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* Linear optical response: bulk and nanostructured materials
 Average fields and effective permittivity for small contrast

3D, 2D and 1D systems
 Established mixing rules
* Tests of EMA:

macroscopic scale (glass spheres in liquids)

l

molecular scale (water solutions of sucrose)
* Differences between mixing rules for binary dielectric mixtures
« EMA and exact solutions for layered structures

« Resonant behavior of EMA mixtures, example of negative refraction



(nano)structured media

layers, thicknesses << wavelength
e.g., multiple quantum wells

inclusions, dimensions << wavelength
e.g., ensembles of quantum dots or wires
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(nano)structured media

Example: multilayers in AIGaN/GaN/AlGaN/AlIn/Si HEMTS

metamaterials in buffers between AlGaN/GaN channel
and AIN/Si substrate, studied in IR
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(nano)structured media

building up the screening charges, “ D - - p,— |['D,—
planar interfaces S — . .
o E — . ol E
two limiting cases - : R
() (b
E i :<g>:(1—f)ga+fgb_ Veyg =Q-1F) e, +1Tls,.

curved interfaces, sphere (ellipsoids)
sparsely distributed in a matrix

Maxwell-Garnett — the nanotechnology of
1904
J.C.M. Garnett, Philos. Trans. R. Soc. Lond. 203, 385 (1904)
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A general results for small contrast
LLL — Landau, Livshitz, Looyenga

The average field quantities,

< D> — geff <E> )
calculated for a general mixture with a small difference of the permittivities of the
components (Landau-Livshitz, Electrodynamics of continuous media):

E(r)=(E)+0E(r), &(r)={&)+ oe(r).

Neglecting higher-order terms in Taylor expansions leads to

1-2 {(5¢)%)
(&) =(((e)+ 58)°) = (8) =) (<g>)2 ,
l.e., the “LL” formula
oy (8e)%)
Egr =(E) 35

This can be further approximated by
1/3\ 3
Er = (7)),

which was derived in a different way by Looyenga (1965); the “LL(L)” formula.



A general results for small contrast
LLL — Landau, Livshitz, Looyenga

LLL (called usually Looyenga) is very popular biochemistry/biology environment:
* very simple and easy to handle,

* the optical contrast in the (complex) mixtures is typically small.

The (3D) averaging of LL can be fairly easily repeated in reduced dimensions:

((68)*)
D(¢g) ’

Egr =(&)—

where D =3, 2, 1 for the 3D, 2D, and 1D mixtures, respectively.
Interestingly, for D=1 (lamellar structure with fields perpendicular to interfaces):

1\-1
E et |1D = (&)

This is exact for the long-wavelength averaging for general lamellar structures,
not restricted to the low contrast of constituents.



A general results for small contrast
LLL — Landau, Livshitz, Looyenga

For binary mixtures with the volume fraction f of the components a and b:
f.=V,IV,+V,), f,=V,/(V,+V,)=1-f =T.
The average permittivity:
(&)=A-f)g,+fg, =¢,+T(g,—¢,),
the deviations from the mean:
o, =¢,—(e)="T(e,—¢,), 05 =¢,—(e)=0-T)(g,—¢&,),
the mean of the squared deviation:
((5e)") = (1~ T)(Je,)" + T (5&,)" = T(L-T)(&5 — )",

and the LL formula:

fA- )& —¢)
Dle, + f (g, — )]

e = E,+ T(e,—&,)—



Examples of established mixing rules

Some of them implicit:
(e.g., solution of quadratic equation for Bruggeman and CPA)

Table 3.1 Effective mediom mles for binary mixures

Effective medium Eaff f
Layer stack, planes parallel to E (1= freqa+ fep S~ %a
F.I':. - F'.-.l
Eqafh Eav — Egq Eh
Layer stack, planes perp. to E _— _
(1= flep + fea Ep — Eg Egff
IRTERNTE
LLL (small contrast) [(1— fres” + f-“";l{f]]] %
gy — &g’
3eg Eeff — Ea Eb+ 2£a
Maxwell Gamett (dilute sphernes Eq+ flep — &, -
! P ) AL ) Ep+ 280 — flEp — £g) Ep — Eq Eof+ 28,
2Eq Eqf — £a Ep+ Eq
Ravleigh (dilute cvlinders gy + flen — &, _—
ylelg 3 )  + f e 1) £h + a — flep — £q) Ep — g Eeff + Eg
M Il Gamett (dilute aligned ellipsoids) + fi ) fa Eeff — Ea £a+ Liep — £a)
axwell Game ute aligned ellipsoids E, Ep — B,
n P “ ! ‘ Eq + L{1 — fliep —&q) Ep — Eq Ea + Ligefy — £4)
. Eaff — Eq &b + 2805
Bruggeman (spheres) 2esa+ gl (AF — 208 + (1 = 3f)ep] — g8 =0 - -
) i Eh — Eq 3.".‘,.3{
- Egff — Ea 3Eeff + b — Eq
CPA (spheres) detat el H S — Deg + 01— 4 ep] — (1 = Fleglen —gq) =10 I' ; 4{ ;
- ) '~ fa feff — Ea
The volime fraction of the component @ is 1| — f, that of the component & is f2 L is the depolarization factor of Eg. (3.30). For the Bruggeman and CPA models

the effective permittivity results from the solution of the quadratic equation given in the table



Example: glass spheres in CCl,

Measurements of Reynolds (Thesis, London 1955)
of glass spheres dispersed in carbon tetrachloride, quoted by Looyenga

long-wavelength limit - low frequencies (s1 GHz, A,,. =2 300 cm)
diameter of the glass beads <1 mm

TABLE I

Measurements of J. A, Revnolds (Thesis, London 1955),
quoted by Van Beek!l); Glass spheres (gz = 4.594)
dispersed in carbon tetrachloride (g, = 2.228)

dielectric constant
i exp. edq. (1) eq. {2) eq. (17)
0,05 2.317 2,317 2.317 2,320
.10 2411 2,409 2.410 2.415
0.15 2.510 2.503 2,506 2,513
0,20 2,611 2,601 2,605 2613
0.25 2.714 2,702 2. 708 2716
0,30 2,524 2, B0 2,814 2821
0.35 2.949 , 2.913 2,924 . 2,929




Example: glass spheres in CCl,

The slightly bowed composition dependence follows the predictions of various variants of
EMA

Comparl
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Example: glass spheres in CCl,

A closer look at the deviations from measured values:
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Example: glass spheres in CCl,

The typical use of EMA is an estimation of the volume fractions

how do different mixing formulae perform in the case of the known concentrations?
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Example: water solution of sucrose

Feynman, Leighton, Sands: The Feynman Lectures on Physics, Vol. 2 (Addison-Wesley,
Reading, 1964)

§32-5 “The index of a mixture”

invokes Clausius-Mossotti relation for the effect of local field on induced dipoles

32=-5 The index of a mixture

There is another prediction of our theory of the index of refraction that we
can check against experiment. Suppose we consider a mixture of two materials,
The index of the mixture 15 not the average of the two indexes, but should be
given 0 terms of the sum of the two polanizabilities, as in Eq. (32.34). 1f we ask
about the index of, say, a sugar solution. the total polarizability 15 the sum of the
polarizabihity of the water and that of the sugars Each must, of course, be cal-
culated using for & the number per unit volume of the molecules of the particular
kind. In other words, if a given solution has & ; molecules of water, whose polarnz-
ability 13 ), and N molecules of sucrose (C:H.20 ), whose polarizability s
as, we should have that

n — | .



Example: water solution of sucrose

Space filling model of the sucrose (C,,H,,0,,) molecule

Feynman, Leighton, Sands: The Feynman Lectures on Physics, Vol. 2 (Addison-Wesley,
Reading, 1964)

§32-5 “The index of a mixture”

Tahle 32-2
Refractive index of sucrose solutions, and comparison with predictions of Eq. (32.37).

Data from Handbook

A B C D E F G H J
Moles of Moles of ni o '
Fraction of sucrose density " sucrose! water® 3 (—-.;-—- —) N N Nz
by weight {gm//cm®) al 20°C per hiter, per liter, n+ 2 1 2z (gm liter)
Na/Ny NNy
0s 0.9982 1.333 0 55.5 0617 0617 0 —
0,30 11270 1,3811 0,970 438 | 0 698 (487 0.211 0213
.50 1.2296 1.4200 1.798 3415 0.759 0.379 (0. 380 211
085 1.4454 1.5033 159 1202 0,886 (L1335 0.752 210
1.00" 1.588 1.5577" i 464 0 0,960 ] (1,960 (.207
* pure water " gugan crystals

©average (see text)
® molecular weight of water = 1§

T molecular weight of sucrose = 342



Example: water solution of sucrose, density data (no optics)

Extensive data available (importance in food industry)

International Critical Tables of Numerical Data, Physics, Chemistry and Technology, First Electronic Edition (Knovel,
Norwich, New York 2003). Vol. 2, pp. 334-355.

Measurements of the density (mass per unit volume), masses/molecule and concentrations:

N,m, +N.m,
p= =c,m, +c,m,,
V
The total volume V is shared by the apparent volumes, V=V, + V;

assuming the apparent volume of the water molecule to be that of the pure water having
the density p,, (the better the more dilute the solution is):

N,m, +Nm, B N, m,
P Puw
Using the mass fraction of sugar (independent of temperature and pressure):

V, =

NSmS
fu = ,
N,m, +N.m,

V, 1 1-f, |m,
we get the apparent volume of one succrose molecule, 15 =N ;o



Example: water solution of sucrose, density data (no optics)

Measured apparent volume of one succrose molecule

International Critical Tables of Numerical Data, Physics, Chemistry and Technology, First
Electronic Edition (Knovel, Norwich, New York 2003). Vol. 2, pp. 334-355.

Two other sources (K and B)

\ crWrho_AppVolDens

SUCROSE IN TER .
. 0.35041+0.00432f, +0.0123f,

0.365 |-, P e
A A
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0.360 @ crystal —

B (25°C, 0.35 MPa)
0.355 | W -

3
V.. (hm)

0.350 F

e * B(5C,0.35 MPa)
0345 o o -

0.0 0.2 0.4 0.6 0.8 1.0




Example: water solution of sucrose — effective medium

Polarization of the solution in optical wave, EMA treatment:

the increase of apparent volume V, with increasing mass fraction, due to the

formation of voids between adjacent sucrose molecules, small enough to prevent filling with
water (?) >

three components of the mixture, water, succrose and voids.

trying LLL formula for a small optical contrast;

with volume fractions of water, sugar, and voids
f,, f,andf, f +f +f =1

the cube root of effective permittivity of the mixture is

1/3 1/3 1/3 1/3
co=(ey="=F¢g, " +fe T+1,.

E

e



Example: water solution of sucrose

Very precise refractive index data of the solution available for the sodium line 589.3 nm,
at 20C, www.icumsa.org, ICUMSA Method SPS-3 (2000),
up to mass fraction of 85%; note the small level of noise (msd of 1.3E-5 from the cubic polynomial)

Voids_fvICUMSA-InvRhoF

0.04 F ' ' ' < - ' - ; ]
T T T T T T y T — /
=2.47 ;
o1 _o.08595fM+o.o::328f;+o.007E1;\—_»- lo1 £ K
(msd = 1.3x107) S/ /]
0.03 - S S0
o . ><. f(p) ”,} ,
| o700 =T 4002 N/
Hw .s.‘lt:.\ R Hw / // 246
0.02 | - TNLL246 1 e K -
" g = 2.47 . 7, 2.466
01 1 1 1
0.0 0.2 0.4 0.6
0.01 | f, -
sucrose in water
..... : t=20C
0.00 e T kp (589.3 nm)
" 1 " 1 " 1 " 1 "
0.0 0.2 0.4 0.6 0.8 1.0



Example: water solution of sucrose

Small optical contrast,
permittivity of 1.77686 for pure water,
to 2.26196 at f,,=0.85,
— the sucrose component in EMA below about 2.5,

suggests effective ¢ from LL or LLL formula;
written in terms of the volume fraction of voids:

1/3 1/3 1/3 1/3
f 6 —E T o & &y

v 1/3 W 1/3
& -1 g —1

Note:
& IS the permittivity of the hypothetical 100% sugar solution (not a crystal).

The volume fraction of water is

f =L @a-1,).
Pu



Example: water solution of sucrose

The value of & :
the zero slope of the f (f,,) dependence for f,,—0, which occurs for & =2.466

Voids_fvICUMSA-InvRhoF
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Example: water solution of sucrose

Test of the LLL approximation:

comparison of the volume fraction of voids with that from the density

Voids_fvICUMSA-InvRhoF
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Example: water solution of sucrose

Fairly good agreement of optical data with EMA for the very small volume of the
sugar molecule (0.35 nm?3 at RT) !

Confirms the basic lines of Feynman’s approach, except for the use of
polarizability of the succrose molecules, obtained from the average of refractive
indices of (anisotropic) crystal.

Selected concerns:
* uncertainty in choosing the “EMA rule”,

 oversimplified introduction of the voids
(also in the apparent free volume from the density),



Differences between mixing rules for binary dielectric mixtures

Normalized differences for real dielectric functions of a and b
planar structures (parallel and perpendicular) form Wiener bounds

small contrast large contrast
(2.466/1.777 = 1.39 for sugar/water) (12/1 for silicon/voids in IR)
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Differences between mixing rules for binary dielectric mixtures

comparison of LLL, Bruggeman and CPA for different contrasts
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EMA and exact solutions for layered structures
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EMA and exact solutions for layered structures

obligue incidence, ellipsometric angles:

a (rather fine) superlattice of d,=d,=l,,./1000

EMA for the field parallel to the interfaces

the total thickness of the film on the &= 6+2i substrate

— easily observable deviations

i 1 4 1 4 1 4 1 4 1 ] 1 4 1 4 1 4 1 4 1
air - film -substrate 1
9l = 40
- _5 .
o) o
S S
- a -10
- U ; 4-15
7 B v
1 N 1 N 1 N 1 N 1 1 N 1 N 1 N 1 N 1
06 08 10 12 14 06 08 10 12 14

d/x
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Resonant behavior of EMA mixtures

Spectacular behavior of the effective optical response possible,
can be traced down to the spectacular behavior of local fields.

Simple case with analytical solution:
the constant field inside an isolated ellipsoid in an infinite host medium,

easily transferrable to diluted mixtures.

The field intensity inside the ellipsoid diverges whenever

o131 (00>,

L, is the depolarization factor (semiaxes u,v, w of the ellipsoid)

Lu = S <O,1>

uvw°j3 dt
2 5 (t2+U2)/(t+UP)(E+v2)(t + W)

with the field along u.



Resonant behavior of EMA mixtures

In particular, the divergence occurs in

sphere:
u=v=w, L,=1/3 for g, = —2¢,;

cylinder:
field perpendicular to its axis
u=v, w—eo, | =1/2 for g, = —¢,;

slab:
field perpendicular to the interface
V=w—eo L =1 for g, = 0.



Resonant behavior of EMA mixtures

The IR resonance in undoped/doped SL (leading to negative refraction in a part of the
IR spectrum):

50x(80nm i-AllnAs, 80nm n-InGaAs)

e
1 €

50 1 r < 100

500 1000 1500 500 1000 1500

WAVENUMBER (cm™)



Directions of E and D, averaging (¢>0 in a, <0 in b)

note the flow of energy (Poynting vector p)

>
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Main lessons to be taken

- EMA can be attractive and helpful.
 EMA can easily fail — if improperly used.
 Using it with caution is recommended.

A selection from the (vast) literature:

L.D. Landau and E.M. Lifshitz, Electrodynamics of continuous media, Second edition (Pergamon Press,
Oxford, 1984), Sec. 9.

R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. Il (Addison-Wesley,
1964), § 32-5.

A. Sihvola, Electromagnetic mixing formulas and applications (IEE, Stevenage, 1999).
D.E. Aspnes, Am. J. Phys. 50, 704 (1982).
Ellipsometry at the Nanoscale , M. Losurdo and K. Hingerl, eds., (Springer 2013).



