Základy zpracování geologických dat Normální rozdělení §R. Čopjaková § § rozdeleni cetnosti Od četnosti k pravděpodobnosti zahušťujeme měření zahušťujeme měření n f n f Hustota rozdělení pravděpodobností frekvenční funkce pravděpodobnostní funkce Normální rozdělení N (m, s2) (spojité) § § Frekvenční funkce normálního rozdělení §Normální rozdělení pravděpodobnosti s parametry μ a σ2 § je definováno hustotou pravděpodobnosti ve tvaru § –kde m = (Ex) je střední hodnota normálního rozdělení (μ by se měla blížit aritmetickému průměru naměřených hodnot) – –a σ2 je rozptyl, (σ je směrodatná odchylka) – – základní soubor výběrový soubor – – μ x – – • σ2 Sx2 § § Soubor:Normalni rozdeleni hustota.svg Hustota normálního rozdělení pravděpodobnosti Frekvenční funkce normálního rozdělení = (tzv. Gaussova křivka) μ Normální rozdělení § §Plocha pod křivkou hustoty má velikost 1. §Protože hustota je symetrická kolem m, znamená to, že m dělí plochu pod křivkou na dvě stejné části - každá z nich má tedy velikost plochy 1/2. §Ve vzdálenosti jedné směrodatné odchylky se nacházejí inflexní body funkce §Pravděpodobnost P, že náhodná veličina bude mít hodnotu padnoucí do intervalu je rovna ploše vyšrafované v grafu. § § § § normalni rozdeleni graf1 rozptyl směrodatná odchylka Rozptyl Sx2 určuje průměrnou čtvercovou odchylku od aritmetického průměru Směrodatná odchylka Sx nám umožňuje odhadnout interval, ve kterém očekáváme naměřenou hodnotu Frekvenční křivka normálního rozdělení A B P m - s m + s 0,682 m -2s m + 2s 0,954 m– 3s m + 3s 0,997 m – ∞ m + ∞ 1,000 normalni rozdeleni graf Normální rozdělení §Hustota rozdělení pravděpodobností Hustota rozdělení pravděpodobností a)Pro stejné s a různé m b) b) b) b) b) b) b)Pro různé s a stejné m §Normální rozdělení má zásadní význam v teorii pravděpodobnosti a matematické statistice a řídí se jím (alespoň "přibližně") mnoho náhodných veličin. Nejběžnějším typem takových veličin jsou náhodné chyby (chyby měření). Proto se normálnímu rozdělení někdy říká rozdělení chyb. § §Rovněž mnohé náhodné veličiny v geologii se řídí tímto rozdělením nebo jejich rozdělení jím může být velmi dobře aproximováno. § §Někdy se rovněž můžeme setkat s označením Gaussova křivka pro označení hustoty normálního rozdělení, podle jednoho z praotců tohoto rozdělení. § §Normální rozdělení je jednovrcholové rozdělení symetrické okolo střední hodnoty, kterou budeme značit µ. Hustota pravděpodobnosti má zvonovitý tvar - maxima dosahuje ve střední hodnotě. § §"Konce" tohoto rozdělení vypadají, jako by se již dotýkaly osy x, nikdy se jí však nedotknou, i když jsou jí tím blíže, čím více se vzdalujeme od střední hodnoty µ - ať již doleva či doprava. § §Normální rozdělení je jednoznačně určeno střední hodnotou a rozptylem, jež jsou jeho parametry. Pokud tedy tyto dvě charakteristiky známe, můžeme určit lehce již vše ostatní - to je tvar celého rozdělení. § §Dobře aproximuje řadu jiných (i diskrétních) pravděpodobnostních rozdělení. § §Při řešení pravděpodobnostních úloh se často předpokládá, že sledovaná náhodná veličina má normální rozdělení, ačkoliv její skutečné rozdělení má jen podobný tvar, tzn. je jednovrcholové a přibližně symetrické. Tento postup je samozřejmě teoreticky podložen, jak dále uvidíme, a je velmi výhodný, neboť usnadňuje teoretické řešení mnoha problémů i praktické výpočty. V geologii mají normální rozdělení např. tyto náhodné veličiny § topografický reliéf § hustota hornin § obsah hlavních oxidů v horninách a minerálech §stanovení stáří hornin Koeficient šikmosti § §Koeficient šikmosti je charakteristika rozdělení náhodné veličiny, která popisuje jeho nesymetrii §Šikmost označuje stupeň asymetričnosti rozdělení veličiny kolem střední hodnoty §Nulová šikmost - hodnoty náhodné veličiny jsou rovnoměrně rozděleny vlevo a vpravo od střední hodnoty – symetrické rozdělení §Soubor dat s normálním rozdělením má koeficient šikmosti blízký nule. §Výběrový koeficient šikmosti je definován vzorcem – g = v excelu funkce SKEW § §>0 pozitivně šikmé <0 negativně šikmé § Vztah mezi frekvenční a distribuční funkcí §pro distribuční fci diskrétní náhodné veličiny platí: F(x) = P(X ≤ x) a tedy f(x) F(x) \begin{displaymath} F(x) = \sum_{x_i \leq x} p(x_i) \end{displaymath} histogramy Normální rozdělení §Distribuční funkce normálního rozdělení – spojitá funkce § § § §Plocha pod křivkou hustoty má velikost 1. Jinými slovy, integrál z hustoty pravděpodobnosti normálního rozdělení přes celý definiční obor náhodné veličiny je roven jedné. F(x) = \int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-\frac{{(t-\mu)}^2}{2\sigma^2}} \;\mathrm{d}t Vztah mezi frekvenční a distribuční funkcí spojité náhodné veličiny §Pro případ normálního rozdělení ~AUT0005 distribuční funkce se dá vyjádřit pomocí integrálu: $F(x)$ \begin{displaymath} F(x) = \int_{-\infty}^{x} f(t) \ {\rm d} t \end{displaymath} Velikost vybarvené plochy pod frekvenční funkcí odpovídá hodnotě distribuční funkce F v bodě z § Pravděpodobnost P, že náhodná veličina bude mít hodnotu padnoucí do intervalu je rovna ploše vyšrafované v grafu frekvenční funkce nebo úseku na ose y pro x z intervalu v grafu distribuční funkce. § ~AUT0002 Statistické funkce v excelu §NORM.DIST – pro stanovení frekvenční i distribuční funkce náhodné veličiny s normálním rozdělením pravděpodobností –Zadat x, pro které chci stanovit hodnotu frekv. či distr. fce –Zadat parametry norm. rozd. – průměr a směrodatnou odchylku –Volba distribuční/frekvenční funkce – pravda(1)/nepravda(0) – –Úkol: Průměrná hustota granitoidů melechovského masivu je 2,65 g/cm3 a směrodatná odchylka 0,12 g/cm3. Soubor dat má přibližně normální rozdělení. Spočti podíl hornin s hustotou v intervalu aritmetický průměr ± Sx. § Stanovím hodnotu distribuční funkce v bodech x1 = 2,65-0,12 a x2 = 2,65+0,12 § Fx1 = NORM.DIST(2,53; 2,65; 0,12; 1) = 0,159 § Fx2 = NORM.DIST(2,77; 2,65; 0,12; 1) = 0,841 § P = Fx2 – Fx1 = 0,841-0,159 = 0,683 (68,3%) § § § § § Transformace normálního rozdělení na standardizované normální rozdělení §Frekvenční funkce normálního rozdělení § § § §Náhodnou veličinu X s normálním rozdělením N(m, s2) transformuji pomocí tzv. Z-transformace na veličinu se standardním normálním rozdělením, tedy s m = 0 a s2 = 1 § § Z-transformace § §Normované (nebo standardizované) normální rozdělení má tedy hustotu pravděpodobnosti § § § §Standardizované normální rozdělení se značí N(O, 1) §Využívá se často při práci s vícerozměrnými soubory dat § Statistické funkce v excelu § §NORM.S.DIST - pro stanovení frekvenční i distribuční funkce náhodné veličiny se standardním normálním rozdělením pravděpodobností –Zadat x, pro které chci stanovit hodnotu frekv. či distr. fce –Volba distribuční/frekvenční funkce – pravda/nepravda –Střední hodnotu a směrodatnou odchylku nezadávám, jsou stálé N(O;1) – –Úkol: Stanovte hodnotu distribuční funkce pro střední hodnotu standartního normálního rozdělení –Fx1 = NORM.S.DIST(0; 1) = 0,5 § § § § Děkuji za pozornost § § §