1 Kapacitní výboje - základní charakteristika

Základní literatura: $[9,\,1,\,15]$

$$\omega_{pi} < \omega \ll \omega_{pe} \tag{1}$$

$$l \ll \lambda$$
 (2)

2 Vodivost vf. plazmatu

$$\sigma = \frac{ne^2}{m(\nu + i\omega)} + i\omega\varepsilon_0 \qquad (3)$$

$$\frac{1}{\sigma} = \frac{m(\nu + i\omega)}{ne^2 + i\omega\varepsilon_0 m(\nu + i\omega)} = \frac{1}{\varepsilon_0} \frac{\nu + i\omega}{\omega_{pe}^2 - \omega^2 + i\nu\omega} \qquad (4)$$

$$\omega_{pe} = e\sqrt{\frac{n}{m\varepsilon_0}} \qquad (5)$$

Ohmický ohřev:

$$\langle p \rangle = \frac{1}{2} j_1 E_1 \cos \alpha = \frac{1}{2} E_1^2 \operatorname{Re}(\sigma) = \frac{E_1^2}{2} \frac{n e^2 \nu}{m(\nu^2 + \omega^2)} \xrightarrow{\nu \to 0} \frac{E_1^2}{2} \frac{n e^2}{m \omega^2} \nu \tag{6}$$

3 Vf. sheath

Literatura: [1, 8]

elektroda

Hustota proudu sheathem:

$$j = \varepsilon_0 \frac{\mathrm{d}E}{\mathrm{d}t} - \frac{en_0}{4} \sqrt{\frac{8kT_e}{\pi m}} e^{-eU_{sh}(t)/(kT_e)} + en_0 \sqrt{\frac{kT_e}{m_i}}$$
(7)
$$\varepsilon_0 \frac{\mathrm{d}E}{\mathrm{d}t} = n_{act} e \frac{\mathrm{d}s}{\mathrm{d}t}$$

Stejnosměrné napětí na sheathu:

$$0 = -\frac{en_0}{4} \sqrt{\frac{8kT_e}{\pi m}} \left\langle e^{-eU_{sh}(t)/(kT_e)} \right\rangle + en_0 \sqrt{\frac{kT_e}{m_i}}$$

Předpokládejme $U_{sh} = U_0 + U_1 \sin \omega t$:

$$e^{-\frac{eU_0}{kT_e}} \frac{\omega}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} e^{-\frac{eU_1}{kT_e}\sin\omega t} dt = \sqrt{\frac{2\pi m}{m_i}}$$

Využijeme

$$\frac{\omega}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} e^{a \sin \omega t} dt = I_0(a),$$

kde $I_0(a)$ je modifikovaná Besselova funkce nultého řádu, a dostáváme

$$\frac{eU_0}{kT_e} = \frac{1}{2}\ln\left(\frac{m_i}{2\pi m}\right) + \ln\left[I_0\left(\frac{eU_1}{kT_e}\right)\right]$$
(8)

4 Sériová rezonance plazmatu (plasma-sheath resonance)

Rezonance $(Z \approx 0)$ nastává pro frekvenci

$$\omega_{sr} = \omega_{pe} \sqrt{\frac{s_{tot}}{l}},\tag{9}$$

kde l_b je délka plazmatu, s_{tot} je celková tloušťka obou sheathů a $l = l_b + s_{tot}$ je vzdálenost elektrod.

5 Nesymetrie výboje

První přístup:

Využijeme $U_{sh}\propto s^{\kappa}$ a $U_{sh}\propto \frac{I}{C_{sh}}\propto \frac{I}{S}s,$ takže $U_{sh}\propto \frac{U_{sh}^{1/\kappa}}{S}$ a dostáváme $U_{sh}\propto \frac{1}{S^{\frac{\kappa}{\kappa-1}}}$

Index g bude označovat sheath u zemněné elektrody, index v sheath u živé elektrody a index e bude označovat napětí na živé elektrodě. Platí

$$\frac{U_v}{U_g} = \left(\frac{S_g}{S_v}\right)^{\alpha} \qquad (10)$$

$$\alpha = \frac{\kappa}{\kappa - 1} \in \langle 1; 4 \rangle,$$

často $\alpha \approx 2$ (vychází pro konst. koncentraci i
ontů v sheathu, $\kappa = 2$). Pro stejnosměrnou složku napětí na RF elektrodě (bias) dostáváme

$$U_{e0} = U_{g0} - U_{v0} = -U_{e1} \frac{1 - \left(\frac{S_v}{S_g}\right)^{\alpha}}{1 + \left(\frac{S_v}{S_g}\right)^{\alpha}},$$
(11)

kde jsem použil označení $U=U_0+U_1\,\sin\omega t.$

Druhý přístup:

$$E(x) = \frac{e}{\varepsilon_0} \int_0^x n_i(y) dy \qquad (12)$$
$$U_{sh} = \frac{e}{\varepsilon_0} \int_0^{s(t)} dx \int_0^x n_i(y) dy \qquad (13)$$

Pro $n_i = konst.$ by vyšlo

$$U_{sh} = \frac{en_i s^2}{2\varepsilon_0} = \frac{Q^2}{2en_i \varepsilon_0 S^2},$$

kde $Q = en_i Ss$. I v obecnějším případě můžeme (13) vyjádřit pomocí celkového náboje v sheathu (Q). Označíme $\xi = x/s$ a aktuální průměrnou koncentraci iontů v sheathu $\overline{n_i}$:

$$U_{sh} = \frac{Q^2}{2e \,\overline{n_i} \,\varepsilon_0 \, S^2} \,\mathcal{I}$$
(14)
$$\mathcal{I} = 2 \int_0^1 \mathrm{d}\xi \int_0^{\xi} \frac{n_i(\xi')}{\overline{n_i}} \,\mathrm{d}\xi'$$

Nyní použijeme fakt, že celkový náboj v obou sheathech $Q_M = Q_g(t) + Q_v(t)$ je konstantní a pokud tedy každý sheath během periody jednou téměř zkolabuje, je maximální náboj každého sheathu přibližně Q_M . Potom platí

$$U_{e\,max} = U_{g\,max} = \frac{Q_M^2}{2e\,\overline{n_{ig}}\,\varepsilon_0\,S_g^2}\,\mathcal{I}_g \tag{15}$$

 $Q_g(t)$

$$U_{e\,min} = -U_{v\,max} = -\frac{Q_M^2}{2e\,\overline{n_{iv}}\,\varepsilon_0\,S_v^2}\,\mathcal{I}_v \tag{16}$$

a můžeme definovat parametr nesymetrie \mathcal{E}

$$\mathcal{E} = \frac{U_{g\,max}}{U_{v\,max}} = \left(\frac{S_v}{S_g}\right)^2 \frac{\overline{n_{iv}}}{\overline{n_{ig}}} \frac{\mathcal{I}_g}{\mathcal{I}_v} \tag{17}$$

Při výpočtu stejnosměrného předpětí (bias) označím $U_e = U_{e0} + U_{eRF}(t)$, kde U_{e0} je samovolně vzniklé stejnosměrné předpětí a U_{eRF} je známé vf. napětí dodávané na elektrodu z vf. generátoru. Při zanedbání impedance bulkového plazmatu platí $U_e = U_g - U_v$. Můžeme výhodně využít situaci ve dvou extrémech napájecího napětí

$$U_{g max} = U_{e 0} + U_{e RF max}$$
$$-U_{v max} = U_{e 0} + U_{e RF min}$$

 $Q_{v}(t)$

a dostáváme

$$U_{e\,0} = -\frac{U_{e\,RF\,max} + \mathcal{E}U_{e\,RF\,min}}{1 + \mathcal{E}} \tag{18}$$

Pro symetrické napájecí napětí $(U_{e\,RF\,max} = -U_{e\,RF\,min}, \text{např.} U_{e\,RF} = U_{e\,RF\,max} \sin \omega t)$ vychází

$$U_{e\,0} = -U_{e\,RF\,max} \frac{1-\mathcal{E}}{1+\mathcal{E}} \tag{19}$$

6 Elektrický asymetrický efekt

Pro symetrické výboje má (18) tvar

$$U_{e\,0} = -\frac{U_{e\,RF\,max} + U_{e\,RF\,min}}{2}.$$

Použijeme-li tedy nesymetrické napájecí napětí, můžeme vytvořit elektrickou asymetrii (nenulové stejnosměrné předpětí) navzdory geometrické symetrii výboje [2].

Elektrický asymetrický jev pro silně asymetrické napájecí napětí.

 $P\check{r}iklad \ elektrick\acute{e}ho \ asymetrick\acute{e}ho \ jevu \ pro \ U_{e\,RF} \ = \ U\cos{(\omega t + \Phi)} \ + \ U\cos{(2\omega t)}.$

7 Nelineární vlastnosti sheathu

Literatura: [3, 5]

Pro $n_i = konst.$ platí přibližně

$$E = \frac{nes}{\varepsilon_0}$$
$$U_{sh} = \frac{nes^2}{2\varepsilon_0}$$
$$j = \varepsilon_0 \frac{dE}{dt} = ne \frac{ds}{dt}$$

Podíváme se na dva nejjednodušší případy:

1) Monofrekvenční proud $I = I_1 \cos \omega t$: Jeden sheath:

$$s = \frac{I_1}{Sne\omega} (\sin \omega t + 1)$$

$$U_{sh} = \frac{1}{\varepsilon_0 en} \left(\frac{I_1}{S\omega}\right)^2 \left(\frac{3}{4} + \sin \omega t - \frac{1}{4}\cos 2\omega t\right)$$
(20)

Dva sheathy:

$$U_e(\omega t) = U_g(\omega t) - U_v(\omega t + \pi)$$
(21)

$$U_{e} = \frac{1}{\varepsilon_{0}en} \left(\frac{I_{1}}{\omega}\right)^{2} \left[\frac{3}{4} \left(\frac{1}{S_{g}^{2}} - \frac{1}{S_{v}^{2}}\right) + \left(\frac{1}{S_{g}^{2}} + \frac{1}{S_{v}^{2}}\right) \sin \omega t - \frac{1}{4} \left(\frac{1}{S_{g}^{2}} - \frac{1}{S_{v}^{2}}\right) \cos 2\omega t\right] (22)$$

$$U_{e0} = -\frac{3}{4} U_{e1} \frac{1 - \left(\frac{S_{v}}{S_{g}}\right)^{2}}{1 + \left(\frac{S_{v}}{S_{g}}\right)^{2}}$$
(23)

2) Monofrekvenční napětí
$$U_{sh} = U_0 + U_1 \cos \omega t$$
:

$$I = Sne \frac{\mathrm{d}s}{\mathrm{d}t} = S \sqrt{\frac{\varepsilon_0 ne}{2}} \frac{1}{\sqrt{U_{sh}}} \frac{\mathrm{d}U_{sh}}{\mathrm{d}t}$$
(24)

$$I = -S \sqrt{\frac{\varepsilon_0 ne}{2}} \frac{U_1}{\sqrt{U_0}} \frac{\omega \sin \omega t}{\sqrt{1 + \frac{U_1}{U_0} \cos \omega t}}$$
(25)

 $Monofrekvenční \ proud \ sheathem$

Monofrekvenční napětí na sheathu

8 Rozdělovací funkce energií iontů

Základní parametry:

• Poměr střední doby průletu iontu stěnovou vrstvou a vf. periody:

$$\frac{T_i}{T} \approx \frac{3\bar{s}\omega}{2\pi} \sqrt{\frac{m_i}{2eU_0}} \tag{26}$$

• Počet srážek iontu ve stěnové vrstvě $\approx 1/(\nu_i T_i)$

Literatura: [7]

8.1 Nízkofrekvenční režim bez srážek

 $T_i \ll T,$ energie iontu odpovídá aktuálnímu napětí na stěnové vrstvě v okamžiku dopadu iontu. Předpokládejme $U_{sh} = U_0 + U_1 \cos \omega t.$

8.2 Střední frekvence bez srážek

Také sedlová struktura, ale při růstu poměru T_i/T se sedlo zužuje.

Е

8.3 Vysokofrekvenční režim bez srážek

 $T_i \gg T$, pro $\frac{T_i}{T} \to \infty$ přechází sedlová struktura f_E do jednoho píku na energii $E = eU_0$.

$$f_{Ei} = \frac{1}{\pi \Delta E \sqrt{1 - \left(\frac{E - eU_0}{\Delta E}\right)^2}}$$

$$\Delta E = \frac{2eU_1}{\pi} \left(\frac{T}{T_i}\right)$$

$$E \in \langle eU_0 - \Delta E; eU_0 + \Delta E \rangle$$
(28)

8.4 Vliv srážek

- pružné srážky spojité snižování energie
- přenos náboje vznik nových píků f_{Ei}
- rozšiřování rozdělovací funkce úhlů

9 Přizpůsobovací člen

Například [1]:

10 Lokální/nelokální charakter plazmatu

Lokální režim:

$$\vec{j} (\vec{r}, t) = \sigma (\vec{r}, t) \vec{E} (\vec{r}, t) f_E (\vec{r}, t) = f_E \left[\vec{E} (\vec{r}, t) \right]$$

Nelokální režim:

$$\vec{j}(\vec{r},t) = \iiint_{\vec{r'}} \mathrm{d}\vec{r'} \int_{t' \le t} \mathrm{d}t' \ \sigma\left(\vec{r}-\vec{r'},t-t'\right) \vec{E}\left(\vec{r'},t'\right)$$
$$f_E\left(\vec{r},t\right) = f_E\left[\vec{E}\left(\vec{r'},t'\right)\right], \qquad \vec{r'} \in V, \ t' \le t$$

11 Mechanizmy ohřevu plazmatu

- srážkový ohřev $[9,\,1,\,6]$
- stochastický ohřev [9, 1, 17]

- bounce resonance [12]

- obrácení pole [16]
- γ -procesy, α a γ režim [14, 19, 11, 13]

11.1 γ režim

Potenciálová emise – emise elektronu z elektrody při nárazu i
ontu, $\sim 0,01.$

Popis elektronové laviny ve stěnové vrstvě:

$$\frac{\mathrm{d}j_e}{\mathrm{d}x} = \alpha \left[E(x,t) \right] j_e$$

$$j_e(x) = j_e(0) e^{\int_0^x \alpha \left[E(x',t) \right] \mathrm{d}x'}$$

$$j_e(0) = \gamma j_i$$

$$\langle j_i \rangle = \left\langle \gamma j_i \left\{ e^{\int_0^{s(t)} \alpha \left[E(x,t) \right] \mathrm{d}x} - 1 \right\} \right\rangle + env_B$$
(29)

Je-li nv_B zanedbatelné, můžeme z poslední rovnice spočítat průrazné napětí pro přechod stěnové vrstvy do γ režimu. Hustotu proudu, při které stěnová vrstva přejde do γ režimu, lze odhadnout pomocí

$$j = ne \frac{\mathrm{d}s}{\mathrm{d}t} \approx \frac{\varepsilon_0}{s} \frac{\mathrm{d}U}{\mathrm{d}t}$$

$$j_1 \approx \varepsilon_0 \frac{\omega U_1}{s}$$
(30)

Přechod $\alpha \to \gamma :$

- vzrůst koncentrace elektronů, vodivosti plazmatu, proudové hustoty
- zúžení stěnových vrstev, vytvoření struktury analogické struktuře doutnavého výboje
- stažení výboje do menší plochy, vznik VA charakteristiky s konst. napětím
- zvýšení dodávaného výkonu
- někdy prudký přeskok a hystereze
- změny EEDF (posun k Maxwellově EEDF, růst koncentrace elektronů, pokles teploty elektronů)

12 Globální modely

Vstupní parametry: tlak, vzdálenost elektrod (l), úhlová frekvence el. pole (ω) , amplituda vf. proudu (I_1) , druh plynu $(K_i, E_i, \nu, K_{exc}, E_{exc}, K_{el}, m_n)$

Výstupní parametry: koncentrace elektronů (n), teplota elektronů (T_e) , střední tloušťka stěnové vrstvy (s) [1].

• Rovnováha počtu elektronů:

$$n_n \bar{n} K_i \left(l - s \right) = 2h_l n_c u_B \tag{31}$$

$$K_i = K_{i0} e^{-\frac{E_i}{kT_e}}$$
(32)

$$u_B = \sqrt{\frac{kT_e}{m_i}} \tag{33}$$

 $(n_n$ je koncentrace neutrálů, \bar{n} střední koncentrace elektronů v bulkovém plazmatu, K_i rychlostní konstanta ionizace, n_c koncentrace elektronů v centru výboje, h_l poměr koncentrace elektronů na hranici bulk-sheath a v centru výboje, u_B Bohmova rychlost, E_i ionizační energie neutrálů.)

• Rovnováha střední energie elektronů:

$$\frac{1}{2} \left(R_{ohm} + 2R_{stoch} + 2R_{ohm,sh} \right) I_1^2 = 2h_l n_c u_B E_T(T_e) S \tag{34}$$

$$E_T = E_i + \frac{K_{exc}}{K_i} E_{exc} + \frac{3m}{m_n} \frac{K_{el}}{K_i} kT_e + 2kT_e + e\Delta\Phi$$
(35)

$$R_{stoch} = 0.72 \ (mkT_e)^{1/2} \frac{\omega s}{eI_1}$$
(36)

$$R_{ohm} = 1.55 \, hm\nu \left(l - 2s\right) \left(\frac{\omega}{eI_1}\right)^{3/2} \left(S\varepsilon_0 skT_e\right)^{1/2} \tag{37}$$

$$R_{ohm,sh} = 0.33 \, m\nu s \frac{\omega s}{eI_1} \tag{38}$$

 $(R_{ohm}, R_{stoch} a R_{ohm,sh}$ jsou odpory výboje způsobené srážkovým ohřevem v bulkovém plazmatu, stochastickým ohřevem a srážkovým ohřevem ve stěnové vrstvě, E_T je průměrná energie dodaná jednomu elektronu, K_{exc} rychlostní konstanta excitace neutrálů, E_{exc} excitační energie, K_{el} rychlostní konstanta pružných srážek elektronů s neutrály, m_n hmotnost neutrálů, $\Delta \Phi$ průměrný rozdíl potenciálů, který musí překonat elektron opouštějící plazma.)

• Tloušťka stěnových vrstev:

$$s = \frac{5}{12eh_l^2 n_c^2 \varepsilon_0 k T_e} \left(\frac{I_1}{S\omega}\right)^3 \tag{39}$$

Uvedené verze rovnic platí pro nízkotlaké elektropozitivní plazma se zanedbatelným vlivem srážek ve stěnové vrstvě.

13 Nezávislé řízení koncentrace reaktivních částic a energie iontů

• Kombinace DC + RF [20, 10]

- Kapacitní biasování elektrody v jiném typu výboje (ICP, MW)
- Dvoufrekvenční CCP [1, 4]
- Elektrický asymetrický efekt [2, 4, 18]

14 Zapalování kapacitně vázaných výbojů

Zápalné napětí vysokotlaké větve:

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \nu_i n + D \frac{\mathrm{d}^2 n}{\mathrm{d}x^2}$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} \ge 0$$

$$n \approx n_{\mathrm{centr}} \sin\left(\sqrt{\frac{\nu_i}{D}}x\right)$$

$$\nu_i = D\left(\frac{\pi}{l}\right)^2$$

$$\nu_i = K_1 p \,\mathrm{e}^{-K_2 \frac{lp}{U}}$$

$$U = \frac{K_2 p l}{\ln\left(\frac{K_1 p l}{\pi^2} \frac{l}{D}\right)}$$

Značení veličin

ω_{pi}	plazmová frekvence iontů
ω	úhlová frekvence el. pole
ω_{pe}	plazmová frekvence elektronů
l	vzdálenost elektrod
λ	vlnová délka
σ	měrná vodivost plazmatu
n	koncentrace elektronů
e	elementární náboj
m	hmotnost elektronu
ν	střední srážková frekvence pro přenos hybnosti elektronu (srážky s neutrály)
ε_0	permitivita vakua
p	hustota výkonu
j	hustota proudu
j_1	amplituda hustoty proudu
E	intenzita elektrického pole
	energie
E_1	amplituda intenzity elektrického pole
n_0	koncentrace elektronů na hranici bulkového plazmatu a stěnové vrstvy
n_i	koncentrace iontů
k	Boltzmannova konstanta
T_e	teplota elektronů
U_{sh}	napětí na (libovolné) stěnové vrstvě
m_i	hmotnost iontu
s	tloušťka stěnové vrstvy
U_0	stejnosměrná hodnota napětí
U_1	amplituda základní frekvence napětí
I_0	modifikovaná Besselova funkce 1. druhu řádu 0
Z_b	impedance vlastního $(bulk)$ plazmatu
l_b	délka vlastního plazmatu
S	plocha elektrody
Z_{sh}	impedance stěnových vrstev
C_{sh}	kapacita stěnové vrstvy / stěnových vrstev
s_{tot}	celková tloušťka obou stěnových vrstev dohromady
Z	impedance výboje
ω_{sr}	úhlová frekvence sériové rezonance plazmatu
U_g	napětí na stěnové vrstvě u zemněné elektrody
U_v	napětí na stěnové vrstvě u živé (vf.) elektrody
U_e	napětí na živé elektrodě
κ	mocnina vystupující v závislosti napětí na tloušťce stěnové vrstvy
α	fázový rozdíl mezi proudem a napětím
	mocnina vyjadřující vztah mezi elektrickou a geometrickou nesymetrií výboje

označení pro režim kapacitního výboje, kde elektrony z elektrod nehrají podstatnou roli 1. Towsendův koeficient

- S_q plocha zemněné elektrody
- S_v plocha živé (vf.) elektrody
- Q el. náboj
- Q_g náboj ve stěnové vrstvě u zemněné elektrody
- Q_v náboj ve stěnové vrstvě u živé (vf.) elektrody
- Q_M celkový náboj v obou stěnových vrstvách
- Φ el. poteciál

 $U_{x\,max}$ maximální hodnota napětí U_x

 $U_{x \min}$ minimální hodnota napětí U_x

- $U_{e\,RF}$ vf. část napětí na živé elektrodě (tj. $U_e U_{e0}$)
 - \mathcal{I} výraz závislý na profilu koncentrace iontů ve stěnové vrstvě
 - \mathcal{E} parametr nesymetrie výboje
 - I el. proud
 - T_i střední doba průletu i
ontu stěnovou vrstvou
 - T perioda výboje
 - ν_i střední srážková frekvence i
ontu
- f_{Ei} rozdělovací funkce energie iontů
- f_E rozdělovací funkce energie elektronů
- ν_i ionizační frekvence
- D difúzní koeficient

Literatura

- P. Chabert and N. Braithwaite. *Physics of Radio-Frequency Plasmas*. Cambridge University Press, 2011.
- [2] U. Czarnetzki, B. G. Heil, J. Schulze, Z. Donkó, T. Mussenbrock, and R. P. Brinkmann. Journal of Physics: Conference Series, 162:012010, 2009.
- [3] U. Czarnetzki, T. Mussenbrock, and R. P. Brinkmann. *Physics of Plasmas*, 13:123503, 2006.
- [4] Z. Donkó. Plasma Sources Sci. Technol., 20:024001, sect. 5, 2011.
- [5] P. Dvořák. Plasma Sources Sci. Technol., 22:045016, 2013.
- [6] T. Hemke, D. Eremin, T. Mussenbrock, A. Derzsi, Z. Donkó, K. Dittmann, J. Meichsner, and J. Schulze. *Plasma Sources Sci. Technol.*, 22:015012, 2013.
- [7] E. Kawamura, V. Vahedi, M. A. Lieberman, and B. C. K. Plasma Sources Sci. Technol., 8:R45-R64, 1999.
- [8] M. A. Lieberman. *IEEE T Plasma Sci*, 16:638, 1988.

- [9] M. A. Lieberman and A. J. Lichtenberg. Principles of Plasma Discharges and Materials Processing. John Wiley & sons, inc., 1994.
- [10] V. A. Lisovskiy, N. D. Kharchenko, and V. D. Yegorenkov. J. Phys. D: Appl. Phys., 41:125207, 2008.
- [11] D. W. Liu, F. Iza, and M. G. Kong. Applied Physics Letters, 93:261503, 2008.
- [12] Y. X. Liu, Q. Z. Zhang, J. Liu, Y. H. Song, A. Bogaerts, and Y. N. Wang. Plasma Sources Sci. Technol., 22:025012, 2013.
- [13] Z. Navrátil, L. Dosoudilová, R. Josepson, P. Dvořák, and D. Trunec. Plasma Sources Sci. Technol., 23:042001, 2014.
- [14] Y. P. Raizer. Gas Discharge Physics. Springer, 1997.
- [15] V. P. Savinov. *Physics of Radiofrequency Capacitive Discharge*. CRC Press, 2018.
- [16] J. Schulze, Z. Donkó, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann, and U. Czarnetzki. J. Phys. D: Appl. Phys., 41:105214, 2008.
- [17] J. Schulze, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann, and U. Czarnetzki. J. Phys. D: Appl. Phys., 41:042003, 2008.
- [18] J. Schulze, E. Schüngel, Z. Donkó, and U. Czarnetzki. Plasma Sources Sci. Technol., 19:045028, 2010.
- [19] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang, and R. F. Hicks. *Plasma Sources Sci. Technol.*, 14:314, 2005.
- [20] M. Zeuner, H. Neumann, and J. Meichsner. J. Appl. Phys., 81:2985, 1997.