Pružný rozptyl, luminiscence, Ramanův rozptyl v. 1c 16.12.2024 1 Josef Humlíček, humlicek@physics.muni.cz F8150, 2024 • pružný a nepružný rozptyl fotonu • objev Ramanova jevu • fenomenologický popis, kvantové přechody • ukázky spekter Pružný (Rayleighův) rozptyl Pružný (Rayleighův) rozptyl – záření dipólu Pružný (Rayleighův) rozptyl - experiment s čistým vzduchem Pružný (Rayleighův) rozptyl Nepružný rozptyl rtg záření (Comptonův rozptyl) A. Compton 1923: částicové vlastnosti vlnění, inspirace pro analogii v optickém oboru Compton23a.pdf A. Compton 1923: částicové vlastnosti vlnění Compton23a.pdf A. Compton 1923: částicové vlastnosti vlnění Compton23a.pdf Nepružný rozptyl světla na nehomogenitách (např. akustických fononech) předpověď Brillouin 1922 Snadercock 1978 (Si, Ge) Sandercock 1978 (kovy, polovodiče) Nepružný rozptyl viditelného světla - Raman & Krishnan , Nature1928 1930 Nobelova cena (Raman) Nepružný rozptyl viditelného světla - Raman & Krishnan , Nature1928 Nepružný rozptyl viditelného světla - Raman & Krishnan , Nature1928 Ramanův „spektrograf“ (Hilger), Hg výbojka + oko nebo fotografická deska Předpověď: Adolf Smekal Současný objev „kombinačního rozptylu“ QM teorie: Georg Placzek QM teorie: Georg Placzek QM teorie: Georg Placzek Georg Placzek symetrie vlastních kmitů Rozptylový proces posouvá se s energií excitujícího fotonu 1 4 eV (8000 32000 cm -1 ) initial/final state 2 state 1 Rayleigh Raman (elastic) Stokes) (Antistokes) energy 10 4000 cm -1 (1 500 meV) intermediate (virtual) state 21 Ramanův rozptyl odlišnost od nekoherentního luminiscenčního (fluorescenčního) procesu (ten je nezávislý na excitační vlnové délce, není v antistokesově větvi) 22 thermalization (incoherent) initial/final state excitation energy luminescence excited states Normal vibrational modes A molecule consisting of N atoms has 3N degrees of freedom; classical equations of motion with the restoring forces proportional to the displacements ukl of the k-th atom in the l-th direction (k=1,...,N, l=x,y,z) can be transformed into 3N algebraic equations with a real (dynamical) matrix, assuming harmonic, in-phase motion of the atoms. These equations can be solved via finding the eigenvectors ekl (r) of the dynamical matrix, and the corresponding eigenvalues (frequencies) w(r). The actual displacements can be expanded in terms of the eigenvectors, 23 ( )1 ,  r kl r kl rk u Q e m where mk is the mass of the k-th atom. The expansion coefficients are called normal coordinates. Normal vibrational modes – restrictions due to the symmetry The 3N–dimensional vectors of the displacements form a basis for a (reducible) representation of the symmetry group, that can be decomposed in terms of the irreducible representations. The infrared activity of a given mode requires the presence of a dipole moment, which transforms as a three-dimensional vector, forming a basis for a (reducible) representation. If an irreducible component of this representation is among the components forming the normal modes, the corresponding normal vibration is infrared active. Otherwise is the excitation of the normal mode by infrared waves forbidden by symmetry. Listing he basis functions in the character tables is of help, because the dipole moment transforms as the vector (x,y,z). 24 Normal vibrational modes – restrictions due to the symmetry The Raman activity of a given mode requires the presence of a nonzero derivative of the induced dipole moment with respect to the vibrational displacements; these transform as a symmetric tensor of rank 2, forming a basis for a (reducible) representation. If an irreducible component of this representation is among the components forming the normal modes, the corresponding normal vibration is Raman active. Otherwise is the Raman scattering involving the normal mode forbidden by symmetry. Listing he basis functions in the character tables is of help, because the functions {x2, y2, z2, xy, yz, xz} form the basis for the tensorial representation. 25 Vibrational modes of the water molecule C2v symmetry group: E (identity), C2 (two-fold axis z), mirror plane sy (xz) , mirror plane sx (yz) each of the elements forms a class → 4 one-dimensional irreducible representations 9 degrees of freedom, 9-6=3 vibrational ones Let us first count the number of atoms NR which are not moved by the symmetry operation R (only these atoms are relevant for the characters of representations, since they contribute non-vanishing diagonal elements): C2v E C2 sy sx NR 3 1 3 1 26 Vibrational modes of the water molecule Next, a (proper) rotation about the z axis through an angle a transforms the displacements from equilibrium positions (actually, any vector) according to E C6 C4 C3 C2 i S6 S4 S3 S2s 3 2 1 0 -1 -3 -2 -1 0 1 ' ' ' cos sin 0 sin cos 0 . 0 0 1 x x y y z z u u u u u u a a a a                        Its contribution to the character, independent of the orientation of the axis, is ( ) 1 2cos .vect Ra a  Improper rotations iRa, consisting of proper rotations and inversion i, contribute ( ) 1 2cos .vect iRa a   Using the allowed angle for the crystallographic point groups, we obtain the contributions (for the water molecule, we need the colored entries only): 27 Vibrational modes of the water molecule All the atoms left unmoved by the symmetry operation R contribute the same value, vect(R), to the character of the 3N-dimensional representation based on the 3N-dimensional vector of displacements: We arrive at the sought (the last row) character table: ( ) ( ).R vectR N R  C2v E C2 sy sx NR 3 1 3 1 vect(R) 3 -1 1 1 (R) 9 -1 3 1 Not to forget: the corresponding representation contains three translation and rotation modes of the molecule as a whole. 28 Vibrational modes of the water molecule The coordinates of the translation form a basis of the 3-dimensional representation with the character trans(R)=vect(R). The rotation is described by an axial vector (no change of sign on inversion); consequently, the character is 1+2cos(a) for both proper and improper rotations by the angle a. We can subtract the two irrelevant motions from the character  to obtain the wanted description of vibrations: C2v E C2 sy sx (R) 9 -1 3 1 trans(R) 3 -1 1 1 rot(R) 3 -1 -1 -1 vibr(R) 3 1 3 1 The 3-dimensional representation vibr is reducible. 29 Vibrational modes of the water molecule The irreducible components are easily found. 1. One of them must be A1, we subtract it: C2v E C2 sy sx vibr(R) 3 1 3 1 A1 1 1 1 1 vibr(R)-A1 2 0 2 0 2. The projection of the rest on A1 is nonzero; the latter is contained once more, we subtract it: C2v E C2 sy sx vibr(R)-A1 2 0 2 0 A1 1 1 1 1 vibr(R)-2A1 1 -1 1 -1 The rest is B1 and we arrive at the decomposition of 2A1 + B1. 30 Vibrational modes of the water molecule The symmetry analysis classifies the three normal modes: (a) 3651.7 cm-1, symmetric stretching, monotonic dependence of the polarizability on the normal coordinate  nonzero slope at equilibrium (Raman active), dipole moment along z (IR active); (b) 1595 cm-1, bending, low frequency due to small restoring forces, monotonic dependence of the polarizability on the normal coordinate  nonzero slope at equilibrium (Raman active), dipole moment along z (IR active); (a) 3755.8 cm-1, asymmetric stretching, monotonic dependence of the polarizability on the normal coordinate  nonzero slope at equilibrium (Raman active), dipole moment along z (IR active). 31 Vibrational modes of the H2O molecule - overview Herzberg 32 Examples of Raman spectra - (liquid) water (Ph. Valee et al., Journal of Molecular Structure, 2003, 651-653: 371-379) 33 Examples of Raman spectra - water (Ph. Valee et al., Journal of Molecular Structure, 2003, 651-653: 371-379) 34 Examples of Raman spectra - Calcite (Porto et al., Phys. Rev. 147, 608 (1966)) Note: the 1088 cm-1 A1g mode corresponds probably to the “l1= 9.1 m Trabant” observed by Landsberg&Mandelstam 35 Examples of Raman spectra - intrinsic silicon (T.R. Hart et al., Phys. Rev. B1, 638 (1970)) 36 Examples of Raman spectra - heavily doped p-type silicon (M.V. Klein, Light Scatt. Sol. I, p. 173) 37 Raman spectra of “topological insulators” Bi2Te3, Bi2Se3 ÚFKL 2012-13, epilayers on BaF2 (JKU Linz) defects, steps on the substrates MBE2805 backside 5x MBE2805 backside 20x Crystalline Bi2Te3, 3 quintuples Te(1) - Bi, 0.173 nm Te(2) - Bi, 0.203 nm projection on (110) Bi2Te3 stacking sequence: 3x[Te(1)-Bi-Te(2)-Bi-Te(1)] 5 5 5 c=3.03 nm Te(2) center of symmetry Te(1) - Te(1), 0.260 nm van der Waals Raman spectra, backscattering geometry, unpolarized 633 and 514 nm excitation, two possibilities BaF2 substrate (~1 mm thick) transparent for exciting and scattered light negligible overlap of the spectra of film and substrate "back side""front side" film BaF2 BaF2 lens Renishaw In-Via Raman spectra, 3 narrow Gaussian profiles on a flat background (when measured at the interface), very slight asymmetry 60 80 100 120 140 0.0 0.5 1.0 133 / 10 (134 / 10) 100.8 / 4.0 (102.3 / 6.0) 60.6 / 3.1 (62.0 / 5.0) position / FWHM (cm -1 ) / (bulk, Kullmann et al.) AgEg Bi2 Te3 (830 nm) / BaF2 , 633 nm, interface RAMANSIGNAL(arb.u.) STOKES SHIFT (cm -1 ) Ag BiTe_Raman1_Bi2Te3_Ram1a Identification of normal modes (gerade) very weak 61 101 133 cm -1 Chis et al. (2012) 42.1 64.2 112.3 139.2 first-principles DFT & DFPT (perturbation th.) Bi2Te3 Raman modes A1g (2)A1g (1)A1g (1) Eg (2)Eg (1) Jenkins et al., 1972, 9 adjustable parameters, fitting measured elastic moduli 50.6 71.1 118.5 128.3 cm -1 BiTe - three doublets: 50 100 150 200 0.0 0.5 1.0 131 123.7101.7 92.7 60.4 58.5 film Bi1 Te1 MBE2882 BiTe23-11_Comp23-11d RAMANSIGNAL(arb.u.) STOKES SHIFT (cm -1 ) subs 633 nm The lower symmetry of BiTe quintuplets (the interlayer spacings in Angstroems): 2.598 1.729 2.032 2.032 1.729 Bi Te1 Te2 Bi1 Te1 2.040 2.650 1.656 2.177 BiTe Te1 Te1 Te3 Te2 Te3 Bi1 Bi2 Bi3 Bi2 Bi3 Te2 Bi Te1 1.870 1.131 1.822 Bi2Te3 7 3 different spacings Several weaker bands seen in the detailed comparison, found also in the spectra of thick films taken from the surface; deviations from perfect crystal stronger at the surface; the growth need not end with a complete cell of Bi2Te3 (3.03 nm) 40 60 80 100 120 140 0.0 0.2 0.4 interface 48 71 75 91 94 633 nm, surface BiTe_RamanThin_B830-22sdd Bi2 Te3 MBE2780 830 nm Bi2 Te3 MBE2918 22 nm RAMANSIGNAL(arb.u.) STOKES SHIFT (cm -1 ) 82 three Bi2Se3 bands about sqrt(127.6/79)=1.27 times higher in frequencies than Bi2Te3 0 50 100 150 200 250 0.0 0.5 1.0 133 175131 10161 Bi2Se3 2836Bi2Te3 2883 BiSe_2013_04_30_TeSe RAMANSIGNAL(arb.u.) STOKES SHIFT (cm -1 ) subs 72