Chemical methods in geology 2a. Hydrogeochemical Diagrams Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593 Topics • Diagrams in hydrogeochemistry – Stiff diagram – Piper diagram – Durov diagram – pH- Eh DIAGRAMS Diagrams • Clearer presentation of a larger number of samples • Usually plot of basic ions (Mg2+, Ca2+, K+, Na+ and Cl−, HCO3 −, SO4 2−, NO3 −) • Visual comparison – quick recognition of the same types of water • Maps • Point graphs expressing correlations are also handy (e.g. Na+ and Cl−) R² = 0,0054 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0 0,05 0,1 0,15 0,2 0,25 0,3 Na+[mmol/L] Cl-[mmol/L] Korelace Na-Cl R² = 0,5527 0,060 0,065 0,070 0,075 0,080 0,085 0,090 0,095 0,100 0,105 0,100 0,110 0,120 0,130 0,140 0,150 Mg[mmol/L] Si [mmol/L] Mg-Si correlation XY dot charts – Scatterplot Basic diagrams • Bar – In miliequivalents – Cation (left) and anion (right) part – They should be equal = electroneutrality • Pie – In milliequivalents – Circle size represents total mineralization – Cation (top) and anion (bottom) part – electroneutrality • Quick recognition of the same water typesAppelo & Postma (2005) Stiff diagram • Qualitative and quantitative composition • Three to four axes • On each axis a cation on left and an anion on the right in meq /L • A characteristic shape is formed Seawater Dissolving carbonates The other two main components of water + sometimes 4 axes (according to the needs of the given study) What are the properties of the waters shown? What environment will they match? Which one will correspond to rainwater? Calcite karst? Dolomite karst? Appelo & Postma (2005) Goal 2013 How are the waters different? Stiff on the map EnviroInsite Piper diagram • Especially suitable for large amounts of samples • We present the percentages of total meq/l of cations and anions separately • Main cations in the left triangle • Main anion in the right triangle • Projection into the central rhombus as a single point • Qualitative diagram • Assessment of water types • Quantity added through the shape or size of symbols – Typically total mineralization via size Appelo & Postma (2005) Water classification By Kvgunten - Own work , CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=56008459 Legend A: Calcium type B: No dominant type C: Magnesium type D: Sodium and potassium type E: Bicarbonate type F: Sulphate type G: Chloride type 1: Alkaline earths exceed alkalies 2: Alkalies exceed alkaline earths 3: Weak acids exceed strong acids 4: Strong acids exceed weak acids 5: Magnesium bicarbonate type 6: Calcium chloride type 7: Sodium chloride type 8: Sodium bicarbonate type 9: Mixed type Appelo & Postma (2005) Forejtová 2008 Forejtová 2008 Láznička 2016 Seifertová 2014 Seifertová 2014 Jeřábková 2013 Durov diagram • Application similar to a Piper diagram • Especially suitable for large amounts of data • The percentages of total meq/l of cations and anions plotted separately • Projection into the center square • Projection into pH and TDS rectangles • Semi-quantitative diagram Láznička 2016 Ušelová 2014 Říčka 2010 Schoeller diagram • Quantitative comparison of the hydrochemical nature of waters • A smaller number of samples Clark (2015) Piper diagram construction Pleiades of paid software • GWB Free tools (Diagrammes, GW_Plot) – older, not recommended On paper In Excel - extremely impractical, but doable Macros for Python, R and other solutions Construction of diagrams in GWB • Data in GSS • Plot – Piper diagram, Stiff etc. Data from Clark 2015 (Table 7.2) – file Data_diagram.gss meq/L Sample Discharge (m3/s) TDS Ca2+ Mg2+ Na+K HCO3- SO42- ClChloride spring 2869 2.7 1.84 45.6 4.41 4.76 35.1 Carbonate spring 170 2.3 0.21 0.04 1.95 0.01 0.02 Sulfate spring 287 2.5 1.37 0.33 1.28 2.8 0.007 River water January 1.8 2607 2.7 1.8 41.1 4.1 4.5 31.6 February 1.6 2791 2.7 1.8 44.2 4.3 4.7 34 March 2 2341 2.6 1.6 36.5 3.9 4.1 28.1 April 4 1308 2.6 1.4 18.4 2.6 3.3 14 May 151.7 203 2.3 0.3 0.5 1.9 0.2 0.4 June 52.5 274 2.4 0.5 1.5 1.9 0.7 1.1 July 19.9 421 2.4 0.7 3.8 1.9 1.2 2.8 August 10.6 622 2.4 0.9 7 2.1 1.8 5.3 September 6.4 903 2.5 1.2 11.6 2.2 2.6 8.8 October 2.9 1689 2.6 1.5 25.2 3.1 3.5 19.3 November 2.1 2218 2.6 1.7 34.3 3.7 4.1 26.3 December 1.9 2476 2.7 1.8 41.1 4.1 4.5 31.6 20% 20% 20% 40% 40% 40% 60% 60% 60% 80% 80% 80% Mg Ca 20% 20% 20% 40% 40% 40% 60% 60% 60% 80% 80% 80% SO4 Cl SO 4+Cl Ca+Mg HCO 3+CO 3 Na+K 80% 80% 60% 60% 40% 40% 20% 20% I I I J J J K K K L L L M M M O O O P P P A A A B B B C C C D D D E E E G G G H H H I I I I Chloride spring J Carbonate spring K Sulfate spring L January M February O March P April A May B June C July D August E September G October H November I December Eh -pH diagrams • Visualization of acid-base and redox conditions in the environment • Assessment of speciation – Mobility, toxicity, environmental connections, geochemical evolution • Data plot Natural conditions Appelo & Postma (2005) Adapted from Ryan (2014) Hydrogeochemistry Appelo & Postma (2005) Speciation of Al • Construct an Eh-pH diagram for aluminum • Al concentration = 10−7.8 mol/L Speciation of Fe • Construct an Eh-pH diagram for iron • Fe2+ activity = 10−5 • The presence of sulfur (10−3) and carbonates (10−3) Speciation diagrams • Visualization of the dependence of speciation on the composition of the system Tento učební materiál vznikl v rámci projektu Rozvoj doktorského studia chemie č. CZ.02.2.69/0.0/0.0/16_018/0002593 References • Presented diagrams are created for this material or used from theses available online at: https://is.muni.cz/thesis/ • Other sources: • APPELO, CAJ and Dieke POSTMA. Geochemistry , groundwater and pollution :. _ 2nd ed . Leiden: AA Balkema publishers , c2005. ISBN 0-415-36421-3. • CLARK, I. (2015): Groundwater Geochemistry and Isotopes.BocaRaton , Florida: CRC Press. • Ryan, P. (2014). Environmental and low temperature geochemistry. John Wiley and Sons. 402p. ISBN 978-1-4051-8612-4 ( pbk .)