Introduction to EM Light microscopy - limitation resolution magnification depth of focus visible light - > λ = 390 – 760 nm 0.61 / Abbe, Airy dd  = 2 U=10kV (SEM) -> λ = 0.01226 nm U=100kV (TEM) -> λ = 0.0039 nm Visible light - > λ = 390 – 760 nm Fotons Electrons Neutrons 3 Electron microscopy SEM TEM 4 Specimens SEM Conductive specimens! (C, Au coatings) Polished or electropolished metalographic cuts Fracture surfaces Tensile, fatigue, creep,… specimens Powders TEM Specimens transparent for electrons! (~ 100 nm) Thin foils – electropolished, Ar ions bombardment Surface or extraction replica Nanopowders FIB 5 1931: 16x 1933: 12000x 1965: Oatley, first commercial SEM Stereoscan Berlin early 1930s: Ruska and Knoll 6 Vacuum system Ion pump Turbomolecular Rotary/scroll pump Diffusion pumps 10-1 Pa 10-2 – 10-9 Pa 10-5 Pa 10-9 Pa 7 Electron sources (La,Ce)B6W Field emission gun (FEG) W wire + ZrO layer 8 Electron sources W (La,Ce)B6 FEG W wire + ZrO layer 9 Magnetic lenses 10 Magnetic lenses – expectation vs. reality expectation reality 11 Abberations Spherical abberation Chromatic abberation Astigmatism Coma abberation - + 12 U=10kV (SEM) -> λ = 0.01226 nm Typical SEM -> dd ~ 1 nm expectation reality U=100kV (TEM) -> λ = 0.0039 nm Visible light - > λ = 390 – 760 nm Typical TEM -> dd ~ 0.1 nm High-end TEM (300 kV) -> dd ~ 0.05 nm 13 Interactions 14 Interactions 15 Primary beam - AZ91 magnesium alloy SE EverhartThornley SE In – lens SE BSE Annular BSE In – lens BSE 16 5 mm 5 kV 10 kV 5 mm 20 kV 5 mm Secondary electrons In – lens SE Everhart-Thornley SE 17 1 mm ECCI – Electron channeling contrast imagining 18 19 304L – after fatigue (specimen cross-cut) 20 mm 20 21 Energy and wave dispersive spectroscopy 22 Energy dispersive spectroscopy - EDS 23 Wave dispersive spectroscopy - WDS 2d sin q = n.λ 24 25 element wt. % Cu 60.1 Zn 27.5 Mn 6.5 Si 2.6 Al 1.3 Ni 1.1 Fe 1.0 lead-free brass Electron backscattered diffraction - EBSD crystallographic information, crystal orientation 26 Examples 27 Examples 28 Ni Cu Fe Ti Examples 29 Examples 30 Examples 31 Examples 32 Examples Band contrast Map Z Map XMap Y 33 Transmission electron microscopy - diffraction 2 sinhkld nq = Bragg law Diffraction - reciprocal space Cubic, tetragonal and orthorhombic lattice Hexagonal and trigonal lattice Diffraction is a 2D cut of crystal in reciprocal space Diffraction patterns – single crystal / one grain Diffraction patterns Nanocrystals Amorphous Transmission electron microscopy – Imagining 2 cos g ik r g F n d i e q   q =  quite complicated…. Kinematic approximation 2 g 2 0 sin( ) sin ( ) exp( ), Intenzita I ( )        =  = −  t g g g g g g g g g ts tsi d is t s s 0 2 2 0 0 0 0 0 ( ) ( )exp(2 ) ( )exp(2 ) 2 , ( ) ( ) ( )exp(2 ( ) ) ( ) ( ) ( )exp(2 ( ) ) g g g g g g r z i r z i r h eE m g s d z i i z z i r dz d z i i z z i r dz                         =  +  =  = + + =  =  +  −  =  +  − Dynamic theory Transmission electron microscopy – Imagining TEM – Monel – FIB lamella Very high dislocation density. Black dots are probably prizmatic dislocation loops TEM – Kanthal powder TEM – Monel - bulk Cold spray - austenitic steel Cold spray - austenitic steel