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Exercise 1. (39 in total) Use theorem "f : Sn → Sn s.t. f(−x) = −f(x) ⇒ deg(f) is
odd" to prove that for f : Sn → R there exists x ∈ Sn : f(x) = f(−x).

Solution. We will use proof by contradiction. Suppose that f(x) − f(−x) is always non-

zero and de�ne g(x) =
f(x)− f(−x)

||f(x)− f(−x)||
. Then obviously g(−x) = −g(x). Since g : Sn →

Sn−1 ⊂ Sn is odd , the map g has odd degree, but g(Sn) ( Sn which implies deg(g) = 0 (g is
homotopic to a constant map). Now we use well known fact that zero is even number, some
say that it is the evennest number of them all (why?) and conclude desired contraction.

Exercise 2. (40 in total) Let ϕ ∈ Ck(X;R), ψ ∈ C l(Y ;R). Prove δ(ϕ ∪ ψ) = δϕ ∪ ψ +
(−1)kϕ ∪ δψ. Use τ = [e0, . . . , ek+l+1] ∈ Ck+l+1(X).

Solution. Easily work out

δ(ϕ ∪ ψ)(τ) = (ϕ ∪ ψ)(δτ) = (ϕ ∪ ψ)
( k+l+1∑

i=0

(−1)iτ/[e0, . . . , êi, . . . , ek+l+1]
)

=

=
k∑
i=0

(−1)iϕ(τ/[e0, . . . , êi, . . . , ek+1])ψ(τ/[ek+1, . . . , ek+l+1])+

+
k+l+1∑
i=k+1

(−1)iϕ(τ/[e0, . . . , ek])ψ(τ/[ek, . . . , êi, . . . , ek+l+1]).

Now, the right hand side of the formula, the �rst part gives

(δϕ ∪ ψ)(τ) = δϕ(τ/[e0, . . . , ek+1]) · ψ(τ/[ek+1, . . . , ek+l+1]) =

= ϕ(δτ/[e0, . . . , ek+1]) · ψ(τ/[ek+1, . . . , ek+l+1]) =

=
k+1∑
i=0

(−1)iϕ(δτ/[e0, . . . , êi, . . . , ek+1]) · ψ(τ/[ek+1, . . . , ek+l+1]).

The second part is

(−1)k(ϕ ∪ δψ)(τ) = (−1)kϕ(τ/[e0, . . . , ek])δψ(τ/[ek, . . . , ek+l+1]) =

=
l+1∑
j=0

(−1)j+kϕ(δτ/[e0, . . . , ek]) · ψ(τ/[ek, . . . , êk+j, . . . , ek+l+1]).

Now, the last summand of the �rst part plus the �rst summand of the second part yields

(−1)k+1ϕ(τ/[e0, . . . , ek])ψ(τ/[ek+1, . . . , ek+l+1])+

+(−1)kϕ(τ/[e0, . . . , ek])ψ(τ/[ek+1, . . . , ek+l+1]) = 0,

and we are done, LHS = RHS.
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Exercise 3. (41 in total) Prove a∪ b = ∆∗(a× b), where a ∈ Hk(X), b ∈ H l(X),∆: X →
X×X, x 7→ (x, x) and × is cross product de�ned α×β = p∗Xα∪p∗Y β (pX , pY are projections
from X × Y ).

Solution. By the following diagram

X
∆X // X ×X
pX=p1

{{
pY =p1
��

X X

we have that pX∆ is id. So, compute

∆∗(a× b) = ∆∗(p∗Xa ∪ p∗Y b) = ∆∗(p∗Xa) ∪∆∗(p∗Y b) = (pX∆)∗a ∪ (pY ∆)∗b,

and we are done. The thing is that cup product is natural.

Exercise 4. (42 in total) Compute the structure of graded algebra H∗(Sn × Sn;Z) for n
even and n odd. Use the following:

If Hn(Y ;R) is free �nitely generated group for all n and (X,A), Y are CW-complexes,
then

× : H∗(X,A;R)⊗H∗(Y ;R)→ H∗(X × Y,A× Y ;R)

is an isomorphism of graded rings.

Solution. We will omit writing the Z coe�cients.
Now, H∗(Sn) ⊗ H∗(Sn) → H∗(Sn × Sn) and we know that for spheres H0 = Z with

generator 1 and Hn = Z, denote generator a. Also, a ∪ a ∈ H2n = 0, a ∪ a = 0, so we
get Z[a]/〈a2〉 and deg(a) = n. We can write the same for the second, so denote the other
generator b and have deg(b) = n and we have Z[b]/〈b2〉.

Now we compute tensor product Z[a]/〈a2〉 ⊗ Z[b]/〈b2〉, we have four generators: 1a ⊗
1b, a⊗ 1b, 1a ⊗ b, a⊗ b, we will denote them 1, c, d, c · d. Compute

(a⊗ 1b) · (1a ⊗ b) = (−1)0·0(a · 1a)⊗ (1b · b) = a⊗ b,

because 0 is an idempotent element, i.e. 0·0 = 0, and (−1)n = 1 for n even, again, as in the
�rst exercise, we use Evenness of Zero. (We refer the reader to "Principia Mathematica"
Whitehead, Russell,(1910,1912,1913).) Continue with computation

(1a ⊗ b) · (a⊗ 1b) = (−1)n·n(1a · a)⊗ (b · 1b) = (−1)na⊗ b,

so the algebra we get is H∗(Sn × Sn) = Z[c, d]/〈c2, d2, dc− (−1)ncd〉. For n even we have
dc = cd.



M8130 Algebraic topology, tutorial 07, 2017 6. 4. 2017

Exercise 5. (43 in total) Prove that there is no multiplication on even dimensional spheres.
Multiplication on the sphere Sn is a map m : Sn × Sn → Sn such that there is an element
1 ∈ Sn satisfying m(x, 1) = x,m(1, x) = x.

Hint: compute m∗ : H∗(Sn)→ H∗(Sn × Sn), describe two rings.

Solution. We have H∗(Sn) = Z[γ]/〈γ2〉 and H∗(Sn × Sn) = Z[α, β]/〈α2, β2〉 = H∗(Sn) ⊗
H∗(Sn), because we already know, that αβ = βα. Our situation can be described with
two diagrams:

Sn
i1 //

id $$

Sn × Sn

m
��
Sn

H∗(Sn) H∗(Sn × Sn)
i∗1oo

H∗(Sn)

m∗

OO

id

gg

Take m∗(γ) = aα + bβ with a, b ∈ Z and prove �rst, that a = b = 1. Use m ◦ i1 = id,
so i∗1(m∗γ) = γ. This gives i∗1(aα + bβ) = γ and since i∗1(aα + bβ) = aγ, we have a = 1,
same for b. Final computation yields

0 = m∗(0) = m∗(γ2) = m∗(γ ∪ γ) = m∗γ ∪m∗γ =

= (α + β) ∪ (α + β) = α2 + αβ + βα + β2 = 0 + 2αβ + 0 6= 0,

and that, my friends, is a contradiction.

Exercise 6. (un�nished) (44 in total) Use �ve lemma to prove that taking any two µ's
iso's, the third µ is iso as well. (Proving �ve lemma might be a homework.) Also, show
commutativity of the diagram.

H∗(X,A)⊗H∗(Y ) //

µ

��

H∗(X)⊗H∗(Y )

µ

��

uu
H∗(A)⊗H∗(Y )

µ

��

δ∗⊗id
ii

H∗(X × Y,A× Y ) // H∗(X × Y )

uu
H∗(A× Y )

δ∗
ii

Solution. We will name the parts of the diagram as follows: back-square, upper-triangle,
lower-triangle, left-square, right-square. The triangles come from the long exact sequence
of of pairs (X,A) and (X × Y,A × Y ), the right-square commutativity comes from an
inclusion, back-square commutes as well (topology knowledge). The only problematic part
is the left-square and it is exercise on computation of connecting homomorphism δ∗.


