Exercise 1. Prove that $Sⁿ$ has a nonzero vector field if and only if n is odd.

Solution. First note, that we have $v: S^n \to \mathbb{R}^{n+1}$ such that $v(x) \perp x$. Consider the case of S^1 and $(x_0, x_1) \mapsto (x_1, -x_0)$. Take $(x_0, x_1, x_2, x_3, \ldots, x_{2n+1}) \in S^{2n+1} \subseteq \mathbb{R}^{2n}$. Then we get $(x_1, -x_0, x_3, -x_2, \ldots, x_{2n+1}, -x_{2n})$ as image and there is nothing more obvious than that the product is zero, i.e. it's perpendicular.

Note, for $S^1 \subseteq \mathbb{C}$ it is $z \mapsto ez$, where e is the complex unit, usually denoted as i.

Now we want to prove that if $Sⁿ$ has a nonzero vector field, then n is odd. We use the fact that $deg(id) = 1$ and $deg(-id) = (-1)^{n+1}$. Take $v: S^n \to S^n$. If we show id ∼ −id, then $1 = (-1)^{n+1} \Rightarrow n$ is odd. The homotopy is $h(x, t)$ we are looking for is $h(x,t) = cos(t)x + sin(t)v(x)$, where $t \in [0, \pi]$. Also note $||h(x,t)|| = cos^2 t + sin^2 t = 1$. We are done. \Box

Exercise 2. Prove $\deg(f) = \sum_{i=1}^{k} \deg(f/x_i)$.

Solution. We have $f: S^n \to S^n$ and $y \in S^n$ has a neighborhood (nbhd) V. Denote $f^{-1}(y)$ $\{x_1, \ldots, x_k\}$ and U_i nbhd's of $x_i, U_i \cap U_j = \emptyset$. Let degree of f/x_i be n_i . We have $f: (U_i, U_i (x_i) \to (V, V - y)$ and $(f/U_i)_*: H_n(U_i, U_i - x_i) \cong \mathbb{Z} \to H_n(V, V - y) \cong \mathbb{Z}$, so $z \mapsto n_i z$. Consider the following diagram, its evolution (i.e. drawing order) was revealed in the tutorial class:

$$
H_n(S^n, S^n - \overbrace{x_i}) \xrightarrow{H_n(S^n, S^n - f^{-1}(y))} H_n(S^n, S^n - y)
$$
\n
$$
\cong H_n(S^n, S^n - f^{-1}(y)) \longrightarrow H_n(S^n, S^n - y)
$$
\n
$$
H_n(S^n) \xrightarrow{f_*} H_n(S^n)
$$

We have j_{y*} iso and h is iso by excision theorem.

So, we have $H_n(S^n, S^n - f(y)) \stackrel{\cong}{\leftarrow} \bigoplus H_n(U_i, U_i - x_i) \cong H_n(\bigsqcup_1^k (U_i, U_i - x_i)).$ Iso between $H_n(S^n, S^n - f(y))$ and $H_n(\bigsqcup_1^k (U_i, U_i - x_i))$ by excision. So k is also iso.

We can take $j_{y*} = h \circ \sum (f/U_i)_* \circ k^{-1} \circ j_*$ and for generator $1 \in H_n(S^n)$ we have $((j_y)_* \circ f_*)(1) = \deg(f) \cdot 1$. We are done.

$$
(1, ..., 1) \longrightarrow \sum deg(f/x_i)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\sum deg(f/x_i)
$$

Exercise 3. Compute homology groups of \mathbb{RP}^n using CW-structure.

Solution. Let X be the CW-complex, we have $C_n^{CW} = \bigoplus \mathbb{Z}[e_\alpha^n]$, $H_n(C_*^{CW}, d) = H_n(X)$. Also, $d[e_\alpha^n] = \sum_\beta d_\alpha^\beta [e_\beta^{n-1}]$ $_{\beta}^{n-1}]$, where α_{α}^{β} is the degree of the map

$$
S^{n-1} \xrightarrow{f_{\alpha}} X^{n-1} \to X^{n-1}/(X^{n-1} - e_{\beta}^{n-1}) \cong S^{n-1}.
$$

We know that $\mathbb{RP}^n = e^0 \cup e^1 \cup \cdots \cup e^n$, cell in every dimension. Attaching map is

$$
f: S^i \to (\mathbb{RP})^{(i)} = \mathbb{RP}^i = S^i / (x \sim -x).
$$

Then have

$$
0 \to \mathbb{Z} \to \mathbb{Z} \to \cdots \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \to 0,
$$

where Z appears $n+1$ times. Now, $S^i \stackrel{f}{\to} \mathbb{RP}^i \to \mathbb{RP}^i/\mathbb{RP}^{i-1} \cong S^i$, hence we can apply the attaching map. Class [y] has two preimages y, $-y$, there are nbhd's, $deg(f/y) = \pm 1$. Note that $f - y = f/y \circ (-id)$. Now we can compute the degree: $\deg(f) = \deg(f/y) +$ $deg(f(-y)) = \pm(1+(-1)^{i+1})$. It is ± 2 if i is odd and 0 otherwise. So, we can add to the sequence above:

$$
0 \to \mathbb{Z} \to \mathbb{Z} \to \cdots \to \mathbb{Z} \stackrel{2}{\to} \mathbb{Z} \stackrel{0}{\to} \mathbb{Z} \to 0,
$$

and compute for $X = \mathbb{R}P^n$, n even: $H_0(X) = \mathbb{Z}, H_1(X) = \mathbb{Z}_2, H_2(X) = 0, H_i(X) = 0$ for i even, $H_i(X) = \mathbb{Z}_2$ for i odd. The homology is zero for $i > 0$. For n even the only difference is $H_n(X) = \mathbb{Z}$.

(Note: this is because for even they are not orientable, for odd it is oriented space.) \Box

Exercise 4. Compute homology groups of oriented two dimensional surfaces. What about nonorientable?

Solution. Denote M_g surface of genus g (it is the same as sphere with g handles, i.e. M_1 is torus and M_2 is double torus (homework 4). The CW-model is $e^0 \cup e_1^1 \cup \cdots \cup e_{2g}^1 \cup e^2$ and we have

$$
0 \to \mathbb{Z} \to \bigoplus_{1}^{2g} \mathbb{Z} \to \mathbb{Z} \to 0.
$$

Second differential is zero, $e^0 - e^0 = 0$. The first one is zero as well (glue the model, the arrows go with + and then -). Then we get $H_0 = \mathbb{Z}, H_1 = \bigoplus_1^{2g} \mathbb{Z}, H_2 = \mathbb{Z}$.

For nonorientable surfaces, N_q is modelled by one 2-dimensional disc which has boundary composed with q segments every of which repeats twice with the same orientation. So we have one cell in dimensions 2 and 0 and q cells in dimension one. We get (quite similarly)

$$
0 \to \mathbb{Z} \to \bigoplus_{1}^{g} \mathbb{Z} \to \mathbb{Z} \to 0.
$$

This equality holds: $d[e^2] = 2[e_1^1] + 2[e_2^1] + \ldots$, so $H_2 = 0$, $H_0 = \mathbb{Z}$ and the only interesting case is

$$
H_1 = \frac{\mathbb{Z}[e_1^1, \dots, e_g^1]}{\mathbb{Z}[2e_1^1 + \dots + 2e_g^1]} = \mathbb{Z}_2 + \bigoplus_1^{g-1} \mathbb{Z}.
$$

Exercise 5. Have $f: S^n \to S^n$ map of degree k. (such map always exists). Let $X =$ $D^{n+1} \cup_f S^n$ and compute homology of X and the projection $p: X \to X/S^n$ in homology.

Solution. Easy, $X = e^0 \cup e^n \cup e^{n+1}$ and $0 \to \mathbb{Z} \stackrel{k}{\to} \mathbb{Z} \to 0 \to \cdots \to 0 \to \mathbb{Z} \to 0$, also

$$
S^n \to X^{(n)} \to X^{(n)}/(X^{(n)} - e^n) = S^n.
$$

We get $H_{n+1}(X) = 0, H_n = \mathbb{Z}_k, H_0(X) = \mathbb{Z}$. Note, $X/S^n \cong S^{n+1}$. So, for the p_* we have

$$
p_*\colon H_{n+1}(X) = 0 \stackrel{0}{\to} H_{n+1}(S^{n+1}) = \mathbb{Z}
$$

and

$$
p_*\colon H_n(X) = \mathbb{Z}_k \stackrel{0}{\to} H_n(S^{n+1}) = 0
$$

and at H_0 it is identity $\mathbb{Z} \to \mathbb{Z}$.

 \Box

 \Box