Exercise 1. Prove the following equalities (assuming some conditions):

$$\bar{H}_*(X \vee Y) = \bar{H}_*(X) \oplus \bar{H}_*(Y)$$

$$\bar{H}_*(\bigvee_{i=1}^n X_i) = \bigoplus_{i=1}^n \bar{H}_*(X_i)$$

$$\bar{H}_*(\bigvee_{i=1}^\infty X_i) = \bigoplus_{i=1}^\infty \bar{H}_*(X_i)$$

Solution. Denote z the distinguished point of $X \vee Y$. For the pair $(X \vee Y, X)$ we have the following long exact sequence

$$\cdots \to \bar{H}_{i+1}(X \vee Y, X) \xrightarrow{0} \bar{H}_{i}(X) \to \bar{H}_{i}(X \vee Y) \to \bar{H}_{i}(X \vee Y, X) \xrightarrow{0} \bar{H}_{i-1}(X) \to \cdots$$

Thus we have short exact sequence, which splits, because we have continuous (cts) map $\mathrm{id}\vee\mathrm{const}_z\colon X\vee Y\to X$ (which maps Y to z). Thus we have $\bar{H}_*(X\vee Y)\cong \bar{H}_*(X)\oplus \bar{H}_*(X\vee Y,X)$. Now it remains to prove $\bar{H}_*(X\vee Y,X)\cong \bar{H}_i(Y)$. If $X\vee Y$ is a CW-complex and X its subcomplex, it is known that $\bar{H}_i(X\vee Y,X)\cong \bar{H}_i(X\vee Y/X)=\bar{H}_i(Y)$. More generally, let U be some (sufficiently small) neighborhood of z in X. From excision theorem we have:

$$\bar{H}_i(X \vee Y, X) \cong \bar{H}_i(X \vee Y \setminus (X \setminus U), X \setminus (X \setminus U)) = \bar{H}_i(U \vee Y, U).$$

Because U should be contractible, $\bar{H}_i(U \vee Y, U) \cong \bar{H}_i(Y, z) = \bar{H}_i(Y)$.

The second equality we get from the first by induction.

Let us prove the third equality. Denote $Y_n = X_1 \vee X_2 \vee \cdots \vee X_n$ and $Y = \bigvee_{n=1}^{\infty} Y_n$ and denote z the distinguished point of Y and Y_n for every n. We have the following diagram (where each arrow is an inclusion):

$$C_*(Y_1, z) \longrightarrow C_*(Y_2, z) \longrightarrow \cdots$$

$$C_*(Y, z)$$

Since Δ^k is compact, every continuous (cts) map $\Delta^k \to Y$ has image in some Y_n , thus it is easy to prove $C_*(Y,z) = \operatorname{colim} C_*(Y_n,z)$, thus

$$\bar{H}_*(Y) = \operatorname{colim} \bar{H}_*(Y_n) = \operatorname{colim} \bigoplus_{i=1}^n X_i = \bigoplus_{i=1}^\infty X_i.$$

 $^{^1\}mathrm{It}$ is true at least for X locally contractible. It is not true generally.

Let X be a topological space with finitely generated homological groups and let $H_i(X) = 0$ for each sufficiently large i. Every finitely generated abelian group can be written as $\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \operatorname{Tor}$, where Tor denote torsion part of the group. The number k is

k-times

called the rank of the group.

Euler characteristic χ of X is defined by:

$$\chi(X) = \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} H_i(X)$$

Example. We know $H_i(S^n) = \begin{cases} \mathbb{Z}, & i = 0, n \\ 0, & otherwise. \end{cases}$ Thus $\chi(S^n) = 1 - (-1)^n$.

Exercise 2. Let (C_*, ∂) be a chain complex with homology $H_*(C_*)$. Prove that $\chi(X) = \chi(C_*)$, where

$$\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} C_i.$$

Solution. We have two short exact sequences:

$$0 \to Z_i \hookrightarrow C_i \xrightarrow{\partial} B_{i-1} \to 0$$
$$0 \to B_i \hookrightarrow Z_i \to Z_i/B_i = H_i \to 0,$$

where C_i , cycles Z_i and boundaries B_i are free abelian groups, thus rank $C_i = \operatorname{rank} Z_i + \operatorname{rank} B_{i-1}$ and rank $H_i = \operatorname{rank} Z_i - \operatorname{rank} B_i$. Thus we have

$$\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} Z_i + \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} B_{i-1}$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} Z_i - \sum_{i=0}^{\infty} (-1)^i \operatorname{rank} B_i = \chi(X).$$

Let X be a topological space with finitely generated homological groups and let $H_i(X) = 0$ for every sufficiently large i. Let $f: X \to X$ be a continuous map. Map f induces homomorphism on the chain complex $f_*: C_*(X) \to C_*(X)$ and on the homologiy groups $H_*f: H_*(X) \to H_*(X)$, where $H_*f(\operatorname{Tor} H_*(X)) \subseteq \operatorname{Tor} H_*(X)$. Thus it induces homomorphism

$$H_*f\colon H_*(X)/\operatorname{Tor} H_*(X)\to H_*(X)/\operatorname{Tor} H_*(X).$$

Since $H_*(X)/\operatorname{Tor} H_*(X) \cong \underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{\operatorname{rank} H_*(X)}$, map H_*f can be written as a matrix, thus we

can compute its trace. So we can define the Lefschetz number of a map f:

$$L(f) = \sum_{i=0}^{\infty} (-1)^i \operatorname{tr} H_i f.$$

Similarly to the case of the Euler characteristic, it can be proved that²

$$\sum_{i=0}^{\infty} (-1)^i \operatorname{tr} H_i f = \sum_{i=0}^{\infty} (-1)^i \operatorname{tr} f_i.$$

Theorem. If $L(f) \neq 0$, then f has a fixed point.

Exercise 3. Use the theorem above to show, that every cts map f on D^n and $\mathbb{R}P^n$ where n is even has a fixed point.

Solution. We know that that $H_i(D^n) = \begin{cases} \mathbb{Z}, & i = 0 \\ 0, & \text{otherwise.} \end{cases}$ Because $H_0f \colon H_0(D^n) \cong \mathbb{Z} \to \mathbb{Z} \cong H_0(D^n)$ can be only the identity, we have L(f) = 1, thus f has a fixed point.

Since
$$H_i(\mathbb{R}P^n) = \begin{cases} \mathbb{Z}, & i = 0, \\ \mathbb{Z}/2, & i < n, i \text{ odd; and } \mathbb{Z}/2 \text{ is torsion, we have } L(f) = 1 \text{ as in the } 0, & \text{otherwise,} \end{cases}$$

previous case.

Exercise 4. Let M be a smooth compact manifold. Prove, that there is a nonzero vector field on M if and only if $\chi(M) = 0$.

Solution. We will prove only implication \Rightarrow . Let v be a nonzero vector field on M. Define a map $X \colon [0,1] \times M \to M$ which satisfies $\dot{X}(t,x) = v(X(t,x))$ for every $x \in M$ and X(0,x) = x. There exists t_0 such that $X(t_0,x) \neq x$. Denote $f(x) = X(t_0,x)$, thus f has no fixed point, thus L(f) = 0. Because f is homotopic to id and $\operatorname{tr} H_i \operatorname{id} = \operatorname{rank} H_i(M)$, we get from homotopy invariance $0 = L(f) = L(\operatorname{id}) = \chi(M)$.

Exercise 5. Use $\mathbb{Z}/2$ coefficients to show, that every cts map $f: S^n \to S^n$ satisfying f(-x) = -f(x) has an odd degree.

Solution. The map f induces a map $g: \mathbb{R}P^n \to \mathbb{R}P^n$, since $f(\{x, -x\}) \subseteq \{f(x), -f(x)\}$. We have the short exact sequence³

$$\sigma \longmapsto \sigma_1 + \sigma_2 \longmapsto 2\sigma = 0$$

$$0 \longrightarrow C_*(\mathbb{R}P^n, \mathbb{Z}/2) \longrightarrow C_*(S^n, \mathbb{Z}/2) \longrightarrow C_*(\mathbb{R}P^n, \mathbb{Z}/2) \longrightarrow 0,$$

where $\sigma \colon \Delta^i \to \mathbb{R}P^n$ is an arbitrary element of $C_*(\mathbb{R}P^n)$, σ_1, σ_2 are its preimages of a projection:

$$\Delta^{i} \xrightarrow{\sigma_{1}, \sigma_{2}} \mathbb{R}^{n}$$

 $^{^{2}}f_{i}\colon C_{i}(X)\to C_{i}(X)$

 $^{^{3}2\}sigma = 0$ because of the $\mathbb{Z}/2$ coefficient.

From the short exact sequence we get the long exact sequence

$$H_{i}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow H_{i}(S^{n}; \mathbb{Z}/2) \longrightarrow H_{i}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow H_{i-1}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow 0$$

$$\downarrow g_{*} \qquad \qquad \downarrow f_{*} \qquad \qquad \downarrow g_{*} \qquad \qquad \downarrow g_{*}$$

$$H_{i}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow H_{i}(S^{n}; \mathbb{Z}/2) \longrightarrow H_{i}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow H_{i-1}(\mathbb{R}P^{n}; \mathbb{Z}/2) \longrightarrow 0$$

Because $H_0(\mathbb{R}P^n; \mathbb{Z}/2) = \mathbb{Z}/2$ and g_0 on $H_0(\mathbb{R}P^n; \mathbb{Z}/2)$ is an isomorphism, we can show by induction, that $H_i(\mathbb{R}P^n, \mathbb{Z}/2) = \mathbb{Z}/2$ and g_i is an isomorphism for every $i \leq n-1$. An induction step is shown on the following diagram (three isomorphisms imply the fourth):

$$0 \longrightarrow \mathbb{Z}/2 \xrightarrow{\cong} \mathbb{Z}/2$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$0 \longrightarrow \mathbb{Z}/2 \xrightarrow{\cong} \mathbb{Z}/2$$

For i = n we have the following situation (the vertical isomorphisms were proved by induction):

$$\mathbb{Z}/2 \xrightarrow{\cong} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{\cong} \mathbb{Z}/2 \longrightarrow 0$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$\mathbb{Z}/2 \xrightarrow{\cong} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{\cong} \mathbb{Z}/2 \longrightarrow 0$$

Thus f_* (the arrow marked by ?) has to be an isomorphism for H_n , thus it maps $[1]_2$ to $[1]_2$, hence f has degree 1 mod 2.