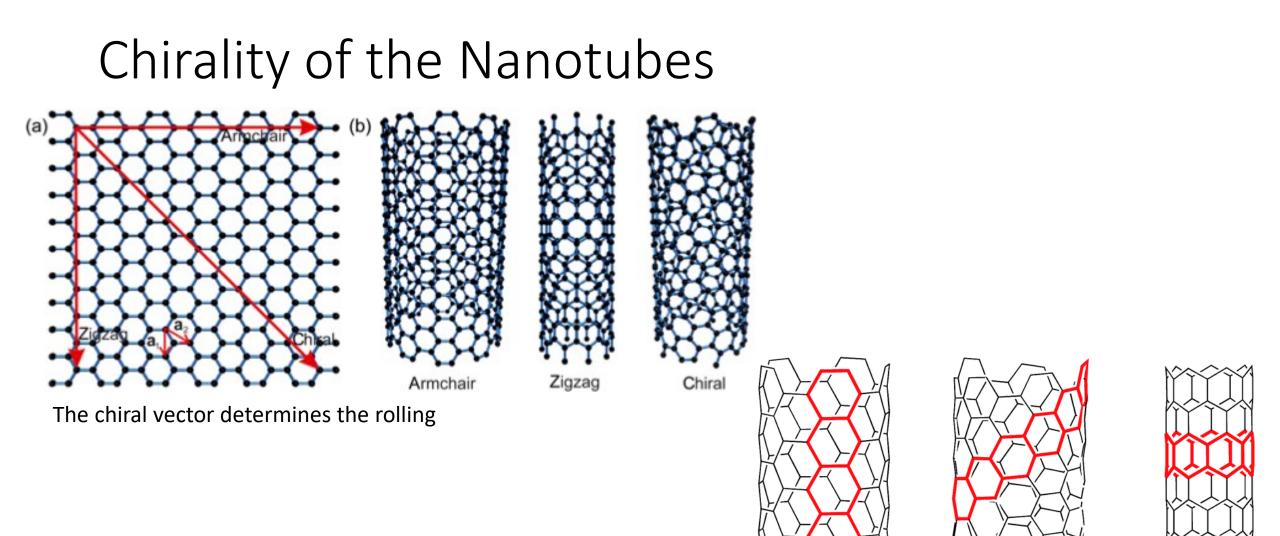
https://pubmed.ncbi.nlm.nih.gov/20820560/

https://www.researchgate.net/publication/50843622_Surface_electronic_structure_of_fullerides_effects_of_correlation_electron-phonon_coupling_and_polymerization


Fullerene Applications

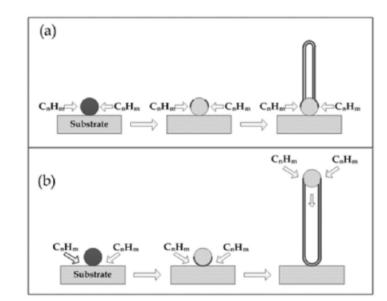

- Semiconductors
 - Forbidden band gap ~ 1.5 eV. Similar to standard semiconductors. For photovoltaics.
- Antioxidants
 - Can absorb electrons, meaning they will bind to free radicals and destroy them.
- Antiviral activity
 - Antioxidant properties and molecular structure lead to antiviral activity – research on HIV treatment

- Photosensitization activity
 - The binding of fullerenes to tumors and their good absorption of EM radiation leads to applications in magnetic resonance imaging of tumors or EM heating therapy.
- Direct drug delivery to targeted sites
 - Use of endohedral fullerenes


Carbon Nanotubes

- Discovered in 1991 during observations of carbon black prepared in a low-pressure arc discharge in argon
- There are single wall SWNT (single wall nanotubes) and multiple wall MWNT (multiple walled nanotubes) carbon nanotubes
- Properties depend on the way the graphene layer is rolled

B. Bhushan (Ed.), Springer Handbook of Nanotechnology, 2017

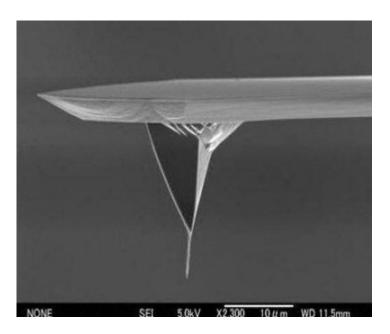


https://ms.copernicus.org/articles/9/349/2018/ https://pubs.rsc.org/en/content/articlehtml/2016/sc/c5sc04218f [5,5] CNT Armchair Metallic [7,5] CNT Chiral Semiconducting

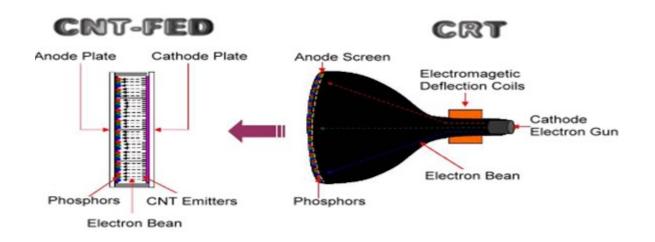
[7,0] CNT Zigzag Semiconducting

Nanotube Production

- Main methods:
 - Electrode evaporation (doped metals)
 - Laser evaporation of carbon target
 - Chemical vapor deposition (CVD) plasma or temperature dissociates the gaseous carbon precursor, the atomic carbon then condenses on the substrate.

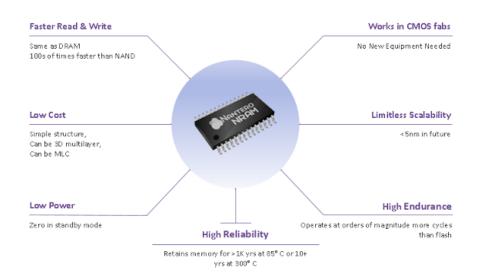


	Increasing temperature		
	Solid (crystallized)	Liquid from melting	Liquid from condensing
	(1)	(2)	atoms
Catalyst particle size			(3)
$\lesssim 3 \mathrm{nm}$	SWNT	SWNT	-
≳ 3 nm	MWNT (c,h,b) platelet nanofiber	c-MWNT	SWNT
	Nanotube diameter		
	Heterogeneous related to catalyst particle size		Homogeneous (independent of particle size)
	Nanotube/particle		
	One nanotube/particle		Several SWNTs/particle


https://www.researchgate.net/publication/316988879_Hydrocarbon_Sources_for_the_Carbon_Nanotubes_Production_by_Chemical_Vapour_Deposition_A_Review B. Bhushan (Ed.), Springer Handbook of Nanotechnology, 2017

Applications of Carbon Nanotubes

- Tips for probe techniques
 - Suitable as SPM or AFM probe tips due to mechanical and electrical properties


- Electron emitters
 - Highly stable and high yield
 - For displays, X-ray sources or electron microscopes

https://www.indiamart.com/proddetail/carbon-nanotube-based-afm-probe-14893761048.html https://electronicsmail.wordpress.com/2012/10/09/52/

Applications of Carbon Nanotubes 2

- Flexible Touch-Screen Displays
 - even in small quantities, CNT significantly improve the conductivity of polymers – composites
- Voltage-independent (non-volatile) RAM memories

- Light absorbers
 - "Carpet" structure Ventablack
- Mechanical reinforcement of composites
- Anodes for Li-ion batteries
 - Increased capacity over graphite anode (~ 50% of Li-ion batteries for mobile phones and laptops already contain nanotubes as an additive)
 - Chemical sensors

https://www.nextbigfuture.com/2016/08/carbon-nanotube-nonvolatile-nram-memory.html

Conclusion

- Diamond x graphite hybridization
- Graphene 2D structure
- Fullerenes spherical molecules
- Carbon nanotubes