Exercise 1. Show $\partial \partial = 0$. Use formula $\varepsilon_{n+1}^i \circ \varepsilon_n^j = \varepsilon_{n+1}^{j+1} \circ \varepsilon_n^i$, where i < j. The definition for $\sigma \in C_n(X)$, $\sigma \colon \Delta^n \to X$, is

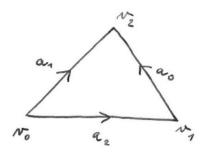
$$\partial \sigma = \sum_{i=0}^{n} (-1)^{i} \, \sigma \circ \varepsilon_{n}^{i}.$$

Solution. Easily workout

$$\begin{split} \partial(\partial\sigma) &= \partial\Big(\sum_{i=0}^{n+1} (-1)^i \,\sigma \circ \varepsilon_{n+1}^i\Big) = \sum_{i=0}^{n+1} (-1)^i \,\partial(\sigma \circ \varepsilon_{n+1}^i) = \\ &= \sum_{i=0}^{n+1} (-1)^i \Big(\sum_{j < i} (-1)^j \sigma \circ \varepsilon_{n+1}^i \circ \varepsilon_n^j + \sum_{j > i} (-1)^{j-1} \sigma \circ \varepsilon_{n+1}^i \circ \varepsilon_n^{j-1}\Big) = \\ &= \sum_{i=1}^{n+1} \sum_{j < i} (-1)^i (-1)^j \sigma \circ \varepsilon_{n+1}^i \circ \varepsilon_n^j + \sum_{i=1}^n \sum_{j > i} (-1)^{j+i-1} \sigma \circ \varepsilon_{n+1}^i \circ \varepsilon_n^{j-1}, \end{split}$$

now, with proper reindex and shift, this yields $\varepsilon_{n+1}^i \circ \varepsilon_n^j = \varepsilon_{n+1}^{j+1} \circ \varepsilon_n^i = \varepsilon_{n+1}^j \circ \varepsilon_n^{i-1}$, both sums are of the same elements but with opposite signs. Hence, $\partial \partial = 0$.

Exercise 2. Simplicial homology of $\partial \Delta^2$.



Solution. Chain complex of this simplicial homology is $C_0 = \mathbb{Z}[v_0, v_1, v_2] = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, $C_1 = \mathbb{Z}[a_0, a_1, a_2] = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. So

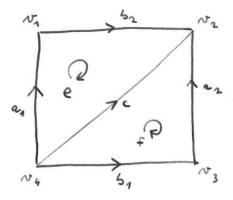
$$0 \to C_1 \stackrel{\partial}{\longrightarrow} C_0 \to 0,$$

where we want to determine ∂ and we know $\partial a_0 = v_2 - v_1$, $\partial a_1 = v_2 - v_0$, $\partial a_2 = v_1 - v_0$. Using simple linear algebra, we study generators ker ∂ and im ∂ :

$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & 0 & 0 \end{pmatrix},$$

therefore ker ∂ has a generator $a_0 - a_1 + a_2$ and im ∂ has two generators $-v_1 + v_2$ and $-v_0 + v_2$. We get $H_0 = \frac{\mathbb{Z}[v_0, v_1, v_2]}{\mathbb{Z}[-v_1 + v_2, -v_0 + v_2]} = \frac{\mathbb{Z}[-v_1 + v_2, v_0 + v_2, v_2]}{\mathbb{Z}[-v_1 + v_2, -v_0 + v_2]} = \mathbb{Z}[v_0] = \mathbb{Z}$ and $H_1 = \ker \partial = \mathbb{Z}[a_0 - a_1 + a_2] = \mathbb{Z}$.

Exercise 3. Simplicial complex, model of torus, compute differentials and homology.



Solution. Again, we get simplicial chain complex C_* formed by free abelian groups generated by equivalence classes of simplicies. Note a_1, a_2 are actually one generator, same for b_1, b_2 . All the vertices are also equivalent. We choose the orientation and fix it.

Thus we get $C_0 = \mathbb{Z}[v] = \mathbb{Z}, C_1 = \mathbb{Z}[a, b, c] = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}, C_2 = \mathbb{Z}[e, f] = \mathbb{Z} \oplus \mathbb{Z}, C_3 = 0$, and the following holds: $\partial a = 0, \partial b = 0, \partial c = 0$, as well as $\partial e = a + b - c, \partial f = c - a - b, \partial(e + f) = 0$, so we get ker $\partial = \mathbb{Z}[e + f], \operatorname{im} \partial = \mathbb{Z}[a + b - c]$.

Let T be the torus. Then

$$H_2(T) = \ker \partial_2 = \mathbb{Z}[e+f] = \mathbb{Z},$$

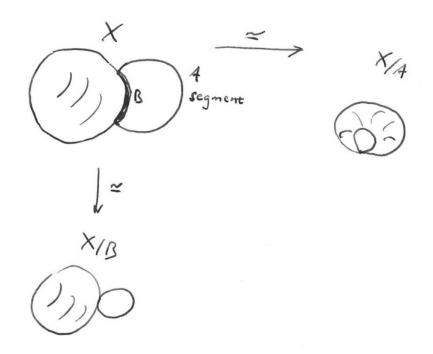
$$H_1(T) = \mathbb{Z}[a, b, c] / \mathbb{Z}[a+b-c] = \frac{\mathbb{Z}[a, b, a+b-c]}{\mathbb{Z}[a+b-c]} = \mathbb{Z}[a, b] = \mathbb{Z} \oplus \mathbb{Z},$$

$$H_0(T) = \ker \partial_0 = \mathbb{Z}.$$

First criterion of homotopy equivalence (Hatcher)

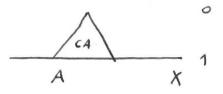
Let (X, A) be a pair that satisfies HEP, i.e. $A \xrightarrow{i} X$ is a cofibration. Let A be contractible in itself. Then $q: X \to X/A$ is a homotopy equivalence.

Exercise 4. $S^2 \vee S^1 \simeq S^2/S^0$ (using First criterion)



Solution. In the picture (hopefully) above, A is a segment as well as B, so contractible in itself. Clearly $S^2 \vee S^1 = X/B$ and $S^2/S^0 = X/A$ and $X \simeq X/A$ and $X \simeq X/B$ by criterion, therefore $X/A \simeq X/B$ and we are done.

Exercise 5. Let $i: A \hookrightarrow X$ is a cofibration, show $X/A \simeq X \cup CA = Ci$. (using First criterion)



Solution. We know $CA \hookrightarrow X \cup CA$ is a cofibration using homework 1, exercise 2, with Y = CA. Then by criterion $X \cup CA \simeq X \cup CA/CA$. Also X/A is homeomorphic to $X \cup CA/CA$ (see picture above), which concludes the result.

Exercise 6. Prove the first criterion of homotopy equivalence.

Solution. We take $h: A \times I \to A$, on $A \times \{0\}$ it is identity on A and constant on $A \times \{1\}$.

$$\begin{array}{ccc} X \times I & \stackrel{f}{\longrightarrow} X \\ & & & \\ q \times \mathrm{id}_{I} \downarrow & & q \downarrow \\ & & & \\ X/A \times I & \stackrel{\bar{f}}{\longrightarrow} X/A \end{array}$$

and find $g: X/A \to X$. Define $\overline{f}(x,t) = f(x,t)$, $\overline{f}([x],t) = [f(x,t)]$. If we define $g: X/A \to A, [x] \mapsto f(x,1)$, then it is well defined. Now we want to show, that the compositions are homotopy equivalent to the identities.

 $g \circ q \sim \operatorname{id}_X$: g(q(x)) = g([x]) = f(x, 1), just the way we defined it, so f is the homotopy, as $f(-, 0) = \operatorname{id}_X$ and $f(-, 1) = g \circ q$,

 $q \circ g \sim \operatorname{id}_{X/A}$: $q(g([x])) = q(f(x,1)) = [f(x,1)] = \overline{f}([x],1)$ and $\operatorname{id}_{X/A} = \overline{f}([x],0)$, so in this case the map \overline{f} is homotopy.

Exercise 7. Application of the criterion: two types of suspensions, unreduced and reduced. Unreduced suspension: $SX = X \times I/\sim$, where $(x_1, 0) \sim (x_2, 0)$, $(x_1, 1) \sim (x_2, 2)$. Reduced suspension: $\Sigma X = SX/\{x_0\} \times I = (X, x_0) \wedge (S^1, s_0)$ (this might be a homework)

The criterion says, that if $\{x_0\} \hookrightarrow X$ is a cofibration, then $SX \simeq \Sigma X$.

$$I \simeq \{(x_0, t), t \in I\} \subseteq SX \longrightarrow SX / \{x_0, t), t \in I\} = \Sigma X$$

Exercise 8. There is a lemma, that says: Given the following diagram, where rows are long exact sequences and m is iso,

we get a long exact sequence

$$K_n \xrightarrow{f \oplus k} L_n \oplus \overline{K}_n \xrightarrow{l \oplus \overline{f}} \overline{L}_n \xrightarrow{h \circ m^{-1} \circ \overline{g}} K_{n-1} \longrightarrow \cdots$$

This might be a homework.