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• Linear optical response: bulk and nanostructured materials 

• Average fields and effective permittivity for small contrast 

 3D, 2D and 1D systems 

• Established mixing rules 

• Tests of EMA: 

 macroscopic scale (glass spheres in liquids) 

  

 molecular scale (water solutions of sucrose) 

• Differences between mixing rules for binary dielectric mixtures 

• EMA and exact solutions for layered structures 

• Resonant behavior of EMA mixtures, example of negative refraction 
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(nano)structured media 

       

layers, thicknesses << wavelength 

e.g., multiple quantum wells 
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inclusioninclusions, dimensions << wavelength 

e.g., ensembles of quantum dots or wires 



(nano)structured media 

       

Example: multilayers in AlGaN/GaN/AlGaN/Aln/Si HEMTS 

 

metamaterials in buffers between AlGaN/GaN channel 

and AlN/Si substrate, studied in IR 
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(nano)structured media 

       

building up the screening charges, 

planar interfaces 

two limiting cases 
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curved interfaces, sphere (ellipsoids) 

sparsely distributed in a matrix  

 

Maxwell-Garnett – the nanotechnology of 
1904 
J.C.M. Garnett, Philos. Trans. R. Soc. Lond. 203, 385 (1904) 
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A general results for small contrast 
LLL – Landau, Livshitz, Looyenga 

       

The average field quantities, 

calculated for a general mixture with a small difference of the permittivities of the 
components (Landau-Livshitz, Electrodynamics of continuous media): 
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which was derived in a different way by Looyenga (1965); the “LL(L)” formula. 
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A general results for small contrast 
LLL – Landau, Livshitz, Looyenga 

       
The (3D) averaging of LL can be fairly easily repeated in reduced dimensions: 

where D =3, 2, 1 for the 3D, 2D, and 1D mixtures, respectively. 

 

Interestingly, for D=1 (lamellar structure with fields perpendicular to interfaces): 

This is exact for the long-wavelength averaging for general lamellar structures, 

not restricted to the low contrast of constituents.  
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LLL (called usually Looyenga) is very popular biochemistry/biology environment: 

• very simple and easy to handle, 

• the optical contrast in the (complex) mixtures is typically small. 



A general results for small contrast 
LLL – Landau, Livshitz, Looyenga 

       

For binary mixtures with the volume fraction f of the components a and b: 

The average permittivity: 

the deviations from the mean: 
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Examples of established mixing rules 

       

Some of them implicit: 

(e.g., solution of quadratic equation for Bruggeman and CPA) 



Example: glass spheres in CCl4 

       

Measurements of Reynolds (Thesis, London 1955) 

of glass spheres dispersed in carbon tetrachloride, quoted by Looyenga 

 

long-wavelength limit - low frequencies (≤1 GHz, lvac ≥ 300 cm) 

diameter of the glass beads ≤ 1 mm 



Example: glass spheres in CCl4 

       

The slightly bowed composition dependence follows the predictions of various variants of 
EMA 
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Example: glass spheres in CCl4 

       

0.0 0.1 0.2 0.3 0.4

-0.04

-0.02

0.00

expt.

glass   (
b
 = 4.594)

in CCl
4
 (

a
 = 2.228)

LL, 0.008

CPA,0.006

MG, 0.023

Brugg, 0.011

Compar3

 e
ff



e
x
p

t

f

A closer look at the deviations from measured values: 



Example: glass spheres in CCl4 
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The typical use of EMA is an estimation of the volume fractions 

 

how do different mixing formulae perform in the case of the known concentrations? 



Example: water solution of sucrose 

       

Feynman, Leighton, Sands: The Feynman Lectures on Physics, Vol. 2 (Addison-Wesley, 
Reading, 1964) 

§32-5 “The index of a mixture” 

 

invokes Clausius-Mossotti relation for the effect of local field on induced dipoles 



Example: water solution of sucrose 

       
Feynman, Leighton, Sands: The Feynman Lectures on Physics, Vol. 2 (Addison-Wesley, 
Reading, 1964) 

§32-5 “The index of a mixture” 

Space filling model of the sucrose (C12H22O11) molecule 



Example: water solution of sucrose, density data (no optics) 

       

Extensive data available (importance in food industry) 
International Critical Tables of Numerical Data, Physics, Chemistry and Technology, First Electronic Edition (Knovel, 
Norwich, New York 2003). Vol. 2, pp. 334-355. 

 

Measurements of the density (mass per unit volume), masses/molecule and concentrations: 

The total volume V is shared by the apparent volumes, V = Vw + Vs; 

assuming the apparent volume of the water molecule to be that of the pure water having 
the density rw (the better the more dilute the solution is): 
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Measured apparent volume of one succrose molecule 

 

International Critical Tables of Numerical Data, Physics, Chemistry and Technology, First 
Electronic Edition (Knovel, Norwich, New York 2003). Vol. 2, pp. 334-355. 
 

Two other sources (K and B) 
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Example: water solution of sucrose, density data (no optics) 



Example: water solution of sucrose – effective medium 

       

Polarization of the solution in optical wave, EMA treatment: 

 

the increase of apparent volume Vs with increasing mass fraction, due to the 

formation of voids between adjacent  sucrose molecules, small enough to prevent filling with 
water (?) → 

 

three components of the mixture, water, succrose and voids. 

 

trying LLL formula for a small optical contrast; 

 

with volume fractions of water, sugar, and voids 

the cube root of effective permittivity of the mixture is 
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Example: water solution of sucrose 
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Very precise refractive index data of the solution available for the sodium line 589.3 nm, 

at 20C, www.icumsa.org, ICUMSA Method SPS-3 (2000), 

up to mass fraction of 85%; note the small level of noise (msd of 1.3E-5 from the cubic polynomial) 



Example: water solution of sucrose 

       

Small optical contrast, 

 permittivity of 1.77686 for pure water, 

  to 2.26196 at fM=0.85, 

 → the sucrose component in EMA below about 2.5, 

 

suggests effective  from LL or LLL formula; 

written in terms of the volume fraction of voids: 
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Example: water solution of sucrose 

       

The value of s : 

the zero slope of the fv(fM) dependence for fM→0, which occurs for s =2.466 
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Example: water solution of sucrose 

       

Test of the LLL approximation: 

comparison of the volume fraction of voids with that from the density 
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Example: water solution of sucrose 

       

Fairly good agreement of optical data with EMA for the very small volume of the 
sugar molecule (0.35 nm3 at RT) ! 

 

Confirms the basic lines of Feynman’s approach, except for the use of 
polarizability of the succrose  molecules, obtained from the average of refractive 
indices of (anisotropic) crystal. 

 

 

Selected concerns: 

 

•  uncertainty in choosing the “EMA rule”, 

 

•  oversimplified introduction of the voids 

 (also in the apparent free volume from the density), 

 

•  ... 



Differences between mixing rules for binary dielectric mixtures 

       

Normalized differences for real dielectric functions of a and b 

planar structures (parallel and perpendicular) form Wiener bounds 
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  small contrast 

(2.466/1.777 ≈ 1.39 for sugar/water) 

large contrast 

(12/1 for silicon/voids in IR) 



Differences between mixing rules for binary dielectric mixtures 

       

comparison of LLL, Bruggeman and CPA for different contrasts 
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EMA and exact solutions for layered structures 

       

electric field inside the superlattice of absorbing/dielectric materials 
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EMA and exact solutions for layered structures 

       

oblique incidence, ellipsometric angles: 

a (rather fine) superlattice of d1=d2=lvac/1000 

EMA for the field parallel to the interfaces 

the total thickness of the film on the = 6+2i substrate 

 

→ easily observable deviations 
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Resonant behavior of EMA mixtures 

       

Spectacular behavior of the effective optical response possible, 

can be traced down to the spectacular behavior of local fields. 

 

Simple case with analytical solution: 

the constant field inside an isolated ellipsoid in an infinite host medium, 

easily transferrable to diluted mixtures. 

 

The field intensity inside the ellipsoid diverges whenever 
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Resonant behavior of EMA mixtures 

       

In particular, the divergence occurs in 

sphere: 

u=v=w, Lu=1/3   for εb = −2εa; 

 

cylinder: 

field perpendicular to its axis 

u=v, w→∞, Lu =1/2   for εb = −εa; 

 

slab: 

field perpendicular to the interface 

v=w→∞, Lu=1    for εb = 0. 



Resonant behavior of EMA mixtures 

       

The IR resonance in undoped/doped SL (leading to negative refraction in a part of the 
IR spectrum): 
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Directions of E and D, averaging (>0 in a, <0 in b) 

note the flow of energy (Poynting vector p) 
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Main lessons to be taken 

 

• EMA can be attractive and helpful. 

• EMA can easily fail – if improperly used. 

• Using it with caution is recommended. 
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