Exercise 1. Show that $(S^m, *) \wedge (S^n, *) \cong (S^{m+n}, *)$.

Solution. Using exercises 3 and 6 from the previous tutorial, we have

$$
(S^m, *) \land (S^n, *) \cong (D^m/S^{m-1}) \land (D^n/S^{n-1}) \cong
$$

\n
$$
\cong (D^m \times D^n) / (S^{m-1} \times D^m \cup D^n \times S^{n-1}) \cong
$$

\n
$$
\cong (I^m \times I^n) / (\partial I^m \times I^n \cup \partial I^n \times I^m) =
$$

\n
$$
= I^{m+n} / (\partial (I^{m+n})) \cong D^{m+n} / \partial D^{m+n} \cong S^{m+n}.
$$

Exercise 2. Show that $\mathbb{C}P^n$ is a $CW\text{-complex}$.

Solution. Clearly $\mathbb{C}P^0$ is a point. Next, we have

$$
\mathbb{C}P^{n} = \mathbb{C}^{n+1} \setminus \{0\}/\{v \sim \lambda v, \lambda \in \mathbb{C} \setminus \{0\}\} \cong S^{2n+1} \setminus \{0\}/\{v \sim \lambda v, |\lambda| = 1\} \cong
$$

\n
$$
\cong \{(w, \sqrt{1 - |w^{2}|}) \in \mathbb{C}^{n+1}, w \in D^{2n}\}/\{w \sim \lambda w \text{ for } |w| = 1\} \cong
$$

\n
$$
\cong (D^{2n} \cup S^{2n-1})/\{w \sim \lambda w \text{ for } w \in S^{2n-1}\} = D^{2n} \cup_{f} \mathbb{C}.
$$

Now taking the canonical projection $S^{2n-1} \to \mathbb{C}P^{n-1} \cong S^{2n-1}/\sim$ as the attaching map f yields a CW-complex with one cell in every even dimension till $2n$ and none in the odd ones. \Box

Exercise 3. From the lecture we know that $A := \{\frac{1}{n}\}$ $\frac{1}{n}, n \in \mathbb{N} \} \cup \{0\}$ as a subspace of $\mathbb R$ is not a CW-complex. Show that $X := I \times \{0\} \cup A \times I$ is not a CW-complex either.

Solution. Suppose that X is a CW-complex. Then it cannot contain cells of dimension ≥ 2, because it becomes disconnected after removing any point. In fact, the space obtained after removing any point $(a, 0)$ with $a \in A$ has more than two connected components (three for $a > 0$, to be exact), so these points cannot lie inside a 1-cell. Therefore these points must form 0-cells, but we already know that A does not have discrete topology, a contradiction. \Box

Exercise 4. Show that the Hawaiian earring given by

$$
X = \{(x, y) \in \mathbb{R}^2, (x - \frac{1}{n})^2 + y^2 = \frac{1}{n^2} \text{ for some } n\}
$$

is not a CW-complex.

Solution. Suppose that X is a CW-complex. Using similar arguments as in the previous exercise, we can see that $(0, 0)$ must be a 0-cell and that X must have either infinitely many 0-cells, or infinitely many 1-cells. But since X is compact, exercise 5 implies that X can have only finitely many cells, a contradiction. \Box

Exercise 5. Prove that every compact set A in a CW-complex X can have a nonempty intersection with only finitely many cells.

 \Box

Solution. X is comprised of cells that are indexed by elemnts of some set J. Let B be a set containing exactly one point from each intersection $A \cap e^{\beta}, \beta \in J$. We need to show that B is closed and discrete, which will imply that B is compact (since $B \subseteq A$) and discrete, hence finite. We know that a set $C \subseteq X^n$ is closed iff both $C \cap X^{n-1}$ and $C \cap e^n_\alpha$ for each $\alpha \in J$ are closed, because $D^n \cup_f X^{n-1}$ is a pushout. Using induction, this implies that $C \subseteq X$ is closed iff $C \cap e_\alpha$ is closed for each $\alpha \in J$. Since $B \cap e_\alpha$ contains at most one point for any $\alpha \in J$ and X is T_1 (even Hausdorff), this shows that B is closed. Using the same argument, B with any one point removed is closed. Therefore B is also discrete and we are done. \Box

Exercise 6. Show that for a short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ of abelian groups (or more generally modules over a commutative ring) the following are equivalent:

- (1) There exists $p: B \to A$ such that $pf = id_A$.
- (2) There exists $q: C \to B$ such that $qq = id_C$.
- (3) There exist $p : B \to A$ and $q : C \to B$ such that $fp + qg = id_B$.

(Another equivalent condition is $B \cong A \oplus C$, with (p, g) and $f + q$ being the respective inverse isomorphisms.)

Solution.

 $(1) \implies (2)$ and (3) :

Since q is surjective, for any $c \in C$ there is some $b \in B$ such that $q(b) = c$. Moreover, for any other $b' \in B$ such that also $g(b') = c$, we have $b - fp(b) = b' - fp(b')$, since $b - b' \in \ker g = \mathrm{im} f$, so that $b - b' = f(a)$ and

$$
fp(b - b') = fpf(a) = f(a) = b - b'.
$$

This shows that we can correctly define $q(c) := b - fp(b)$ for any such b. Then we have

$$
gq(c) = g(b) - gfp(b) = g(b) = c
$$

(since $gf = 0$), which shows that $gq = id_C$, and also $qg(b) = b - fp(b)$, hence $fp + qg = id_B$.

 $(3) \implies (1)$ and (2) :

Applying f from the right to the equation $fp + qg = id_B$ yields $fpf = f$ (since $gf = 0$), which together with the fact that f is injective implies $pf = id_A$. Similarly, applying g from the left yields $gqg = g$, which together with the fact that g is surjective implies $qq = \mathrm{id}_C.$ \Box

Exercise 7. Let $0 \to A_* \xrightarrow{f} B_* \xrightarrow{g} C_* \to 0$ be a short exact sequence of chain modules. We have defined the connecting homomorphism $\partial_* : H_n(C) \to H_{n-1}(A)$ by the formula $\partial_*[c] = [a]$, where $\partial c = 0$, $f(a) = \partial b$ and $g(b) = c$. Show that this definition does not depend on a nor b.

Solution. We have $\partial a = 0$ iff $f(\partial a) = 0$ (using injectivity of f) iff $0 = \partial f(a) = \partial \partial b$, and the last condition is true.

Now let $b, b' \in B$ be such that $g(b) = g(b') = c$ with $a, a' \in A$ such that $f(a) = b, f(a') = b'$. Then $b - b' \in \ker g = \mathrm{im} f$, so $b - b' = f(\overline{a})$ for some $\overline{a} \in A$. Therefore $f(\partial \overline{a}) = \partial b - \partial b' = f(\overline{a})$ $f(a - a')$ and the injectivity of f implies $\partial \overline{a} = a - a'$, hence $[0] = [\partial a'] = [a] - [a']$ and we are done. \Box