The distribution of galaxies in the Northern sky, as compiled in the Lick catalog. This catalog contains the galaxy number counts for "pixels" of 10'x 10' each. It is clearly seen that the distribution of galaxies on the sphere is far from being homogeneous. Instead it is distinctly structured (text book by Schneider) Local Group and nearest galaxies The Local group of galaxies • -100 galaxies (most of the dwarfs) • large members: MiIky Way, M31 (Andromeda galaxy), M33 (Triangulum galaxy) • Mass of-3x1012 solar masses • diameter of 3 Mpc • binary distribution Abell (Optical) Cluster Catalog • Palomar Sky Survey using the 48 inch Schmidt telescope (+ the 48 inch telescope in Australia) • Abell (1958) catalog of 1682 clusters on the northern sky • Abell, Corwin, & Olowin (1989) - catalog on the south • In total 4073 objects Abell (Optical) Cluster Catalog • Richness Criterion: a cluster contains at least 50 members with rri3< m< A773 + 2. • Richness classes: based on the number of galaxies in this range. • Compactness Criterion: Only galaxies within an angular radius of 1.7arcmin/ z get counted. That corresponds to a physical radius of 1.5 hr1 Mpc. The redshifts were estimated based on the apparent magnitude /r?io galaxy • Distance Criteria: Lower redshift limit (z = 0.02) to force clusters onto one (6 x 6 degree) POSS photo plate. Upper limit due to mag limit of POSS, which matches zof about 0.2. Later surveys (e.g. based on SDSS such as maxBCG) take into account the colors of the galaxies (multi-color photometry reduces spurious detections because the cores of clusters are dominated by red early-type galaxies) Abell (Optical) Cluster Catalog Table 4.1. Definitions of the richness classes of Abell clusters and the numbers of clusters within Abell's complete northern sample of 1682 clusters. N is the number of galaxies in the cluster between magnitudes 7TI3 and m.3 + 2 (Abell 1958, Bahcall 1988). Richness N Number of clusters in Class R the complete northern sample (or (30 - 49) (> 103) 1 50-79 1224 2 80 - 129 383 3 130 - 199 68 4 200 - 299 6 5 300 or more 1 • • • • • • a The sample is not complete for richness class zero. Clusters and groups of galaxies • Clusters of galaxies ~1014— 1015 Solar masses • Groups of galaxies ~1012— 1014 Solar masses • Clusters are the most massive gravitationally bound objects in the Universe and they were the last structures to form • First identified in optical surveys galaxy surveys Laniakea Supercluster If the distance to each galaxy from Earth is directly measured, then the peculiar velocity can be derived from the subtraction of the mean cosmic expansion, the product of distance times the Hubble constant, from observed velocity. The peculiar velocity is the line-of-sight departure |from the cosmic expansion and arises from gravitational perturbations Where peculiar velocity flows diverge, as water does at watershed divides, we trace the surface of divergent points that surrounds us. Within the volume enclosed by this surface, the motions of galaxies are inward after removal of the mean cosmic expansion. These volumes are called Superclusters. Tully et al. 2014 Thermal plasma I u £ o > PERSEUS CLUSTER + HIGH GAIN 0 LOW GAIN energy (kev) 10 12 14 16 Ariel 5 Mitchell et al. I976 M87 HEAO-2 SSS > O CO -2 -3 -4 O x £ -5 o -7 1-1-1—TT Fe(L SHELL) I I I Mg Si s - n TWO TEMPERATURES kTl0 «2.2 keV kTki >I0 keV or P.L FIELD OF VIEW 6 arcmin FW ENERGY RESOLUTION »l50eV FWHM J_I_I_I I I 1.0 2.0 ENERGY (keV) Einstein Lea et al. 1982 low densities n— IO1-105 cm-3, high temperatures 7=5x106-108 K Dremsstrahlung (free-free recombination (free-bound), de-excitation (bound-bound) collisional ionization equilibrium electron and ion temperatures in equilibrium shape of spectrum entirely] determined by kT and chemical abundances • * > I I IK * Bremsstrahlung (ff-emission) kBTe = 1 keV, 3 keV, 9 keV; NH = OcrrT2 0.1 1 10 Energy [keV] Lines and temperatures Temperature (keV) ff+fb+bb-emission kBTe = 3 keV, A= 0.4; NH = 0, 3 x 10"20, 1021 cm'2 0.1 1 10 Energy [keV] Which elements, where? wavelength (A) 50 30 20 10 5 2 1 Eb(eV) —1-1-1-1 1 1 1 1—i—'-'-1-r - o X-ray lines between neutral fluorescent n—2-1, and H-like n= I -oo (think of the Bohr model!) X-ray observatories Chondro X-RAY SPECTRA OF HOT DIFFUSE PLASMA 10° Energy (keV) Periodic Table of the Elements Stiitt'intttr :: E ' Nb Hill— )«»* i Mo niii»ii— tin 43 ^ Tc M :*» o: Ru Marta WOT .5 Rh Mwwl 72 Hf IMM : 11 ľ »; 7* w '"iííľ ■' " ■ - '- 1 ?5 Re >»»«») 7* Os MB 77 lr m** ma j»«o»ľ 104 Rf MMrfMH an» Db ustehj 10« sg : i » r - 7 : 107 Bh ■ i i : v - ■ MM) Hs CHT) Mt Mt w« * *»- um Ni Ml» !•»: Pd Mt! »II : i ■ • 7« Pt mn »»»»i no Ds A? Hill T» Au piii.-.^- c«m mm mn !♦•»»! »ss«' no m l? IIB M Zn Zw Cd IU4I : i • »ľ 80 Hg I« Rg Cn 13 IIIA S B nm m 13 H 15 IVA VA i 7 C Co«« N "",1 U Si 13 I* Ml *** f M4 C#**HI^ r^Mftf^^Hww) M960mmjq||mJ£ RPMMflinww% SéMRÉriM^fe Cvftfwwl - 47 Er : 11 x i.' M Yb :•»»•: 71 Ľa Ho 1*41) Tm : íl r i; Lu t- •t Ac am to Th r-o'-. -run »»»*»•> Pa 7)1 »4 n U UVmM nu .' i • u .- •: N Np ItMSIt N Pu n Am >«»S»«I Cm on T7 Bk QUI nisnu w Cf Clllirw— cm . 11 ' i Es (*«l«ww*«i OUI lUIMI MW Fm (TIT) Ml Md Ml No in*; MM Lr ĺ *w r*-< OM :nrin 10 oJ O Mg I I Cluster hot atmospheres contains diverse chemical elements. 10- ci; ^ 10-2 J i / / e are p the largest scale structures of the Univers 8 gamma ray The origin of chemical elements Merger of 2 white dwarfs? white dwarfs plus normal star Hitomi (ASTRO-H) Observation X-ray spectrum of the core of the Perseus cluster E (observed), keV Hitomi collaboration, Nature, 201 6 Hitomi (ASTRO-H) Observation X-ray spectrum of the core of the Perseus cluster 10 F 0 CO CO 1 t- o 0.1 o 0.01 8 Energy (keV) Hitomi collaboration, Nature, 2017 Resolving the Ni lines 1 (c) Fe xxv (He p) 0.5 Ni xxvii (w) Fe xxiv+ Ni xxvii 0.2 0.1 CCD spectrum (XMM-Newton) 1 7.4 7.6 7.8 Energy (keV) 8.0 Hitomi collaboration, Nature, 2017 Detecting rare elements 0.5 i-1-1-r t-1-r (b) Cr xxiii i i 0.3 Calibration source (instrumental) Mn xxiv 0.2 J ii ! i I I Fei (AGN) J I'linl I 1 Hit. - J_I_I_L J_I_L 5.5 6.0 Energy (keV) Hitomi collaboration, Nature, 2017 Measured abundance ratios are Solar LO c\i CD LL CM X o LO ■ CO CD O C 05 "O c nq LO ■ 05 o T T T T Hitomi SXS o Perseus core (290 ks) XMM-Newton ^ Perseus core (150 ks) ■ 44 objects (4 Ms) -v-Mf Sloan Digital Sky Survey (optical) ü early-type galaxies -|+-4 Si Ar Ca Cr Mn Ni Hitomi collaboration, Nature, 2017 METALLICITY PROFILE OFTHE PERSEUS CLUSTER radius (Mpc) 0.75 0.9 radius (arcmin) Werner et al. 201 3 THETURBULENTYOUNG UNIVERSE • 10-12 billion years ago galaxies formed stars at very high rates, resulting in many supernova explosions • at the same time, black holes grew fast by accreting matter • combined energy of these processes produced winds blowing material out of galaxies winds REDSHIFT EVOLUTION OF METALS •Large scatter but no evolution in the core •No evolution in the outskirts •Evolution at intermediate radii, where mixing with the core might be gradually increasing the metallicity 0.0 0.2 0.4 0.6 0.8 1.0 1.2 redshift Mantzetal.2017 GALACTIC WINDS AND AGN OUTFLOWS WERETHE SPOON MIXINGTHE METALS electron X-ray proton ■NkeK ex X-rcxy pkofeoK __. escapes, feke <$ t 111 ? I t I I > 111 > I t »Ii 101 102 103 DM : 80-85% Gas : 12-15% Stars : 2-5% r (kpc) Clusters of galaxies as cupcakes 2% galaxies 12% hot gas 86% dark matter A. Mantz eRosita on Spectrum-Roentgen-Gamma • detect the hot intergalactic medium of 50-100 thousand galaxy clusters • detect up to 3 Million new, distant active galactic nuclei • study the physics of galactic X-ray emitting pre-main sequence stars, supernova remnants and X-ray binaries. The X-ray temperature Tspecifies the thermal energy per gas particle, which is proportional to the binding energy for a cluster in virial equilibrium Toe Mir r radius within which the matter of the cluster is virialized. The virial radius is defined such that within a sphere of radius rVir, the average mass density of the cluster is about 200 times as high as the critical density of the Universe. The mass within rVir is called the virial mass MVir 4tt MYir = — Ac per r 3 vir T oc M vir oc 4r oc Mv2/3 vir + cos2 0) [electron at rest, hv « mc2 ] Number of photons is conserved CMB is isotropic => No signal! [in number of photons] => Spectrum? Wavelength (mm) 10 5 2 1 0.5 SZE signal is independent on redshift Distant cluster, z, brightness temperature attenuated by (1+z), but the CMB temperature was (1+z) times higher i Cluster surveys 106 10' 10' 10; 102 - 10 —.............. - l Illll 1 1 1 1 maxBCG O ACO - o 1 1 1 11 III BCs" REFLEX^RCSl 400d" 1 1 = B50< 1 ■ . RD EMSS MACS CS ACT^ ^SPT 1014 M, 1990 2000 year 2010 1015 KL optical surveys X-ray surveys SZ surveys Fundamental physics with clusters of galaxies: Dark Matter Weighing clusters with weak gravitational lensing A lot of improvement over the past decade Much higher resolution mass maps 44 NASA, ESA, E. Julio (JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM) For some clusters the X-ray plasma and dark matter distributed similarly X-ray Plasma Dark Matter • ♦ . »••• Abell 1689 X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScI ■ ■ ♦ • ^ ■% • • • * ' # . • p • # • 0 • • • **. • • ■ • . # 1 *' . • • • ▼ • >• V * - J '. ;* ■ Abell 1689 NASA, ESA, E. Julio {JPL/LAM), P. Natarajan (Yale) and J-P. Kneib (LAM) Merging clusters are an exception Merging galaxy clusters are an exception X-rav: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.CIoweetal. Merger Scenario Merger Scenario Merger Scenario Merger Scenario Dark Dark Matter Matter Gas + Gas Galaxies Merger Scenario Merger Scenario Momentum Momentum Dark Dark Matter Matter Gas + Gas Galaxies Merger Scenario