Cryo EM: From organelles to atomicresolution structures of molecules inside the cell

Credit to Jiří Nováček

Optical microscope Electron microscope

Electron source - FEG

FEG - Field Emission Gun

Focused Ion Beam (FIB) + SEM

Negative Stain vs. Vitreous Ice

Specimen in Stain

uranyl acetate

- High contrast image
- No special temperature control
- Essentially no radiation damage
- Particle distorted
- Image = stain "shell" around the particle
- Low resolution method: 20-15 Å
- Great choice for initial sample screening

Cryogenic Specimen

vitreous ice layer

- Low contrast image
- Sample maintained at cryogenic temperature (85 K)
- High radiation damage
- Particle undistorted
- Image is of the actual particle
- Higher resolution obtained: 15-4 Å
- Best choice for reconstruction

TEM – Sample preparation

Pros: quick sample screening high amplitude contrast less prone to beam damage

Cons: limited resolution (20A) flattening artefacts denaturation of proteins

Heavy metal staining

e.g. uranyl acetate

Negative staining

03/Nov/2021

Sample vitrification

03/Nov/2021

C-clip

AutoGrid

ThermoFisherScientific

AutoGrid Container

ThermoFisherScientific; MiTeGen

crYOLO - an application for fast and accurate cryo-EM particle picking

You Only Look Once

Very fast: Picks up to 5 micrographs per second
Outperforms sliding window approach

Structure determination using single particle cryoEM

https://doi.org/10.1016/j.cell.2019.04.006

1) Sample preparation -2) vitrification -3) measurement -4) particle picking -5) 2D classification -6) 3D model reconstruction

Micrographs processing

1) Denoising

i. Just Another Noise 2 Noise Implementation (JANNI)

ii. TOPAZ

2) Lowpass filtering

*each micrograph is average of a movie of ~40..60 frames, motion corrected and dose-weighted

Particle picking

- 1. Initial Manual Picking (cyYOLO, Relion, Topaz, cryoSPARC ...)
 - i. Selected micrographs (10-100)
 - ii. Fully picked micrographs (80-100 % of particles present)
- 2. Model Training
- 3. Full Dataset Picking (X00.000 – X.000.000 particle)

Particle Extraction

- i) Creates separate image for each individual picked particles
- ii) Large particles can be reduced by so called binning=> speeds up initial calculations
- iii) Once dataset is "cleaned" and only "good" particles selected, calculations are repeated using full-scale particles

2D Classification

- i) **.alignment** (a translation and an in-plane rotation) to map one image onto another
- ii) images have high noise relative to the signal of particles
- iii) aligning several similar images to each other then averaging them=> image with higher signal to noise ratio
- iv) the noise is mostly randomly distributed and the underlying image features constant
- v) averaging the intensity of each pixel over several images only the constant features are reinforced.

2.995.892 particles picked from13.807 micrographs usingcryoSPARC template picker

718.639 particles selected after2D classification

3D Reconstruction

- i) Initial model
- ii) 3D model reconstruction

=> only a 3D electron density map will be provided

3D structure reconstruction is another (tedious) work:

- 1. rigid body docking
- 2. manual model building (semi-automatic) Coot, Isolde ...

Dynamics in EM

State of the art in single particle EM – 1.25 Angstr.

Article

Atomic-resolution protein structure determination by cryo-EM

https://doi.org/10.1038/s41586-020-2833-4 Ka Man Yip¹, Niels Fischer¹, Elham Paknia¹, Ashwin Chari¹ & Holger Stark¹

Trends in Cell Biology, 13(3), 2003, 107-110

CLEM - Correlative light and electron microscopy

A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native *Caenorhabditis elegans* tissue, Nature methods, 2019

Villa et al. Current Opinion in Structural Biology, 23(5), 2013, 771-7

Villa et al. Current Opinion in Structural Biology, 23(5), 2013, 771-7

Villa et al. Current Opinion in Structural Biology, 23(5), 2013, 771-7

EM Tomografie

	VITRIFICATION	THINNING	ELECTRON TOMOGRAPHY	DATA ANALYSIS
Ţ	Biological specimen	ion beam	electron beam Vitrified thin specimens (~100-500 nm)	
tion	High Pressure Freezing Thick samples (< 200 µm)	 Vitreous Sectioning strictly < -140°C Focused Ion Beam Milling 		Segmentation
rifica	Disease Francisco			Denoising Demos Metablica
ξ	This complex (< 10µm)			Pattern Matching
	Cryo-Correlative	only thin enough specimens (< 500 nm)		Subtomogram Averaging

MUNI SCI

Take home message:

- 1. Negative stain
- 2. Single particle reconstruction
- 3. Dynamics
- 4. Tomography
- 5. CLEM

MUNI SCI

A structure of the 80S ribosomes in situ

GroEL at different resolutions (levels of detail)

Fitting of known structures (rigid body fitting)

Flexible fitting of known structures

Building of de novo models

- Many more sequences available than structures
- Many applications rely on structural information
- Structure is often more conserved than sequence (evolution preserves function)

- Assembly of rigid bodies (core, loops, sidechains)
- 2) Segment matching
- 3) Satisfaction of spatial restraints

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

- 1. Model building and fitting into EM maps
- 2. Comparative and homology modeling
- 3. Rigid body fitting of atomic models
- 4. Flexible fitting of atomic models
- 5. Building models, hybrid methods
- 6. De novo model building