Exercise 1 (Five lemma). Let

$$
A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E
$$

\n
$$
\downarrow \cong \qquad \downarrow \cong \qquad \downarrow f \qquad \downarrow \cong \qquad \downarrow \cong
$$

\n
$$
\overline{A} \longrightarrow \overline{B} \longrightarrow \overline{C} \longrightarrow \overline{D} \longrightarrow \overline{E}
$$

be a commutative diagram of modules with exact rows. Show that the middle homomorphism f is an isomorphism.

Solution. We will show the surjectivity of f, injectivity is dual. Let $\overline{c} \in \overline{C}$ be arbitrary and suppose it maps to $\overline{d} \in \overline{D}$. This \overline{d} corresponds to some $d \in D$, and since \overline{d} maps to 0 in \overline{E} by exactness, d also has to map to $0 \in E$ by commutativity. By exactness, there exists $c \in C$ which maps to d. Since \bar{c} and $f(c)$ both map to \bar{d} by commutativity, there is (by exactness) some $\overline{b} \in \overline{B}$ which maps to $f(c) - \overline{c}$. This \overline{b} corresponds to some $b \in B$. which maps to some $c' \in C$. Then by commutativity, $f(c - c') = f(c) - (f(c) - \overline{c}) = \overline{c}$, as desired. (Note that instead of the four vertical maps being isomorphisms, we only needed the surjectivity of $B \to \overline{B}$, $D \to \overline{D}$ and the injectivity of $E \to \overline{E}$). \Box

Exercise 2. Show that for a finite CW-complex X and $H^*(Y)$ being finitely generated free group in all dimensions, the cross product

$$
H^*(X) \otimes H^*(Y) \xrightarrow{\mu} H^*(X \times Y)
$$

is an isomorphism. (In fact, the same is true for X being an infinite CW -complex.)

Solution. First let $X = pt$ be a point. Then $H^*(pt) = \mathbb{Z}$ with $1 \in H^0(pt)$ and $pt \times Y$ is homeomorphic to Y , hence

$$
H^*(pt) \otimes H^*(Y) = \mathbb{Z} \otimes H^*(Y) \cong H^*(Y) \cong H^*(pt \times Y).
$$

Now let $X = p_1 \sqcup p_2 \sqcup \cdots \sqcup p_k$ be a finite disjoint union of points (i.e, a discrete set). Then $H^*(X) = \bigotimes_{i=1}^k \mathbb{Z}$, hence

$$
H^*(X) \otimes H^*(Y) = \left(\bigoplus_{i=1}^k \mathbb{Z}\right) \otimes H^*(Y) \cong \bigoplus_{i=1}^k \left(\mathbb{Z} \otimes H^*(Y)\right) \cong \bigoplus_{i=1}^k H^*(Y)
$$

$$
\cong H^*(\underbrace{Y \sqcup Y \sqcup \cdots \sqcup Y}_{n \text{ times}}) \cong H^*(X \times Y)
$$

(We should also show that the isomorphism is indeed given by μ , but if $e_1, \ldots, e_k \in H^0(X)$ are such that

$$
e_i(p_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases},
$$

it's not hard to see that

$$
\mu(e_i \otimes a) = (0, 0, \ldots, \underbrace{a}_{i\text{-th place}}, 0, \ldots, 0)
$$

using projections and the definition of the cup product.)

Now we can proceed inductively:

- i) We now know that the theorem is true for X of dimension 0.
- ii) Since D^n is homotopy equivalent to a point, the theorem is also true for $X = \bigsqcup_{\alpha=1}^k D^n_\alpha$.
- iii) Suppose that the theorem holds for finite CW-complexes of dimension $n-1$. Then it is also true for pairs $(\bigsqcup D^n_{\alpha}, \bigsqcup S^{n-1}_{\alpha}).$
- iv) Since $H^*(X, A) \cong H^*(X/A)$ for a subcomplex $A \subseteq X$, the theorem also holds for $\bigvee S^n_{\alpha} \cong \Box D^n_{\alpha}/\Box S^{n-1}_{\alpha}.$
- v) Now let $X = X^{(n)}$ be an *n*-dimensional CW-complex and consider the diagram

where the lower triangle represents a long exact cohomology sequence by definition, and the same is true for the upper triangle (since free modules are flat). We know that the theorem holds for $X^{(n-1)}$, and also for $X^{(n)}/X^{(n-1)} \cong \bigvee S^{n-1}_{\alpha}$. Therefore we can use the Five lemma after unfolding the diagram in the appropriate dimensions, from which it follows that the theorem also holds for $X^{(n)}$. This completes the induction.

 \Box

Exercise 3. Compute the cohomology rings of $\mathbb{C}P^2 \times S^6$ and $\mathbb{C}P^2 \vee S^6$.

Solution. We have $H^*(\mathbb{C}P^2) = \mathbb{Z}[w]/\langle w^3 \rangle$ for $w \in H^2$ and $H^*(S^6) = \mathbb{Z}[a]/\langle a^2 \rangle$ for $a \in H^6$, hence

$$
H^*(\mathbb{C}P^2 \times S^6) = \mathbb{Z}[w]/\langle w^3 \rangle \otimes \mathbb{Z}[a]/\langle a^2 \rangle \cong \mathbb{Z}[w,a]/\langle w^3, a^2 \rangle.
$$

Next, it is true in general that $\overline{H}^*(X\wedge Y) \cong \overline{H}^*(X) \oplus \overline{H}^*(Y)$ is an isomoprhism of graded rings (this can be proven proven straight from the definitions, but it takes some time). Since $\mathbb{C}P^2 \vee S^6$ is connected, we have $H^*(\mathbb{C}P^2 \vee S^6) \cong \overline{H}^*(\mathbb{C}P^2) \oplus \overline{H}^*(S^6) \oplus \mathbb{Z}$. Now $w \cup a \in H^8 = 0$ (more generally, we could use that fact that $(w, 0) \cup (0, a) = (0, 0)$). Therefore

$$
H^*(\mathbb{C}P^2 \vee S^6) \cong \mathbb{Z}[w,a]/\langle w^3, a^2, wa \rangle.
$$

 \Box

Exercise 4. Show that the $\mathbb{C}P^2 \vee S^6$ is not homotopy equivalent to $\mathbb{C}P^3$.

Solution. It suffices to show that the cohomology rings of these spaces are not isomorphic (note that the additive group structure is not enough to distinguish them). We already know that

$$
H^*(\mathbb{C}P^2 \vee S^6) \cong \mathbb{Z}[w,a]/\langle w^3, a^2, wa \rangle
$$

and we have $H^*(\mathbb{C}P^3) = \mathbb{Z}[b]/\langle b^4 \rangle$ for $b \in H^2$. Any isomorphism would have to map w and b to \pm each other (these are the respective generators in dimension 2), but $w^3 = 0$ while $b^3 \neq 0$, so this is not possible. \Box