Define the *n*-th homotopy group of the space X with the base point x_0 as the group of homotopy classes of the cts¹ maps $(I^n, \partial I^n) \to (X, x_0)$ with the operation given by prescription:

$$
(f+g)(t_1,\ldots,t_n) = \begin{cases} f(2t_1,t_2,\ldots,t_n) & 0 \le t_1 \le \frac{1}{2}, \\ g(2t_1-1,t_2,\ldots,t_n) & \frac{1}{2} \le t_1 \le 1. \end{cases}
$$

Denote it $\pi_n(X, x_0)$.

Exercise 1. Show the operation on $\pi_n(X, x_0)$ is associative.

Solution. We want to show $(f + g) + k \sim f + (g + k)$. We will find prescription for the homotopy by the following diagram:

In the following notation², understand $f(t_1)$ as $f(t_1, t_2, \ldots, t_n)$ for all $t_2, \ldots, t_n \in I$.

$$
h(s,t_1) = \begin{cases} f(\frac{4}{1+s}t_1) & (s,t_1) \in \mathcal{I} & (t_1 \in [0, \frac{1}{4} + s\frac{1}{4}], s \in [0,1]) \\ g(4t_1 - (1+s)) & (s,t_1) \in \mathcal{II} & (t_1 \in [\frac{1}{4} + s\frac{1}{4}, \frac{1}{2} + s\frac{1}{4}], s \in [0,1]) \\ k(\frac{4}{2-s}t_1 - \frac{2+s}{2-s}) & (s,t_1) \in \mathcal{III} & (t_1 \in [\frac{1}{2} + s\frac{1}{4}, 1], s \in [0,1]) \end{cases}
$$

Exercise 2. Show that the element given by prescription

$$
(-f)(t_1,\ldots,t_n) = f(1-t_1,t_2,\ldots,t_n)
$$

is really the inverse element of f.

Solution. We want to show $f + (-f) \sim const.$ The constant will be (function given by) the point $f(2t_1) = f(0)$. Again let us draw a diagram (the square (its boundary) in the middle sign the same value; the wavy line sign one value too).

where $II = \{(s, t_1) \mid s \in [0, 1], t_1 \in [\frac{1-s}{2}]$ $\frac{-s}{2}, \frac{1+s}{2}$ $\frac{+s}{2}$.

Remark. One can see, that proving by pictures is much more pleasant.

1 continuous

²and some other following notations

 t_1

 \Box

π

 \mathbb{I}

 \Box

There is a long exact sequence:

$$
\cdots \to \pi_{n+1}(X, A, x_0) \xrightarrow{\partial} \pi_n(A, x_0) \xrightarrow{i_*} \pi_n(X, x_0) \xrightarrow{j_*} \pi_n(X, A, x_0) \xrightarrow{\partial} \pi_{n-1}(A, x_0) \to \cdots
$$

Exercise 3. Show the exactness of this sequence in $\pi_n(X, A, x_0)$ and $\pi_n(A, x_0)$.

Solution. At first we will show the exactness in $\pi_n(X, A, x_0)$.

Let us show the inclusion "im $j_* \subseteq \text{ker } \partial$ ". Take an arbitrary $f \in \pi_n(X, x_0)$, thus $f: (I^n, \partial I^n) \to (X, x_0)$. From definition $j_*(f) = j \circ f: (I^n, \partial I^n, J^{n-1}) \to (X, A, x_0)$, where $J^{n-1} = I^n - I^{n-1}$, and $\partial([f]) = [f]_{I^{n-1}}] = const$, since f is constant on whole $\partial I^n \supseteq I^{n-1}$.

"im $j_* \supseteq \ker \partial$ ": Take an arbitrary $g \in \ker \partial \subseteq \pi_n(X, A, x_0)$, thus $g: (I^n, \partial I^n, J^{n-1}) \to$ (X, A, x_0) . Since $g \in \text{ker } \partial$, there is the homotopy $h: (I^{n-1}, \partial I^{n-1}) \times I \longrightarrow (A, x_0)$ such that $h(x, 0) = g|_{I^{n-1}}(x)$ and $h(x, 1) = const.$ Because $h(x, t) \in A$ and $h(x', t) = x_0$ for all $x \in I^{n-1}, x \in \partial I^{n-1}$ and $t \in [0,1]$, we can take $f \in \pi_n(X, x_0)$ defined by

$$
f(x,t) = \begin{cases} g(x, 2t) & \text{for } t \in [0, \frac{1}{2}] \\ h(x, 2t - 1) & \text{for } t \in [\frac{1}{2}, 1]. \end{cases}
$$

It is not hard to prove that $j_*(f)$ is homotopic to g, see picture below.

Now, let us show the exactness in $\pi_n(A, x_0)$.

["]im ∂ ⊇ ker i_{*}" Let $f \in \text{ker } i_* \subseteq \pi_n(A, x_0)$ be an arbitrary. Because $i_* f \sim const$, we have homotopy $h: (I^n, \partial I^n) \times I \to (X, x_0)$ such that $h(x, 0) = f(x)$ and $h(x, 1) = x_0$. It holds $h \in \pi_{n+1}(X, A, x_0)$, since $h(x, 0) \in A$, $h(x, 1) = x_0$ and $h(x', t) = x_0$ for all $x \in I^n$ and $x' \in \partial I^n$.

"im $\partial \subseteq \ker i_*$ " Let $h \in \pi_{n+1}(X, A, x_0)$ be an arbitrary. Denote $h|_{I^n} = f$. Then h gives the homotopy $i_* f \sim const$ in (X, x_0) , since $h(x, 0) = f(x)$, $h(x, 1) = x_0$ and $h(x', t) = x_0$ for all $x' \in \partial I^n$ and $x \in I^n$. \Box

A map $p: E \to B$ is called a fibration if it has the homotopy lifting property for all (D^n, \emptyset) :

$$
D^n \times \{0\} \longrightarrow E
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow P
$$

\n
$$
D^n \times \tilde{I} \longrightarrow B
$$

If p is a fibration then it has the homotopy lifting property also for all pairs (X, A) of CW-complexes:

$$
X \times \{0\} \cup A \times I \longrightarrow E
$$

$$
X \times I \longrightarrow B
$$

Recall that p: $E \to B$ is a fiber bundle with fibre F if there are open subsets U_{α} such that $B = \bigcup_{\alpha} U_{\alpha}$ and the following diagram commutes for all U_{α} :

Exercise 4. Show that every fibre bundle is a fibration.

Solution. At first consider a trivial fibre bundle $E = B \times F$. Take an arbitrary commutative diagram of the form:

$$
D^n \times \{0\} \xrightarrow{f} B \times F
$$

\n
$$
\downarrow \qquad \qquad \downarrow pr
$$

\n
$$
D^n \times I \xrightarrow{h} B
$$

Then $h(-,0) = f$ and we can define $H: D^n \times I \to B \times F$ by $H(x,t) = (h(x,t), g(x))$. One can see that the diagram commutes with H too.

Now, let $p: E \to B$ be an arbitrary fibre bundle with fiber F and $B = \bigcup_{\alpha} U_{\alpha}$. We can take $Iⁿ$ instead of $Dⁿ$ and consider a diagram:

$$
I^n \times \{0\} \xrightarrow{f} E
$$

\n
$$
\downarrow \qquad \qquad \downarrow p
$$

\n
$$
I^n \times I \xrightarrow{h} B
$$

Because I^n is compact, we can divide $I^n \times I$ to finitely many subcubes $C_i \times I_k$ where $I_i = [j_k, j_{k+1}]$ such that $h(C_i \times I_k) \subseteq U_\alpha$ for some α . Since $U_\alpha \times F \to B$ makes a trivial bundle, we can use the same approach as above for each subcube. Since we know $H|_{C_i\times\{0\}} = f|_{C_i\times\{0\}}$, we can find the lift H for all cubes in the first "column" (see the picture below) in the same way as for the trivial case:

$$
C_i \times \{0\} \xrightarrow{f} U_{\alpha} \times F
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

\n
$$
C_i \times I_0 \xrightarrow{h} U_{\alpha}
$$

Since we know $H|_{C_i\times\{j_1\}}$ now, we can continue with the second "column":

$$
C_i \times \{j_1\} \xrightarrow{f} U_\alpha \times F
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow
$$

\n
$$
C_i \times I_1 \xrightarrow{h} U_\alpha
$$

Thus, we can proceed through all columns in this way until we will get H on the whole $Iⁿ \times I$. The illustration of this situation³:

 \Box

 \Box

Exercise 5. Show the structure of the fibre bundle $S^n \stackrel{p}{\longrightarrow} \mathbb{R}P^n$.

Solution. The fibre is $S^0 = \{-1, 1\}$, since $x, -x \mapsto [x]$. Now, we want to find a neighbourhood U of [x] such that $p^{-1}(U) = U \times S^0$. Set $U = \{[x+v] \mid v \in [x]^{\perp}\}\$ then we have homeomorphism $\varphi: U \times S^0 \longrightarrow p^{-1}(U) \subseteq S^n$ given by $\varphi([x+v], 1) = \frac{x+v}{\|x+v\|}$ and $\varphi([x+v],-1) = \frac{-x-v}{\|x+v\|}$. We can cover the whole $\mathbb{R}P^n$ by the open subsets $U_i = \{(x_0 : x_1 : x_2 \leq x_2\})$ \cdots : $x_n) | x_i \neq 0$. \Box

Exercise 6. Show the structure of the fibre bundle $S^{2n+1} \xrightarrow{p} \mathbb{C}P^n$ with the fibre S^1 .

Solution. Let us look on the special case $S^1 \hookrightarrow S^3 \to \mathbb{C}P^1 \cong S^2$ called "Hopf fibration". Realise that we can consider $S^3 \subseteq \mathbb{C}^2$, so we can (locally) define the projection $S^3 \to \mathbb{C}P^1$ by $(z_1, z_2) \mapsto \frac{z_1}{z_2}.$

In the general case, realise that we can consider S ²n+1 ⊆ C ⁿ+1. Take U⁰ = {[z⁰ : z¹ : \cdots : z_n | $z_0 \neq 0$ \subseteq CPⁿ. We can consider $U_0 = \{[1 : z_1 : \cdots : z_n]\}$. Then the map $U_0 \times S^1 \to S^{2n+1}$ is given by

$$
[(1:z_1:\cdots:z_n),e^{it}] \longmapsto \frac{(e^{it},e^{it}z_1,\ldots,e^{it}z_n)}{\|(e^{it},e^{it}z_1,\ldots,e^{it}z_n)\|}
$$

We can do the same for other U_i from the covering of $\mathbb{R}P^n$.

 3 it is drawn as planar, but it should be *n*-dimensional