Exercise 1. (39 in total) Use theorem "f: $S^n \to S^n$ s.t. $f(-x) = -f(x) \Rightarrow \deg(f)$ is odd" to prove that for $f: S^n \to \mathbb{R}$ there exists $x \in S^n$: $f(x) = f(-x)$.

Solution. We will use proof by contradiction. Suppose that $f(x) - f(-x)$ is always nonzero and define $g(x) = \frac{f(x) - f(-x)}{\frac{1}{x}(x) - x^2}$ $\frac{f(x)-f(-x)}{||f(x)-f(-x)||}$. Then obviously $g(-x) = -g(x)$. Since $g: S^n \to$ $S^{n-1} \subset S^n$ is odd, the map g has odd degree, but $g(S^n) \subsetneq S^n$ which implies $\deg(g) = 0$ (g is homotopic to a constant map). Now we use well known fact that zero is even number, some say that it is the evennest number of them all (why?) and conclude desired contraction. \Box

Exercise 2. (40 in total) Let $\varphi \in C^k(X;R), \psi \in C^l(Y;R)$. Prove $\delta(\varphi \cup \psi) = \delta \varphi \cup \psi + \varphi$ $(-1)^{k}$ φ ∪ δ ψ . Use $\tau = [e_0, \ldots, e_{k+l+1}] \in C_{k+l+1}(X)$.

Solution. Easily work out

$$
\delta(\varphi \cup \psi)(\tau) = (\varphi \cup \psi)(\delta \tau) = (\varphi \cup \psi) \Big(\sum_{i=0}^{k+l+1} (-1)^i \tau/[e_0, \dots, \hat{e_i}, \dots, e_{k+l+1}] \Big) =
$$

=
$$
\sum_{i=0}^k (-1)^i \varphi(\tau/[e_0, \dots, \hat{e_i}, \dots, e_{k+1}]) \psi(\tau/[e_{k+1}, \dots, e_{k+l+1}]) +
$$

+
$$
\sum_{i=k+1}^{k+l+1} (-1)^i \varphi(\tau/[e_0, \dots, e_k]) \psi(\tau/[e_k, \dots, \hat{e_i}, \dots, e_{k+l+1}]).
$$

Now, the right hand side of the formula, the first part gives

$$
(\delta \varphi \cup \psi)(\tau) = \delta \varphi(\tau/[e_0, \dots, e_{k+1}]) \cdot \psi(\tau/[e_{k+1}, \dots, e_{k+l+1}]) =
$$

= $\varphi(\delta \tau/[e_0, \dots, e_{k+1}]) \cdot \psi(\tau/[e_{k+1}, \dots, e_{k+l+1}]) =$
= $\sum_{i=0}^{k+1} (-1)^i \varphi(\delta \tau/[e_0, \dots, \hat{e_i}, \dots, e_{k+1}]) \cdot \psi(\tau/[e_{k+1}, \dots, e_{k+l+1}]).$

The second part is

$$
(-1)^{k}(\varphi \cup \delta \psi)(\tau) = (-1)^{k} \varphi(\tau/[e_{0}, \ldots, e_{k}]) \delta \psi(\tau/[e_{k}, \ldots, e_{k+l+1}]) =
$$

=
$$
\sum_{j=0}^{l+1} (-1)^{j+k} \varphi(\delta \tau/[e_{0}, \ldots, e_{k}]) \cdot \psi(\tau/[e_{k}, \ldots, \hat{e}_{k+j}, \ldots, e_{k+l+1}]).
$$

Now, the last summand of the first part plus the first summand of the second part yields

$$
(-1)^{k+1}\varphi(\tau/[e_0,\ldots,e_k])\psi(\tau/[e_{k+1},\ldots,e_{k+l+1}]) ++(-1)^k\varphi(\tau/[e_0,\ldots,e_k])\psi(\tau/[e_{k+1},\ldots,e_{k+l+1}]) = 0,
$$

and we are done, $LHS = RHS$.

Exercise 3. (41 in total) Prove $a \cup b = \Delta^*(a \times b)$, where $a \in H^k(X)$, $b \in H^l(X)$, $\Delta: X \to Y$ $X \times X, x \mapsto (x, x)$ and \times is cross product defined $\alpha \times \beta = p_X^* \alpha \cup p_Y^* \beta$ (p_X, p_Y are projections from $X \times Y$).

Solution. By the following diagram

we have that $p_X\Delta$ is id. So, compute

$$
\Delta^*(a \times b) = \Delta^*(p_X^* a \cup p_Y^* b) = \Delta^*(p_X^* a) \cup \Delta^*(p_Y^* b) = (p_X \Delta)^* a \cup (p_Y \Delta)^* b,
$$

and we are done. The thing is that cup product is natural.

Exercise 4. (42 in total) Compute the structure of graded algebra $H^*(S^n \times S^n; \mathbb{Z})$ for n even and n odd. Use the following:

If $H^{n}(Y;R)$ is free finitely generated group for all n and $(X,A), Y$ are CW-complexes, then

$$
\times: H^*(X, A; R) \otimes H^*(Y; R) \to H^*(X \times Y, A \times Y; R)
$$

is an isomorphism of graded rings.

Solution. We will omit writing the $\mathbb Z$ coefficients.

Now, $H^*(S^n) \otimes H^*(S^n) \to H^*(S^n \times S^n)$ and we know that for spheres $H^0 = \mathbb{Z}$ with generator 1 and $H^n = \mathbb{Z}$, denote generator a. Also, $a \cup a \in H^{2n} = 0$, $a \cup a = 0$, so we get $\mathbb{Z}[a]/\langle a^2 \rangle$ and $\deg(a) = n$. We can write the same for the second, so denote the other generator b and have $deg(b) = n$ and we have $\mathbb{Z}[b]/\langle b^2 \rangle$.

Now we compute tensor product $\mathbb{Z}[a]/\langle a^2 \rangle \otimes \mathbb{Z}[b]/\langle b^2 \rangle$, we have four generators: $1_a \otimes$ $1_b, a \otimes 1_b, 1_a \otimes b, a \otimes b$, we will denote them $1, c, d, c \cdot d$. Compute

$$
(a \otimes 1_b) \cdot (1_a \otimes b) = (-1)^{0 \cdot 0} (a \cdot 1_a) \otimes (1_b \cdot b) = a \otimes b,
$$

because 0 is an idempotent element, i.e. $0.0 = 0$, and $(-1)^n = 1$ for n even, again, as in the first exercise, we use Evenness of Zero. (We refer the reader to "Principia Mathematica" Whitehead, Russell,(1910,1912,1913).) Continue with computation

$$
(1_a \otimes b) \cdot (a \otimes 1_b) = (-1)^{n \cdot n} (1_a \cdot a) \otimes (b \cdot 1_b) = (-1)^n a \otimes b,
$$

so the algebra we get is $H^*(S^n \times S^n) = \mathbb{Z}[c, d]/\langle c^2, d^2, dc - (-1)^n cd \rangle$. For n even we have $dc = cd.$ \Box

 \Box

Exercise 5. (43 in total) Prove that there is no multiplication on even dimensional spheres. Multiplication on the sphere S^n is a map $m: S^n \times S^n \to S^n$ such that there is an element $1 \in S^n$ satisfying $m(x, 1) = x, m(1, x) = x$.

Hint: compute $m^*: H^*(S^n) \to H^*(S^n \times S^n)$, describe two rings.

Solution. We have $H^*(S^n) = \mathbb{Z}[\gamma]/\langle \gamma^2 \rangle$ and $H^*(S^n \times S^n) = \mathbb{Z}[\alpha, \beta]/\langle \alpha^2, \beta^2 \rangle = H^*(S^n) \otimes$ $H^*(S^n)$, because we already know, that $\alpha\beta = \beta\alpha$. Our situation can be described with two diagrams:

Take $m^*(\gamma) = a\alpha + b\beta$ with $a, b \in \mathbb{Z}$ and prove first, that $a = b = 1$. Use $m \circ i_1 = id$, so $i_1^*(m^*\gamma) = \gamma$. This gives $i_1^*(a\alpha + b\beta) = \gamma$ and since $i_1^*(a\alpha + b\beta) = a\gamma$, we have $a = 1$, same for b. Final computation yields

$$
0 = m^*(0) = m^*(\gamma^2) = m^*(\gamma \cup \gamma) = m^*\gamma \cup m^*\gamma =
$$

= $(\alpha + \beta) \cup (\alpha + \beta) = \alpha^2 + \alpha\beta + \beta\alpha + \beta^2 = 0 + 2\alpha\beta + \beta \neq 0,$

and that, my friends, is a contradiction.

Exercise 6. (unfinished) (44 in total) Use five lemma to prove that taking any two μ 's iso's, the third μ is iso as well. (Proving five lemma might be a homework.) Also, show commutativity of the diagram.

Solution. We will name the parts of the diagram as follows: back-square, upper-triangle, lower-triangle, left-square, right-square. The triangles come from the long exact sequence of of pairs (X, A) and $(X \times Y, A \times Y)$, the right-square commutativity comes from an inclusion, back-square commutes as well (topology knowledge). The only problematic part is the left-square and it is exercise on computation of connecting homomorphism δ^* . \Box

 \Box