1 Capacitively coupled discharges — basic characterisation Basic literature: [9, 1] I < A 2 RF plasma conductivity 1 v + \uj £0 ^pe — uj2 + wo) -0 E2 ne2 -> o -Š 3 RF. sheath Literature: [1, 8] L). 1 a m(v + ílj) m(v + \=0 Ue rf min - Electric asymmetrical effect for a strongly asymmetric supplied voltage. An example of the electric asymmetric effect for UeRp = U cos (cut + / rrii T 2tt V 2eU0 • Number of ion collisions inside the sheath pa 1/ (i^Ti) (26) Literature: [7] 8.1 Collisionless low-frequency regime Tj oo the saddle structure fg transforms itself to a single peak at the energy E eU0. I Ei - - ^(1) E E (eUo-AE; eU0 + AE) 8.4 Collisions • elastic collisions - continuous decrease of ion energy • charge transfer - generation of new peaks in the EEDF (/ei) • broadening of the ion angle distribution (28) 9 Matching box For example [1]: stray 7^ C- 10 Local/non-local plasma character Local regime: j(r,t) = a{r,t)E(r,t) fE(r,t) = fE\E(r,t) Nonlocal regime: dp j d/' rr ( F- r'. I - I') /•; (/' //'7 transition: • increase of electron concentration, plasma conductivity and current density • decrease of sheath thickness, generation of a discharge structure that is analogous to the structure of the DC glow discharge • discharge contraction to a smaller area, VA characteristics with a constant discharge voltage • increase of supplied power • in some cases an abrupt transition with hysteresis • EEDF variations (shift to the Maxwell EEDF, increase of electron concentration, decrease of electron temperature) 9 12 Global models Input parameters: pressure, electrode distance (/), angular frequency of the electric field (lu), RF current amplitude (ii), gas composition (Ki, Ei, v, Kexc, Eexc, Kei, mn) Output parameters: electron concentration (n), electron temperature (Te), mean sheath thickness (s) [1]. • Balance of the number of electrons: nnnKl (I - s) = 2hincuB (31) Ki = Kl0e-^ (32) ub = \ — (33) V m (nn is the concentration of neutrals, n is the means electron concentration in the bulk plasma, Ki is the rate constant for ionization, nc is the electron concentration in the discharge center, hi is the ratio between the electron concentration at the bulk-sheath border and in the plasma center, ub is the Bohm velocity, Ei is the ionization energy of neutrals.) • Balance of the mean electron energy: 77 (.Rohm + 2Rstoch + 2RohmiSh) I( = 2hlncuBET{Te)S (34) ET = El + ^Eexc + —^kTe + 2kTe + eA$ (35) K% mn A, Rstoch = 0.72 (mkTe)1/2 (36) e/i / \ 3/2 Rohm = 1.55W(/-2s) (^-J (Se0skTe)1/2 (37) lus Rohm,sh = 0.33mi/s— (38) eh {Rohmi Rstoch and R0hm,sh are resistivities caused by the collisional heating in the bulk plasma, stochastic heating and collisional heating in the sheath, Ex is the mean energy supplied to one electron, Kexc is the rate constant for excitation of neutrals, Eexc is the excitation energy, Ke\ is the rate constant for elastic collisions between electrons and neutrals, mn is the mass of neutrals, A is the average voltage that must be overcome by an electron that leaves plasma.) Sheath thickness: ' h 12eh2n2c£0kTe \S< (39) The equations listed above are valid for low-pressure plasma with no negative ions and with no collisions in the sheaths. 10 13 Independent control of the reactive species concentration and ion energy • DC + RF [19, 10] ( > • Capacitive biasing of an electrode in a different discharge (ICP, MW) • Double-frequency CCP [1, 4] • Electric asymmetric effect [2, 4, 17] 14 CCP ignition P n Breakdown voltage in the high-pressure branch: dn ~dt dn ~dt U > 0 D . d2n dx2 77-centr Sin K\pe -K2 i_p In K2Pl < Pi i ifiTlTT2 D 12 Used marking of quantities ojpi plasma frequency of ions cj (angular) frequency of el. field ujpe plasma frequency of electrons / electrode separation A wavelength a plasma conductivity n electron concentration e elementary charge m electron mass v mean collisional frequency of transition of momentum of the electron (to neutrals) Eq vacuum permittivity p power density j current density jl current density amplitude E electric field intensity energy Ei amplitude of electric field intensity tiq electron concentration at the plasma-sheath border rii ion concentration k Boltzmann constant Te electron temperature Ush sheath voltage m, ion mass s sheath thickness Uo DC voltage component U± amplitude of the fundamental voltage component Io modified Bessel function of the 1. kind, order 0 Zf, bulk plasma impedance bulk plasma length S electrode Zsh sheath impedance Csh sheath(s) capacity stot total thickness of both sheaths Z discharge impedance ivsr (angular) frequency of the plasma-sheath resonance Ug sheath voltage (at the grounded electrode) Uv sheath voltage (at the powered electrode) Ue powered electrode voltage k power in the dependence of the sheath voltage on the sheath thickness a phase difference between current and voltage power in the dependence of the electric and geometric discharge asymmetry 13 designation of the CCP regime with negligible role of 7-electrons 1. Towsend coefficient Sg grounded electrode area Sv powered electrode area Q el. charge Q9 sheath charge at the grounded electrode Qv sheath charge at the powered electrode Qm total charge in both sheaths $ el. potential Ux max maximum value of the voltage Ux Ux min minimum value of the voltage Ux UeRF RF component of the powered electrode voltage (i.e. Ue — Ueo) 1 quantity that describes profile of ion concentration inside a sheath 8 discharge asymmetry parameter I electric current Ti mean transit time of an ion through a sheath T discharge period Vi mean collisional frequency of an ion ÍEi IEDF ÍE EEDF (electron energy distribution function) Vi ionization frequency D coefficient of diffusion References [1] P. Chabert and N. Braithwaite. Physics of Radio-Frequency Plasmas. Cambridge University Press, 2011. [2] U. Czarnetzki, B. G. Heil, J. Schulze, Z. Donkó, T. Mussenbrock, and R. P. Brinkmann. Journal of Physics: Conference Series, 162:012010, 2009. [3] U. Czarnetzki, T. Mussenbrock, and R. P. Brinkmann. Physics of Plasmas, 13:123503, 2006. [4] Z. Donkó. Plasma Sources Sei. TechnoL, 20:024001, sect. 5, 2011. [5] P. Dvořák. Plasma Sources Sei. TechnoL, 22:045016, 2013. [6] T. Hemke, D. Eremin, T. Mussenbrock, A. Derzsi, Z. Donkó, K. Dittmann, J. Meichsner, and J. Schulze. Plasma Sources Sei. TechnoL, 22:015012, 2013. [7] E. Kawamura, V. Vahedi, M. A. Lieberman, and B. C. K. Plasma Sources Sei. TechnoL, 8:R45-R64, 1999. [8] M. A. Lieberman. IEEE T Plasma Sei, 16:638, 1988. [9] M. A. Lieberman and A. J. Lichtenberg. Principles of Plasma Discharges and Materials Processing. John Wiley & sons, inc., 1994. 14 [10] V. A. Lisovskiy, N. D. Kharchenko, and V. D. Yegorenkov. J. Phys. D: Appl. Phys., 41:125207, 2008. [11] D. W. Liu, F. Iza, and M. G. Kong. Applied Physics Letters, 93:261503, 2008. [12] Y. X. Liu, Q. Z. Zhang, J. Liu, Y. H. Song, A. Bogaerts, and Y. N. Wang. Plasma Sources Sei. Technol., 22:025012, 2013. [13] Z. Navrátil, L. Dosoudilová, R. Josepson, P. Dvořák, and D. Trunec. Plasma Sources Sei. Technol., 23:042001, 2014. [14] Y. P. Raizer. Gas Discharge Physics. Springer, 1997. [15] J. Schulze, Z. Donkó, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann, and U. Czarnetzki. J. Phys. D: Appl. Phys., 41:105214, 2008. [16] J. Schulze, B. G. Heil, D. Luggenhölscher, T. Mussenbrock, R. P. Brinkmann, and U. Czarnetzki. J. Phys. D: Appl. Phys., 41:042003, 2008. [17] J. Schulze, E. Schüngel, Z. Donkó, and U. Czarnetzki. Plasma Sources Sei. Technol., 19:045028, 2010. [18] X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang, and R. F. Hicks. Plasma Sources Sei. Technol., 14:314, 2005. [19] M. Zeuner, H. Neumann, and J. Meichsner. J. Appl. Phys., 81:2985, 1997. 15