
rather than the cosine variation given in (5.2.7), and the steady-state sheaths have not

fully formed due to ion transit timescale effects. However, we clearly see the sheath

formation. The midpotential variation with time is shown on a short timescale in (d),

illustrating its formation with Fmax � Te as the sheaths form on the very fast elec-

tron timescale f�1
pe , along with accompanying electron plasma oscillations, as noted

previously for Figure 2.2.

6.3 THE HIGH-VOLTAGE SHEATH

Matrix Sheath

Sheath voltages are often driven to be very large compared to Te. The potential F in

these sheaths is highly negative with respect to the plasma–sheath edge; hence ne �

ns e
F=Te

! 0 and only ions are present in the sheath. The simplest high-voltage

sheath, with a uniform ion density, is known as a matrix sheath. Letting ni ¼ ns ¼

const within the sheath of thickness s and choosing x ¼ 0 at the plasma–sheath

edge, then from (2.2.3),

dE

dx
¼

ens

e0
(6:3:1)

which yields a linear variation of E with x:

E ¼

ens

e0
x (6:3:2)

Integrating dF=dx ¼ �E, we obtain a parabolic profile

F ¼ �

ens

e0

x2

2
(6:3:3)

Setting F ¼ �V0 at x ¼ s, we obtain the matrix sheath thickness

s ¼
2e0V0

ens

� �1=2

(6:3:4)

In terms of the electron Debye length lDs ¼ (e0Te=ens)
1=2 at the sheath edge, we

see that

s ¼ lDs
2V0

Te

� �1=2

(6:3:5)

Hence the sheath thickness can be tens of Debye lengths.
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Child Law Sheath

In the steady state, the matrix sheath is not self-consistent since it does not account

for the decrease in ion density as the ions accelerate across the sheath. In the limit

that the initial ion energy Es is small compared to the potential, the ion energy and

flux conservation equations (6.1.2) and (6.1.3) reduce to

1

2
Mu

2(x) ¼ �eF(x) (6:3:6)

en(x)u(x) ¼ J0 (6:3:7)

where J0 is the constant ion current. Solving for n(x), we obtain

n(x) ¼
J0

e
�
2eF

M

� ��1=2

(6:3:8)

Using this in Poisson’s equation, we have

d2F

dx2
¼ �

J0

e0
�
2eF

M

� ��1=2

(6:3:9)

Multiplying (6.3.9) by dF=dx and integrating from 0 to x, we have

1

2

dF

dx

� �2

¼ 2
J0

e0

2e

M

� ��1=2

(�F)1=2 (6:3:10)

where we have chosen dF=dx ¼ �E ¼ 0 at F ¼ 0 (x ¼ 0). Taking the (negative)

square root (since dF=dx is negative) and integrating again, we obtain

�F
3=4

¼
3

2

J0

e0

� �1=2
2e

M

� ��1=4

x (6:3:11)

Letting F ¼ �V0 at x ¼ s and solving for J0, we obtain

J0 ¼
4

9
e0

2e

M

� �1=2
V
3=2
0

s2
(6:3:12)

Equation (6.3.12) is the well-known Child law of space-charge-limited current in a

plane diode. With fixed spacing s it gives the current between two electrodes as a

function of the potential difference between them, and has been traditionally used

for electron diodes. However, with J0 given explicitly as

J0 ¼ ensuB (6:3:13)
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in (6.3.12), we have a relation between the sheath potential, the sheath thickness,

and the plasma parameters, which can be used to determine the sheath thickness s.

Substituting (6.3.13) in (6.3.12) and introducing the electron Debye length at the

sheath edge, we obtain

s ¼
ffiffiffi

2
p

3
lDs

2V0

Te

� �3=4

(6:3:14)

Comparing this to the matrix sheath width, we see that the Child law sheath is larger

by a factor of order (V0=Te)
1=4. The Child law sheath can be of order of 100 Debye

lengths (�1 cm) in a typical processing discharge. Since there are no electrons

within the sheath to excite the gas, the sheath region appears dark when observed

visually.

Inserting (6.3.12) into (6.3.11) yields the potential within the sheath as a function

of position

F ¼ �V0

x

s

� �4=3

(6:3:15)

The electric field E ¼ dF=dx is

E ¼ 4

3

V0

s

x

s

� �1=3

(6:3:16)

and the ion density n ¼ (e0=e) dE=dx is

n ¼ 4

9

e0

e

V0

s2

x

s

� ��2=3

(6:3:17)

We see that n is singular as x ! 0, a consequence of the simplifying assumption in

(6.3.6) that the initial ion energy Es ¼ 0. The analysis can be carried through for a

finite eEs ¼ 1
2
Mu

2
B, using (6.1.2), resolving the singularity and yielding n ! ns as

x ! 0 (Problem 6.1).

The ion motion within the sheath can be determined using conservation of energy

(6.3.6). Assuming that an ion enters the sheath with initial velocity u(0) ¼ 0, we

insert (6.3.15) into (6.3.6) and solve for u ¼ dx=dt to obtain

dx

dt
¼ v0

x

s

� �2=3

(6:3:18)

with

v0 ¼
2eV0

M

� �1=2

(6:3:19)
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the characteristic ion velocity in the sheath. Integrating (6.3.18) yields

x(t)

s
¼

v0t

3s

� �3

(6:3:20)

Setting x ¼ s in (6.3.20), we obtain the ion transit time across the sheath:

ti ¼
3s

v0

(6:3:21)

The Child law solution is valid if the sheath potentials are large compared to the

electron temperature. It is therefore not appropriate for use where the sheath poten-

tial is the potential between a plasma and a floating electrode. However, with some

modification, we shall see in Chapter 12 that it is useful in determining the sheath

width of an rf-driven discharge. Because the ion motion was assumed collisionless,

it is also not appropriate for higher-pressure discharges. We shall treat collisional

formulations of the sheath region in Section 6.5.

6.4 GENERALIZED CRITERIA FOR SHEATH FORMATION

Using a kinetic treatment without ion collisions, the Bohm criterion for a stable

sheath can be generalized to arbitrary ion and electron distributions. First formulated

by Boyd and Thompson (1959), a more rigorous and complete treatment in the limit

lDe ! 0 can be found in Riemann (1991). The result is

eTe

M

ð

1

0

1

v
2
f (v) dv � Te

d(ne þ n�)

dF

�

�

�

�

F¼0

(6:4:1)

where f (v) is the one-dimensional speed distribution of the positive ions, ne þ n� is

the sum of the densities of the negatively charged species, and F is the potential,

with F ¼ 0 at the sheath–presheath edge. For our previous case of cold ions and

Maxwellian electrons, (6.4.1) becomes

eTe

M

ð

1

0

1

v
2
d(v� us) dv � Te

d

dF
eF=Te
� �

�

�

�

F¼0
(6:4:2)

where d(v� us) is the Dirac d function. Evaluating the integral on the left and taking

the derivative on the right, we have

eTe

M

1

u2s
� 1
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