Kvantově-mechanické (*ab initio*) výpočty

(základní principy a vybrané aplikace)

Dr. Martin Friák, friak@ipm.cz, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, Czech Republic

Teorie funkcionálu hustoty (1964) Density Functional Theory = DF

Prof. Walter Kohn

(UCSB), Noberva

cena za

A initia (from the electronic structure) a logia ons a processes in materials.

🔎 🥔 🛟 🎯

San Sebastian, Spain, 1200 účastníků

Teorie funkcionálu hustoty (1964) Density Functional Theory = D

the WHITE HOUSE PRESIDENT BARACK OBAMA

Výpočetní materiálová věda

nečistoty 10⁻⁵ at. %

nečistoty 10⁻² - 10⁻¹ wt.%

Kvantově-mechanický popis systémů

Mnoha-částicová many-body (~10²³ per cm³) Schrödingerova rovnice:

 $\{\sigma_i\}, \{\sigma_i\})$

3*10²³-rozměrná dimenziol síhí mnoha-částicová vlnová funkce

- analytické řešení v existuje a asi ani nikdy nebude existovat
- jediná nožna nišelý jsou numerická

 $H\Psi(\{\mathbf{r}_i\},\{\sigma_i\})$

- <u>1 atom ře</u>, <u>0 otových bodů na rozměr</u> … $10^{3*(26+1)}$ bytů (1 DLDVD 10^{10} bytů) … 10^{71} DVDs …
- an nuh erické řešení tedy není ani myslitelné a ani nemá smysl
- je třeba dalších přiblížení (aproximací)!

Born-Oppen eimerova <u>aproximace</u>: protože jsou jádra jsou mnohem těžší než elektrony, pohybují se elektrony ve statické konfiguraci jader ("decoupling"). Dále se budou pod *i* chápat jen elektrony (pokud neřekneme explicitně jinak).

Pro popis N-částicového systému je místo 3N-rozměrné vlnové funkce použita 3-rozměrné elektronová hustota.

Energie je univerzální (a unikátním) funkcionálem 1-částer vé hustoty: $E[\varrho(\mathbf{r})] = \int v_{\text{ext}}(\mathbf{r})\varrho(\mathbf{r})$ $+ U_{ee}[\rho(\mathbf{r})].$ Tvar tohoto funkcionál není lonužel znám, ale lze jej alespoň rozdělit na kinetickou energii elevronů T_e, potenciální energii vnitřních/vnějších polí U_{ext} a interacci elebronů U_{ee} obsahující všechny "neklasické" členy. Přesné trany unkcionalů U_{ext} a interakci elektronů U_{ee} ale stejně nejsou známy.

Funkcionál celkové (totální) energie

Rozdělme si tedy tu energii na známé a neznámé části ...

se všemi kvantovými efekty shrnutými do neznámého (!) funkcionálu výměnné a korelační (exchange-correlation) energie $V_{xc}(\mathbf{r})$. 1-částicové vlnové funkce jsou rozvinuty do řady "vhodných" bázových funkcí.

se všemi kvantovými efekty shrnutými do neznámého (!) funkcionálu výměnné a korelační (exchange-correlation) energie $V_{xc}(\mathbf{r})$. 1-částicové vlnové funkce jsou rozvinuty do řady "vhodných" bázových funkcí.

Přiblížení funkcionálu výměnné a korelační energie

 ${}^{3}\mathbf{r} \ \varrho(\mathbf{r}) \ \varepsilon_{\mathrm{xc}} \left(\varrho(\mathbf{r}) \right)$

Přibližný tvar funkcionálu výměnné a korelační energie

 $V_{\rm xc}(\mathbf{r}) = \frac{\delta E_{\rm xc}[\varrho]}{\delta \rho(\mathbf{r})}$

se nazývá přiblížení lokální hustoty (LDA, Local Density Approximation) a má různé parametrizace ε_{xc} , le na znich vychází z výpočtů elektronového plynu metodou Monte Carlo (výpicty mnohanásobných intergrálů 3N-rozměrných vlnových funkcí systému elektronů s konstantní hustotou).

 $E_{\rm xc}$

Přiblížení funkcionálu výměnné a korelační energie

Přibližný tvar funkcionálu výměnné a korelační energie

 $V_{\rm xc}(\mathbf{r}) = \frac{\delta E_{\rm xc}[\varrho]}{\delta \rho(\mathbf{r})}$

se nazývá přiblížení lokální hustoty (LDA, Local Density Approximation) a má různé parametrizace ε_{xc} , let na z nich vychází z výpočtů elektronového plynu metodou Monte Carlo (výpicty mnohanásobných intergrálů 3N-rozměrných vlnových funkcí systému elektronů s konstantní hustotou). Pozdější obsahují i členy po gradienové korekce (Generalized Gradient Approximation, GGA).

Existuje tvar pro případ magnetických systémů

$$arepsilon_{
m xc}\left(arrho_{\uparrow}({f r}),arrho_{\downarrow}({f r})
ight)$$

 ${}^{3}\mathbf{r} \,\varrho(\mathbf{r}) \,\varepsilon_{\mathrm{xc}}\left(\varrho(\mathbf{r})\right)$

Ab initio implementace a programy

bázové funkce: lokalizované (chemie), rovinné vlny (krystaly), nebo jejich kombinace

- elektrony: všechny zahrnuty nebo jen vnější (metoda pseudovov ntialů)
- počítají se vlastnosti základního stavu, excitovaných stavy, dynamika, ...

programy jsou jak zdarma, tak placené

Ab initio implementace a programy

bázové funkce: lokalizované (chemie), rovinné vlny (krystaly), nebo jejich kombinace

elektrony: všechny zahrnuty nebo jen vnější (metoda pseudopou ntialů)

 Ψ_{pseudo}

pseudo

 r_c

Wikipedia.org

DFT programy (wikipedia.org)

Package +	License† ¢	Language 🔶	MPI +	OpenMP +	GPU +	I/O libra 6 +	Par of UC +
ABINIT	Free, GPL	Fortran	Yes	Yes	Yes, CUDA	Yes, HDF5	Yes For and HDF5
ACES	Free, GPL	Fortran, C++	Unknown	Unknown	Yes	Unknow	Unknown
ADF, Amsterdam Modeling Suite	Commercial	Fortran	Unknown	Unknown	Yes, CU	Yes, HDF5, custom	Unknown
AMPAC	Academic	Unknown	Unknown	Unknown		Un	Unknown
Atomistix ToolKit (ATK)	Commercial	C++, Python	Unknown	Unknown	No	Unknown	Unknown
BerkeleyGW ^[1]	Free, GPL	Fortran	Yes	Yes	Yes	Unknown	Unknown
BigDFT	Free, GPL	Fortran	Yes		Yes	Unknown	Unknown
BrianQC ^[2]	Commercial	C++, CUDA	Unknown	sknowen		Unknown	Unknown
CADPAC	Academic	Fortran	Un en	nwo	No	Unknown	Unknown
CASINO (QMC)	Academic	Fortran 20	Yes		Yes, OpenACC	No	No
CASTEP	Academic, commercial	Fortray 5, Fortran 103	Yes	Yes	No	Unknown	Unknown
CFOUR (fork van ACES)	Academic	Fortr C+	Joknown	Unknown	No	Unknown	Unknown
COLUMBUS	Academic	Fortr	Unknown	Unknown	No	Unknown	Unknown
CONQUEST	Free, I	Fortra 0	Unknown	Unknown	No	Unknown	Unknown
CP2K	Free, GPL	Fortran 9	Yes	Yes	Yes, CUDA and OpenCL	Unknown	Unknown
CPMD	Academic	Fortran	Unknown	Unknown	No	Unknown	Unknown
CRYSTAL	Academic (m), nmercia (*)	Forms	Unknown	Unknown	No	Unknown	Unknown
Dalton	Free	Fortran	Yes	Yes, LSDalton	No	Unknown	Unknown
DFTK ^{[3][4]}	Me, MIT	Julia	Yes	Yes.	No	Yes, HDF5	No
DIRAC		Fortran 77, Fortran 90, C	Yes	No	No	Unknown	Unknown
DMol3	Commercial	Fortran 90	Yes	Unknown	No	Unknown	Unknown
FLEUR	Free, MIT	Fortran 95	Yes	Yes	Yes, OpenACC, CuBLAS	Yes, HDF5, custom	Yes, HDF5
FHI-aims	Academic, commercial	Fortran	Yes	Unknown	Yes	Unknown	Unknown

٠	٠	

VASP	Academic (AT), Commercial	Fortran	Yes	Yes	Yes	Unknown	Unknown
WIEN2k	Commercial	Fortran, C	Yes	Yes	No	Unknown	Unknown
Yambo	Free, GPL	Fortran	Yes	Yes	Yes, CUDA	Yes, HDF5, NetCDF	Yes, HDF5
Package	License [†]	Language	MPI	OpenMP	GPU	I/O libraries	Parailel I/O

DFT programy (wikipedia.org)

Quantum chemistry and solid-state physics characteristics [edit]

Package 🛛 🗣	Basis 🔷	Periodic [‡]	• MD •	Semi-emp. •	HF .	TDHF .	Post-HF .	MP •	MRCI .	cc •	• T	TDDFT .	MA +
ABINIT	PW	3d	Yes	No	No	Unknown	No	No	No	No			Yes
7420101			100		110			140		110			Slater-type_orbital
ACES	GTO	No	No	No	Yes	Unknown	Yes	Unknow	No	up to Q	Yes	Unknown	Unknown
AMS: ADF, BAND, DFTB	STO, NAO	Any	Yes	Yes	Yes	Yes	Yes		No	No	Yes	Yes	Yes
AMPAC	Unknown	Unknown	No	Yes	No	Unknown	No	Unknown	No	140	No	Unknown	Unknown
Atomistix ToolKit (ATK)	NAO, EHT, PW	Any9	Yes	Yes	No	Unknor	No	viknown		No	No	Unknown	Unknown
BigDFT	Wavelet	any	Yes	No	Yes	and the		Kown	No	No	Yes	Unknown	Unknown
BrianQC	GTO	No	Yes	No	Yes	L. win	N	Unknown	No	No	Yes	Unknown	Unknown
CADPAC	GTO	No	No			Unkn		Unknown	No	up to D	Yes	Unknown	Unknown
CASINO (QMC)	GTO, PW, Spline, Grid, STO	any	.0	No	No	No	Yes	No	No	No	No	No	No
CASTEP	PW	3d	Yer	No	Yes5	nown	No	Unknown	No	No	Yes	Unknown	Unknown
COLUMBUS	GTO	No	N		Yes	Unknown	Yes	Unknown	Yes	No	No	Unknown	Unknown
CONQUEST	NAO, Spline	3d	Yes	lo	Yes5	Unknown	No	Unknown	No	No	Yes	Unitnown	Unknown
СР2К	HybridGTO, PW	-	Yes	Yes	Yes	Unknown	Yes	Yes	No	No	Yes	Yes	Yes
CPMD	PW				Yes	Unknown	No	Unknown	No	No	Yes	Unknown	Unknown
CRYSTAL	GTO	-	Yes	No	Yes	Unknown	Yes10	Yes	No	No	Yes	Yes	No
Dalton	GT		No	No	Yes	Unknown	Yes	Unknown	Yes	up to (T)	Yes	Unknown	Unknown
DFTK ^[7]	PW	any	No	No	No	No	No	No	No	No	Yes	No	No
DIRAC	9	No	No	No	Yes	Unknown	Yes	Yes	Yes	up to (T)	Yes	Yes	No
DMol3	40	any	No	No	No	Unknown	No	Unknown	No	No	Yes	Yes	Unknown
FHI-aims	0	any	Yes	No	Yes	Unknown	Yes	Yes	No	No	Yes	Unknown	Yes
FreeON (formerly MA SCF)	G	any	Yes	No	Yes	Unknown	Yes	Unknown	No	No	Yes	Unknown	Unknown
Firefly (formerly PC GA	GTO	No	Yes	Yes	Yes	Uniknown	Yes	Unknown	Yes16	No	Yes	Unknown	Unknown
TURBOMOLE	GTO	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	up to (T)	Yes	Yes	Yes
VASP	PW	3d	Yes	No	Yes	Unknown	Yes	Yes	No	No	Yes	Yes	Yes
WIEN2k	FP-(L)APW+lo	3d	Yes	No	Yes	Unknown	No	Unknown	No	No	Yes	No	Yes
Yambo	PW	3d	No	No	Yes	Yes	Yes	Unknown	No	No	No	No	Yes
Package	Basis	Periodic [‡]	MD	Semi-emp.	HF	TDHF	Post-HF	MP	MRCI	cc	DFT	TODET	GWA

Ab initio implementace a programy

- bázové funkce: lokalizované (chemie), rovinné vlny (krystaly), nebo jejich kombinace
- elektrony: všechny zahrnuty nebo jen vnější (metoda pseudopou ntialů)
- počítají se vlastnosti základního stavu, excitovaných stavy, dynamika, ...
- programy jsou jak zdarma, tak placené

Několik vybraných příklad

- > Abinit: zdarma, rovinné wny, pseudoputenciály
- VASP: placený, rovinné vlny, vstroi speciální PAW) pseudopotenciály
- WIEN2k: placený, komhráčkana báze: rovinné vlny + lokalizované atomové orbitaly + "extra" orbita y, vs.chk, electrony (kontrolní/ověřovací "bench-marking" výpočty)
- FHI-AIMS specialní numerická báze (lokalizované systémy i krystaly), všechny elektrony
- Gaussian: piecený, lokalizované bázové funkce (pro molekuly), všechny elektrony

Příklady výpočtů: bcc Fe

Taylor &

194

Critical Reviews in Solid State and Materials Sciences, 39:1–24, 2014 Published with license by Taylor & Francis. ISSN: 1040-8436 print / 1547-6561 online DOI: 10.1080/10408436.2013.772503

194

Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals

K. Lejaeghere,¹ V. Van Speybroeck,¹ G. Van Oost,² and S. Cotte ier^{1,3}

¹Center for Molecular Modeling, Ghent University, Technologi park 903, 2-90, Zwijk, vrde, Belgium, ²Department of Applied Physics, Ghent University, Sint-Pietersnieuwstry, 41, BE-³Department of Materials Science and Engineering, Ghent University, Tec. plogiep, k 903, BE-9052 Zwijnaarde, Belgium

hP4		Zwij	inaarde, B	elgium													hP2
Li	Be											В	С	N	0	F	Ne
166	194			R V	[/V	$\sum B'_0$	1	٦		•		166	194	205	12	15	225
hR9	hP2	E_{i}	(V) =	$=\frac{D_0 v}{1}$, L	1				hR36	hP4	cP8	mS4	mS8	cF4
Na	Mg		(\)	B'_0		$\int E$	$B'_0 = 1$		7			Al	Si	P	5	CI	Ar
166	194				L							225	227	64	70	64	225
hR9	hP2											cF4	cF8	058	oF128	058	cF4
к	Ca	Sc	Ti	v	cr	Mit	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
229	225	4	1	29	229	217	229	194	225	225	194	64	227	166	152	64	225
cl2	cF4	P2	2	c	cl2	c158	c12	hP2	cF4	cF4	hP2	058	cF8	hR6	hP3	058	cF4
Rb	Sr			Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Te	- 81	Xe
229	225	194	194	229	229	194	194	225	225	225	194	139	227	166	152	64	225
cl2	cF4	hP2	hP2	cl2	cl2	hP2	hP2	cF4	cF4	cF4	hP2	tl2	cF8	hR6	hP3	058	cF4
Cs	Ba	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	п	Pb	Bi	Po	At	Rn
229	229	194	194	229	229	194	194	225	225	225	139	194	225	166	221		225
cl2	cl2	hP2	hP2	cl2	cl2	hP2	hP2	cF4	cF4	cF4	t12	hP2	cF4	hR6	cP1		cF4

Taylor &

194

Critical Reviews in Solid State and Materials Sciences, 39:1–24, 2014 Published with license by Taylor & Francis. ISSN: 1040-8436 print / 1547-6561 online DOI: 10.1080/10408436.2013.772503

194

Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals

K. Lejaeghere,¹ V. Van Speybroeck,¹ G. Van Oost,² and S. Cotte ier^{1,3}

¹Center for Molecular Modeling, Ghent University, Technologi park 903, 2-90, Zwijk, vrde, Belgium, ²Department of Applied Physics, Ghent University, Sint-Pietersnieuwstry, 41, BE-³Department of Materials Science and Engineering, Ghent University, Technologiep, k 903, BE-9052 Zwijnaarde, Belgium

hP4		Zwij	inaarde, B	elgium													hP2
Li	Be											В	С	N	0	F	Ne
166	194			R V	$\int \int V$	$\sum B'_0$	1	٦		•		166	194	205	12	15	225
hR9	hP2	E_{ℓ}	(V) =	$=\frac{D_0 v}{1}$		·)	, L	1				hR36	hP4	cP8	mS4	mS8	cF4
Na	Mg			B'_0		$\int E$	$B'_0 = 1$		7			AI	Si	P	S	CI	Ar
166	194				L							225	227	64	70	64	225
hR9	hP2											cF4	cF8	058	oF128	058	cF4
к	Ca	Sc	Ti	v	d	Mill	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
229	225	4	1	29	229	217	229	194	225	225	194	64	227	166	152	64	225
cl2	cF4	P2	22	c	cl2	c158	c12	hP2	cF4	cF4	hP2	058	cF8	hR6	hP3	058	cF4
Rb	Sr			Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Te	- 31	Xe
229	225	194	194	229	229	194	194	225	225	225	194	139	227	166	152	64	225
cl2	cF4	hP2	hP2	cl2	cl2	hP2	hP2	cF4	cF4	cF4	hP2	tl2	cF8	hR6	hP3	058	cF4
Cs	Ba	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	п	Pb	Bi	Po	At	Rn
229	229	194	194	229	229	194	194	225	225	225	139	194	225	166	221		225
cl2	cl2	hP2	hP2	cl2	cl2	hP2	hP2	cF4	cF4	cF4	t12	hP2	cF4	hR6	cP1		cF4

Taylor &

He

194

Critical Reviews in Solid State and Materials Sciences, 39:1–24, 2014 Published with license by Taylor & Francis. ISSN: 1040-8436 print / 1547-6561 online DOI: 10.1080/10408436.2013.772503

194

Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals

K. Lejaeghere,¹ V. Van Speybroeck,¹ G. Van Oost,² and S. Cotte ier^{1,3}

¹Center for Molecular Modeling, Ghent University, Technologi park 903, 2-90, Zwijk, vrde, Belgium, ²Department of Applied Physics, Ghent University, Sint-Pietersnieuwstry, 41, BE-³Department of Materials Science and Engineering, Ghent University, Technologiep, k 903, BE-9052 Zwijnaarde, Belgium

hP4		Zwij	naarde, B	elgium													hP2
Li	Ве											В	С	N	0	F	Ne
166	194			$R_{\rm e}V$	$\left[\right] V$	$\sum B'_0$	7	٦		•		166	194	205	12	15	225
hR9	hP2	E_{i}	(V) =	$=\frac{D_0}{D_0}$			- L	1				hR36	hP4	cP8	mS4	m\$8	cF4
Na	Mg		()	B'_0		$\int E$	$B'_0 = 1$		7			Al	Si	P	5	CI	Ar
166	194				L			1				225	227	64	70	64	225
hR9	hP2											cF4	cF8	058	oF128	058	cF4
к	Ca	Sc	Ti	V		Mil	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
229	225	4	1	29	229	217	229	194	225	225	194	64	227	166	152	64	225
cl2	cF4	P2	2		c12	c158	cl2	hP2	cF4	cF4	hP2	058	cF8	hR6	hP3	058	cF4
Rb	Sr			Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Te	- 81	Xe
229	225	194	194	229	229	194	194	225	225	225	194	139	227	166	152	64	225
cl2	cF4	hP2	hP2	cl2	cl2	hP2	hP2	cF4	cF4	cF4	hP2	tl2	cF8	hR6	hP3	o58	cF4
Cs	Ba	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	п	Pb	Bi	Po	At	Rn
229	229	194	194	229	229	194	194	225	225	225	139	194	225	166	221		225
cl2	cl2	hP2	hP2	cl2	cl2	hP2	hP2	cF4	cF4	cF4	t12	hP2	cF4	hR6	cP1		cF4

Taylor & Francis Taylor & Francis

Critical Reviews in Solid State and Materials Sciences, 39:1–24, 2014 Published with license by Taylor & Francis. ISSN: 1040-8436 print / 1547-6561 online DOI: 10.1080/10408436.2013.772503

Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals

K. Lejaeghere,¹ V. Van Speybroeck,¹ G. Van Oost,² and S. Cottenier^{1,3,*}

¹Center for Molecular Modeling, Ghent University, Technologiepark 903, BE-9052 Zwijnau Re, L. 2 ²Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, ZE-9006 ent, Ber ³Department of Materials Science and Engineering, Ghent University, Technologie ark 90 BE-905 Zwijnaarde, Belgium

Rozlehlé defekty: hranice zrn, vrstevné chyby, povrchy, ...

<u>Ni Σ5 (210) výpočetní superbuňka</u>

M. Všianská and M. Šob, Physical Review B 84 (2011) 014418.

Statický bezdefektní krystal

Statický bezdefektní krystal neuspořádaného tuhého roztoku 2 prvků

Statický bezdefektní krystal

Tepelně vibrující bezdefektní krystal

Tepelně vibrující bezdefektní krystal

Fononové spektrum hliníku

Statický bezdefektní krystal

Vybraná použití ab initio výpočtů

Friák et al. Eur. Phys. J. Plus **126**, 101 (2011).

Víceškálová elasticita

Main features:

- 1) single-phase homogenization (also non-cubic)
- 2) multi-phase homogenization
- single-crystalline
 Young's modulus
- 4) single-crystalline area modulus of elasticity (cubic)

120

110

Vybraná použití ab initio výpočtů: vliv teploty Fe 160 140 120 Elasticita GPa) 100 Tepelná roztažnost 60 Nb 200 1000 600 800 1200 400 0.5 Fe₂Nb 2.5 0.4 2.0 (%) ^{°0.} 3 ^{°0.2.} 0.3 0.5 0.1 0.0 0.0 600 800 1200 0 200 400 1000 200 400 600 800 1000 1200 0 T (K) T (K)

Fe

Vybraná použití ab initio výpočtů: difuzní procesy 4f Thermodynamické rgie 950 Boltzmannova vlastnosti statistika: **(C)** e 6h Vakance na podmi 2.0 * 10⁻¹² 2.84 х́се` -> Vakance na rodn řížce 2a 2.59 2.1 * 10⁻¹¹ -> Vakanje napoumříže 6h 1.7 * 10⁻⁹ 2.13 -> Courtesy of HUB 2229 T = 930°C

Kvantově-mechanické výpočty

- Předpovědi jsou v principu přesné
- Nepřesnosti kvůli aproximacím (jak v metodách, tak v definici systému)
- Předpovědi parametrů fází (struktura, ...)
- T > 0K díky statistické mechanice a termodynamice
- Makroskopické elastické vlastno ti m homogenizačním metodám
- Difúzní bariéry, parametry transfermac
- Výpočty hypotetických láte
- Spolehlivé chemicke trady
- Výpočty extrámtích tod Mínek (p=TPa)
- Data propa ametryaci potenciálů
- Virtualh design materiálu (lépe, rychleji a laciněji než experimentálně)
- Nezávislé simulace individuálních jevů jinak působících současně

Friák et al. Phys. Rev. B 68, 184101 (2003), Šob et al. Intermetallics 17, 523 (2009).

Kvantově-mechanické výpočty

- Předpovědi jsou v principu přesné
- Nepřesnosti kvůli aproximacím (jak v metodách, tak v definici systému)
- Předpovědi parametrů fází (struktura, ...
- T > 0K díky statistické mechanice a termodynamice
- Makroskopické elastické vlastno ti nk homogenizačním metodám
- Difúzní bariéry, parametry transformaci
- Výpočty hypotetických láte
- Spolehlivé chemické trady
- Výpočty extrémních lod nínek (p=TPa)
- Data propa ametryaci potenciálů
- Virtualni design materiálu (lépe, rychleji a laciněji než experimentálně)
- Nezávislé simulace individuálních jevů jinak působících současně

- Omezení na počet ato ... cca. 1000
- Aproximate jsou numostí (jak v meudáci, tak v definici systému)
 - e, řest é předpovědi: 50 % zakázaný pás
 - ožiť popis vzájemně interagujících jevů
 - nezení kvůli periodickým podmínkám
 - On ezení bázovými funkcemi
- Netriviální popis excitovaných stavů

Problémy: špatně definované "vzorky"

Nečistoty: 10⁻⁵ at. %

Nečistoty: až 10⁻¹ wt.%

Příklady doby výpočtů

Statický bezdefektní krystal neuspořádaného tuhého roztoku 2 prvků

Přiblížení virtuálního krystalu (virtual crystal approximation)

Kvantově-mechanické výpočty

- Předpovědi jsou v principu přesné
- Nepřesnosti kvůli aproximacím (jak v metodách, tak v definici systému)
- Předpovědi parametrů fází (struktura, ...)
- T > 0K díky statistické mechanice a termodynamice
- Makroskopické elastické vlastnosti díky homogenizačním metodám
- Difúzní bariéry, parametry trans or r
- Výpočty hypotetických látek
- Spolehlivé chemické trei
- Výpočty extrémních podmítely (p=1+a)
- Data pro parametrizaci, ote ciálů
- Virtuální design nat riála (lépe, rychleji a lacil šii nu experimentálně)
- Nezávis é sin ulace individuálních jevů jinak půs bících současně

- Omezení na počet atomů ... ca. 1000
- Aproximace jsou numostí (ja v metodách, tak v deusie systému)
- Nepřespé vřed ovědi: 50 % zakázaný pás
- Složitě popu vzájemně interagujících jevů
 on szelí kvůl periodickým podmínkám
 Omelení bázovými funkcemi

triviální popis excitovaných stavů

- Provázání s metodami na vyšších úrovních (transfer materiálových parametrů)
- Rychlý rozvoj výpočetní techniky, nových metod a numerických implementací
- Nové experimentální metody s atomárním rozlišením (k verifikaci aproximací)

Data storing and mining

Example of data mining: oqmd.org

Example of data mining: oqmd.org

Tweet @TheOQMD to ask what is stable at a composition, or to get a simple phase diagram!

The OQMD was crewed in Cosis Wolverton's group at Northwestern University.

Contact us by e-mail

Kvantově-mechanické výpočty

- Předpovědi jsou v principu přesné
- Nepřesnosti kvůli aproximacím (jak v metodách, tak v definici systému)
- Předpovědi parametrů fází (struktura, ...)
- T > 0K díky statistické mechanice a termodynamice
- Makroskopické elastické vlastnosti díky homogenizačním metodám
- Difúzní bariéry, parametry trans or r
- Výpočty hypotetických látek
- Spolehlivé chemické trei
- Výpočty extrémních podmít k (p=1-a)
- Data pro parametrizaci, ote ciálů
- Virtuální design nat riála (lépe, rychleji a lacil šii nu experimentálně)
- Nezávis é sin ulace individuálních jevů jinak půs bících současně

- Omezení na počet atomů ... ca. 1000
- Aproximace jsou numostí (ja v metodách, tak v denaje systému)
- Nepřespé vřed ovědi: 50 % zakázaný pás
- Složitě popra vzájemně interagujících jevů
 om zelí kvůl periodickým podmínkám
 Omerení bázovými funkcemi

triviální popis excitovaných stavů

- Provázání s metodami na vyšších úrovních (transfer materiálových parametrů)
- Rychlý rozvoj výpočetní techniky, nových metod a numerických implementací
- Nové experimentální metody s atomárním rozlišením (k verifikaci aproximací)
- BIG data a data mining

Research topics

Dr. Martin Friák, friak@ipm.cz, Institute of Physics of Materials, Czech Academy of Sciences, Brno, Žižkova 22, CZ-61662

Credit: IBM Research Flickr (CC BY-ND 2.0)

Vybraná použití *ab initio* výpočtů: stabilita vícefázových ocelí

	V/atom (ų)	Young (GPa)	Poisson	3	dG/atom (meV)	G/ tom (me 1	uG/G
Fe ₂ Nb	12.99	250	0.285	0.044	38	-144	27 %
Fe ₂ Sc	13.98	155	0.290	0.000		-282	32 %
Fe ₂ Ti	12.37	225	0.300	0. 27	13	-304	4 %
Fe - SQS	12.43	153	0. 40				
$\Delta G_{\rm strain}^{\rm incoh} =$		ала + 1-2а + Ув	$\frac{1}{2B} \varepsilon^2$		T = 930°C		Courtes
Youngi	ův modu	l Po	issonův	poměr			

