MUNI SCI

Měření účinných průřezů pro excitaci atomu elektrony

F7390 Elementární srážkové procesy v plazmatu 1

Zdeněk Navrátil

Ústav fyziky a technologií plazmatu PřF MU, Brno

K čemu jsou potřeba účinné průřezy pro excitaci

nepružné srážky – vliv na EDF

2/50

Srážkově-radiační modelování

koronová rovnováha – populace excitovaných stavů elektrony, depopulace spontánní emisí

$$k_{0i}^{\text{el}}n_{\text{e}}n_{0} + k_{\text{m}i}^{\text{el}}n_{\text{e}}n_{\text{m}} + \sum_{j>i}A_{ji}n_{j} = \sum_{j$$

(1)

Výpočet rychlostních koeficientů

rychlostní koeficient

Stavy Ne, Ar

Optické metody

- měříme intenzitu světla vyzařovaného atomem na konkrétních přechodech v závislosti na energii elektronů v monochromatickém svazku
- použití elektronů s obecnou rozdělovací funkcí nevede k srovnatelným výsledkům

Optické metody

měříme Φ – počet fotonů emitovaných za jednotku času svazkem jednotkové délky, $[\Phi]=s^{-1}m^{-1}$

$$\frac{\sigma}{S}[n_{g}SL][n_{e}Sv\Delta t] = [A_{i}\Delta t][n_{i}SL]$$

$$e^{-\frac{\sigma}{S}}$$

$$n_{g}n_{e}\sigma v = A_{i}n_{i}$$

$$\Phi = n_{i}A_{i}S$$

$$I = en_{e}vS$$

$$\sigma = \frac{\Phi}{n_{g}n_{e}Sv} = \frac{\Phi}{n_{g}I/e}$$

komplikace: $A_i = \sum_j A_{ij}$, prostorový úhel

Optické metody

• Optický účinný průřez (optical emission cross section)

$$\sigma_{i \to j}^{\text{opt}} = \frac{\Phi_{i \to j}}{(I/e)n_0},\tag{2}$$

Zdánlivý účinný průřez (apparent cross section)

$$\sigma_i^{\text{app}} = \sum_{j < i} \sigma_{i \to j}^{\text{opt}}.$$
(3)

Kaskádní účinný průřez (cascade cross section)

$$\sigma_i^{\text{casc}} = \sum_{k>i} \sigma_{k\to i}^{\text{opt}}.$$
 (4)

Přímý účinný průřez (direct cross section)

$$\sigma_i^{\rm dir} = \sigma_i^{\rm app} - \sigma_i^{\rm casc}.$$
 (5)

Kaskádní příspěvky

$$\sigma_{i \to j}^{\text{opt}} = \frac{\Phi_{i \to j}}{(l/e)n_0}$$
$$\sigma_i^{\text{app}} = \sum_{j < i} \sigma_{i \to j}^{\text{opt}}$$
$$\sigma_i^{\text{casc}} = \sum_{k > i} \sigma_{k \to i}^{\text{opt}}$$
$$\sigma_i^{\text{dir}} = \sigma_i^{\text{app}} - \sigma_i^{\text{casc}}$$

obtížně změřitelné všechny přspěvky

Vliv tlaku

kaskády jsou ovlivněny koncentrací atomů v základním stavu

Vliv tlaku

kaskády jsou ovlivněny koncentrací atomů v základním stavu

Vliv tlaku

Zejména účinné průřezy rezonančních čar a stavů vykazují díky samoabsorpci závislost na tlaku (Heddle & Samuel, 1970)

$$\sigma_{i \to j}^{\text{opt}} = \mathbf{A}_{i \to j} \frac{\sigma_i^{\text{dir}} + \sigma_i^{\text{casc}}}{\mathbf{A}_i + (\mathbf{g}(\mathbf{p}) - 1)\mathbf{A}_{i \to \text{ground}}},$$
(6)

a pro zdánlivý účinný průřez rezonančního stavu

$$\sigma_i^{\text{app}} = A_i \frac{\sigma_i^{\text{dir}} + \sigma_i^{\text{casc}}}{A_i + (g(p) - 1)A_{i \to \text{ground}}}.$$
(7)

 A_i je suma Einsteinových koeficientů $A_{i \rightarrow j}$ pro všechny přechody ze stavu *i* a funkce tlaku g(p) udává pravděpodobnost, že rezonanční foton opustí kolizní nebo výbojový prostor (Gabriel & Heddle, 1960; Phelps, 1958).

St John et al. (1964) - helium

na ose x - energie elektronů

Anderson et al. (1967) - rtuť

Anderson et al. (1967)

FIG. 2. Schematic diagram of the excitation tube. The spacings between adjacent grids are about 2 mm.

Anderson et al. (1967)

FIG. 5. Typical optical excitation functions of 12 mercury levels. Electron energy ranges from 0 to 80 eV.

Sharpton et al. (1970)

- světelný zdroj (wolframový pásek) pro absolutní kalibraci optická cesta k monochromátoru je stejná
- Tlak plynu v komoře byl pod 30 mTorr.
- monochromatizace, snímání fotonásobičem ve spektrálním rozsahu 330 – 1200 nm

Sharpton et al. (1970)

Sharpton et al. (1970)

.

- ns₂ a ns₄ mají široká maxima, obsahují singletový stav ¹P₁
- ns₃, ns₅ úzká maxima, jsou čistě tripletové, excitace se tedy uskutečňuje zejména výměnou elektronů
- ns₅ má poněkud širší maximum ve srovnání se stavem ns₃ díky vyššímu kaskádnímu příspěvku.
- stavy se lichou hodnotou J + I mají větší účinné průřezy než stavy se sudou hodnotou
- Příspěvek kaskádních účinných průřezů 2p_i a 3p_i stavů je typicky 50%, pro některé 3p_i stavy až 70%.

Phillips et al. (1981)

Phillips et al. (1981)

- přechody z 1s₂ a 1s₄ mají λ 73,6 a 74,4 nm, 1s₃ a 1s₅ jsou metastabilní stavy
- technika laserem indukované fluorescence (LIF)
- Laserový paprsek byl naladěn na vhodnou vlnovou délku (např. 588,2 nm), aby absorpcí záření docházelo k přechodu ze stavu 1s_i do některého ze stavů 2p_i (např. 1s₅ →2p₂).
- Přerušování paprsku s frekvencí 720 Hz, měření rozdílu ve spektrech při zapnutém a vypnutém laseru.
- Tento rozdíl (měřený např. na čáře 659,9 nm přechodu 2p₂ → 1s₂) je v rámci dané přesnosti přímo úměrný zdánlivému účinnému průřezu původního stavu (1s₅).
- kalibrace na energii elektronů 90 eV srovnáním s měřením kaskádních příspěvků Sharpton *et al.* (1970). Je-li příspěvek přímého průřezu ve zdánlivém zanedbatelný, je zdánlivý průřez roven kaskádnímu.
- absolutní hodnoty jsou zatíženy chybou 25% (28%) pro metastabilní resp. rezonanční stavy.

Phillips et al. (1981)

$$\sigma_{i \to j}(\varepsilon) = 4\pi a_0^{-2} f_{ij} \left(\frac{R}{\varepsilon}\right) \left(\frac{R}{\varepsilon_{ij}}\right) \ln \varepsilon$$
(8)

kde a_0 je Bohrův poloměr, f_{ij} síla oscilátoru optického přechodu, R Rydbergova energie (13,6 eV) a ε_{ij} energiový rozdíl hladin

"Bethe" plot – závislost σ_{i→j}ε na ln ε je při vyšších energiích (nad 100 eV) lineární a z prokladu naměřenými daty lze stanovit sílu oscilátoru optického přechodu.

Metody měření ztráty energie

Tento způsob je založen na měření ztráty energie elektronů jako funkce rozptylového úhlu. Elektron, který srážkou s atomem způsobil jeho excitaci, se v energiovém spektru posune k nižším hodnotám energií o stejnou hodnotu, jako je energiový rozdíl počátečního a koncového stavu atomu.

- Svazek atomů neonu vytvořený polem kapilár a vystupující otvorem sběrače se křížil s elektronovým svazkem.
- Elektrony byly emitovány tenkým wolframovým vláknem, urychleny elektronovým dělem a monochromatizovány dvojitým hemisférickým energiovým selektorem.
- Detektor byl tvořen kuželem vymezujícím vstupní aperturu, mřížkami s napětím zabraňujícím detekci elektronů podstoupivších nepružnou srážku s atomem a elektronovým násobičem typu *channeltron*.

- Elastický diferenciální účinný průřez byl měřen absolutně v intervalu úhlů – 40–145° pro elektrony s energií 5–100 eV s chybou 3%–5%.
- kritické hodnoty energie a úhlu, při kterých se v závislosti diferenciálního účinného průřezu na úhlu rozptylu objevuje ostré minimum. Naměřená poloha (62,5 ± 2,5) eV; (101,5 ± 1,5) ° je v souladu s jinými pracemi teoretického a experimentálního charakteru (např. Menandez *et al.*, 1980).

FIG. 7. A comparison of the DCS curves at various impact energies. The low-angle extrapolation is based on the phaseshift values while the high-angle extrapolation is based on phase-shift values and theoretical results of Fon *et al.* (Ref. 3).

29 / 50

různé počáteční energie nalétajících elektronů minima se prohlubují s rostoucí energií

- Šestnáct čar nalezených ve spektru bylo přiřazeno stavům resp. skupinám stavů 1s₅ – 3p₁.
- Rozlišení energiového rozdělení srážejících se elektronů bylo 60-80 meV (Register *et al.*, 1980).
- Na rozdíl od předešlých prací byly hodnoty diferenciálních průřezů stanoveny absolutně, a to přes hodnoty elastického účinného průřezu.
- Chyba průřezů byla stanovena na 13–40% v závislosti na konečném stavu atomu a počáteční energii elektronů.

Kanik et al. (1996) a Tsurubuchi et al. (2000)

Kanik et al. (1996)

- měření optické excitační funkce rezonančních stavů 1s₂ a 1s₄ měřením UV záření doprovázejícího zářivé přechody z těchto stavů
- UV spektrometr s channeltronovým PMT, λ 45–80 nm
- tlak plynu 10⁻⁶ Torr pro potlačení samoabsorpce.
- Celková chyba měření a kalibrace byla odhadnuta na 41 %.

Tsurubuchi et al. (2000)

- měření kaskádních příspěvků $2p^53p \rightarrow 2p^53s$ (vliv až 36 % při 40 eV)
- výsledkem přímé účinné průřezy rezonančních stavů 2p⁵3s
- Chyba účinných průřezů byla určena na 20,2 %.

Tsurubuchi et al. (2000)

Účinné průřezy pro excitaci stavů 1s₂ a 1s₄. ● Tsurubuchi *et al.* (2000), ◊ Phillips *et al.* (1985), ⊽ Register *et al.* (1984), □ Suzuki *et al.* (1994), △ deJongh [1971], - - - Machado *et al.* (1984), — Zeman & Bartschat (1997). Převzato z práce Tsurubuchi *et al.* (2000).

Chilton et al. (1998)

- mřížkový monochromátor konstrukce Czerny-Turner s fotonásobiče pro VIS
- FTIR spektrometr pro přechody v IR oblasti 900 nm -2μ m (přechody 2p⁵3d, 2p⁵4s → 2p⁵3p)

Chilton et al. (2000) - neon

při tlaku 30 mTorr (4 Pa) dochází k saturaci způsobenou úplnou reabsorpcí rezonančního přechodu 3d₂ → 1p₀.

Chilton et al. (2000) – neon, základní stav \rightarrow 3p

pro průřezy do 3p studovány spontánní přechody ze stavů 2p⁵3d, 2p⁵4s, 2p⁵4d a 2p⁵5s, příspěvky 4s, 5s ukázaly být zanedbatelné

 analyzovány i stavy 3d, 4s (zdánlivé účinné průřezy)

Behnke et al. (1985) – neon $3s \rightarrow 3p$

- řešení Bolzmannovy kinetické rovnice pro rozdělovací funkci elektronů
- jednoduchý kolizně-radiační model (zanedbání přímé excitace stavů 3p)

$$\sigma_{ij}(x) = 4\pi a_0^2 \left(\frac{R}{\varepsilon_{ij}}\right)^2 f_{ij} \sqrt{\frac{x-1}{x}} \frac{\ln[2(x+\sqrt{x(x-1)}-1/2)]}{x+C},$$

kde a_0 je Bohrův poloměr, R Rydbergova energie (13,6 eV), ε_{ij} prahová energie, f_{ij} síla oscilátoru, x redukovaná energie nalétajícího elektronu $x = \varepsilon/\varepsilon_{ij}$ a C je empirická konstanta.

- účinné průřezy pro excitaci ze všech stavů 3s do jednotlivých stavů 3p.
- absolutní hodnoty jsou však nižší (téměř dvakrát).

Lagus et al. (1996)

 $He^+ + Cs \rightarrow He(2^{1,3}S) + Cs^+$

Lagus et al. (1996)

FIG. 2. Detail of charge-transfer cell.

Lagus et al. (1996)

Lagus et al. (1996) – profily svazků

FIG. 7. Schematic diagram of rotating wire assembly.

FIG. 8. Profiles of electron beam (\diamond) and neutral beam (\blacksquare) obtained from rotating wire apparatus.

optický profil – napustí se plyn a posouvá se el. svazkem
 neutrály – atomy vyrážejí sekundární elektrony, ty jsou měřeny
 elektrony – měření proudu

Boffard et al. (2001) – neon, excitace z 1s₅

- aparatura vychází z Lagus et al. (1996)
- dutá katoda: 3 · 10⁻⁶ metastabilních atomů na atom v základním stavu
- blízce-rezonanční přenos náboje mezi Ne⁺ (1,6 kV) a Cs, produkující metastabily Ne v poměru 1s₃:1s₅:1p₀ rovném 1:5:6.
- určeny přechody 1s₅ do stavů 2p₄, 2p₆, 2p₈ a 2p₉
- Chyba kalibrace byla stanovena na 30 %.

Boffard et al. (2001) – neon, excitace z 1s₅

Boffard et al. (2001) – škálování průřezů povolených přechodů

Allan 2010

Figure 3. Absolute cross sections for excitation of the Ne $(2p^53s)$ states at $\theta = 0^\circ$. The experimental data are in the left and the theoretical predictions in the right panel. Thresholds for the 3s, 3p and 4s excitations are indicated below the top spectra.

Zatsarinny 2010

Figure 1. Metastable electron-impact excitation function of the $4p^55s$ (J = 0, 2) states in Kr. We compare the experimental data of Buckman et al [20] with the current BSR-31 and BSR-47 results as well as predictions from previous 31-state (BPRM-31) [21] and 51-state (BPRM-51) [38] standard Breit–Pauli *R*-matrix calculations. The published experimental data were multiplied by 0.67 in order to obtain a good visual fit to the BSR-47 results. The presented BSR predictions include cascade contributions from all higher-lying states included in the respective models.

Figure 3. Metastable electron-impact excitation function of the $5p^36s$ (J = 0, 2) states in Xe. We compare the experimental data of Buckman *et al* [20] with the current BSR-31, DBSR-31 and DBSR-75 results and predictions from a 43-state (BPRM-43) [22] standard Brein-Pauli *R*-matrix calculation. The relative experimental data were visually normalized to the DBSR-75 results. The presented BSR and DBSR predictions include cascade contributions from all higher-lying states included in the respective models.

Argon 4p a 5p

Vliv na metodu měření el. pole

Literatura I

- Anderson, RJ, Lee, ETP, & Lin, CC. 1967. Electron excitation functions of mercury. Physical Review, 157(1), 31-&.
- Behnke, J. F., Deutsch, H., & Scheibner, H. 1985. Investigation about stepwise excitation cross sections in rare gases. Contributions to Plasma Physics, 25(1), 41.
- Boffard, John B., Keeler, M. L., Piech, Garrett A., Anderson, L. W., & Lin, Chun C. 2001. Measurement of electron-impact excitation cross sections out of the neon ³P₂ metastable level. *Physical Review A*, **64**, 032708–1.
- Chilton, J. Ethan, Boffard, John B., Schappe, R. Scott, & Lin, Chun C. 1998. Measurement of electron-impact excitation into the 3p⁵ 4p levels of argon using Fourier-transform spectroscopy. *Physical Review A*, 57(1), 267–277.
- Chilton, J. Ethan, Stewart, Jr., M. D., & Lin, Chun C. 2000. Electron-impact excitation cross sections of neon. *Physical Review A*, 61(5), 052708–1.
- Gabriel, A. H., & Heddle, D. W. O. 1960. Proc. R. Soc. London A, 258, 124.
- Heddle, D. W., & Samuel, M. J. 1970. The effect of the imprisonment of resonance radiation on excitation measurements. Journal of Physics B: Atomic, Molecular and Optical Physics, 3, 1593.
- Kanik, I., Ajello, J. M., & James, G. K. 1996. Electron-impact-induced emission cross sections of neon in the extreme ultraviolet. *Journal of Physics B: Atomic, Molecular and Optical Physics*, 29(11), 2355–2366.
- Lagus, Mark E., Boffard, John B., Anderson, L. W., & Lin, Chun C. 1996. Cross sections of electron excitation out of metastable helium levels with a fast metastable target produced via charge exchange. *Physical Review A*, **53**(3), 1505–1518.
- Machado, Luiz E., Leal, Emerson P., & Csanak, George. 1984. Electron-impact excitation of some low-lying levels of neon. *Physical Review A*, 29(4), 1811–1824.
- Menandez, M. J., Rees, J. A., & Beaty, E. C. 1980 (October). In: Proceedings of the Thirty-Third Annual Gaseous Electronics Conference.
- Phelps, A. V. 1958. Effect of the imprisonment of resonance radiation on excitation experiments. *Physical Review*, **110**(6), 1362–1368.

Literatura II

- Phillips, M. H., Anderson, L. W., & Lin, C. C. 1985. Electron excitation cross section for the metastable and resonant levels of Ne(2p⁵3s). *Physical Review A*, 32, 2117–2127.
- Phillips, Mark H., Anderson, L. W., & Lin, Chun C. 1981. Method for measuring the electron excitation cross section of the metastable 1s₅ level of Ne. *Physical Review A*, 23(5), 2751–2753.
- Register, D. F., & Trajmar, S. 1984. Differential, integral, and momentum-transfer cross sections for elastic electron scattering by neon: 5 to 100 eV. *Physical Review A*, 29(4), 1785–1791.
- Register, D. F., Trajmar, S., & Srivastava, S. K. 1980. Absolute elastic differential electron scattering cross sections for He: A proposed calibration standard from 5 to 200 eV. *Physical Review A*, 21(4), 1134–1151.
- Register, D. F., Trajmar, S., Steffensen, G., & Cartwright, David C. 1984. Electron-impact-excitation cross sections for electronic levels in neon for incident energies between 25 and 100 eV. *Physical Review A*, 29(4), 1793–1810.
- Sharpton, Francis A., John, Robert M. St., Lin, Chun C., & Fajen, Fredric E. 1970. Experimental and theoretical studies of electron-impact excitation of neon. *Physical Review A*, 2(4), 1305–1322.
- St John, R M, Lin, CC, & Miller, F L. 1964. Absolute electron excitation cross sections of helium. *Physical Review A*, 134(4A), A888–&.
- Suzuki, T. Y., Suzuki, H., & Ohtani, S. 1994. Measurements of cross sections and oscillator strengths for Ne by electron-energy-loss spectroscopy. *Physical Review A*, 49(6), 4578—4584.
- Tsurubuchi, S., Arakawa, K., Kinokuni, S., & Motohashi, K. 2000. Electron-impact cross sections of Ne. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(18), 3713–3723.
- Zeman, V., & Bartschat, K. 1997. Electron-impact excitation of the 2p⁵3s and 2p⁵3p states of neon. Journal of Physics B: Atomic, Molecular and Optical Physics, **30**(20), 4609–4622.

M A S A R Y K O V A U N I V E R Z I T A