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Exercise 57. Recall de�nitions of n-connectness and n-equivalence. Prove the following
lemma: Inclusion A ↪→ X is n-equivalence if and only if (X,A) is n-connected.

Solution. "⇐" Take long exact sequence:

→ πn(A, x0)
f1→ πn(X, x0)→ πn(X,A, x0)→ πn−1(A, x0)

f2→ πn−1(X)→ πn−1(X,A)→

and use the assumption that πi(X,A, x0) = 0 for i ≤ n. Then we get that f1 is epimorphism
and f2 is isomorphism.

"⇒" Reasoning is the same as in the other direction, the only thing we need to realize

is π0(A, x0)
∼=−→ π0(X, x0).

Exercise 58. Show πk(S
∞) = 0 for all k, where S∞ is colimSn.

Solution. We have S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sn ⊂ · · ·S∞. Take element in πk(S
∞), that

is f : Sk → S∞. We know that f(Sk) is compact in S∞. Consider other CW-complex
structure than e0 ∪ ek for Sk that is Sk =

⋃k
i=0 e

i
1 ∪ ei2 (two hemispeheres). Then the

following holds: S∞ =
⋃∞

i=0 e
i
1 ∪ ei2. So f(Sk) ⊆ (S∞)(N) = SN for some N where (S∞)(N)

is N -skeleton of S∞. Now,

f : Sk → SN → SN+1 ↪→ S∞,

so the composition Sk → SN+1 is a map that is not onto and therefore f is homotopic to
constant map. (map into a disc is homotopic to constant map, disc is contractible) Then
we have [f ] = 0. Thus we have proved πk(S

∞) = 0.

Exercise 59. Compute homotopy groups of RP∞.

Solution. Suprisingly use previous exercise: We can view RP∞ as lines going through origin
in S∞, or...just take S∞/Z/2, where the action is x 7→ −x. So we work with the following
�bration (we don't write the distinguished points as they are not needed) Z/2 → S∞ →
RP∞ and the long exact sequence

πn(Z/2)→ πn(S
∞)→ πn(RP∞)

∂→ πn−1(Z/2)→ πn−1(S
∞),

where for all n ≥ 2 we have all zeroes, for n = 1 consider 0 → π1(RP∞)
∂→ π0(Z/2) →

π0(S
∞). Since π0(S

∞) = 0 and π0(Z/2) = Z/2, we get that the homomorphism ∂ (it
is homomorphism, really, we did it in previous tutorial, but it's still a homomorphism
independetly on whether we did it or not) is an isomorphism of groups. By connectness
we also know the π0 group. So the �nal results are:

πn(RP∞) = 0 for n ≥ 2, π1(RP∞) = Z/2, π0(RP∞) = 0.

Exercise 60. Show that the spaces S2 × RP∞ and RP 2 have the same homotopy groups
but they are not homotopy equivalent.
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Solution. Here, also use pre2vious exercise. It is known that πn(X ×Y ) = πn(X)× πn(Y ).
With this we can compute

π0(S
2 × RP∞) = 0, π1(S

2 × RP∞) = π1(S
2)× π1(RP∞) = {0} × Z/2 ∼= Z/2,

for n ≥ 2πn(S
2 × RP∞) = πn(S

2)× {0} ∼= πn(S
2.

Now consider RP 2 as S2/Z/2, work with the �bration (scheme as follows)

Z/2 // S2 // RP 2

πn(Z/2) // πn(S
2) // πn(RP 2) // πn−1(Z/2)

n ≥ 2 0 πn(S
2) ∼= πn(RP 2) 0

n = 1 0 π1(RP 2) ∼= Z/2 0

and π0(RP 2) = 0. Thus we showed that these two spaces have the same homotopy groups.
Marvelous. How to show, that they are not homotopy equivalent? Use cohomology group!
That's right. It is well known (or we should already know) that

H∗(RP 2;Z/2) = Z/2[α]/〈α3〉, α ∈ H1 and

H∗(S2 × RP∞;Z/2) = H∗(S2;Z/2)⊗H∗(RP∞;Z/2) = Z/2[β]/〈β2〉 ⊗ Z/2[γ], β ∈ H2.

The former space obviously has no non-zero elements of order 4, while the latter has a
non-zero element of order 4. This is impossible for homotopy equivalent spaces. We are
done.

Exercise 61. Extension lemma: Let (X,A) be a pair of CW -complexes, Y a space with
πn−1(Y, y0) = 0 whenever there is a cell of dimension n in X − A. Then every map
f : A→ Y can be extended to a map F : X → Y .

Solution. Set X−1 = A,X0 = X(0)∪A,Xk = X(k)∪A, and f = f−1 : X−1 → Y, f0 : X0 → Y
which extends f−1, f0(x0) to any point in Y .

We have fk−1 : Xk−1 → Y and want to de�ne fk : Xk → Y . Also, πk−1(Y, •) = 0.
Consider following diagram:

(Dk, Sk−1)
ϕ //

fk−1◦ϕ
''

(Xk, Xk−1)

fk−1

��
Y

The map fk−1 ◦ ϕ is in πk−1(Y, •) so it is homotopic to constant map, so we de�ne fk
on Dk as a constant map. Now,
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Dk × {1} ∪ Sk−1 × I //
� _

��

Y

Dk × I
H

77

and go back to the �rst diagram:

(Dk, Sk−1)
ϕ //

g

''

(Xk, Xk−1)

fk
��
Y

We extend fk−1 to fk : Xk → Y and proceed to in�nity (and beyond), as we always do.

Exercise 62. Compare πn(X, x0) and πn(X, x1), when distinguished points (are / are not)
path connected. Use proof with pillows.

Solution. First the case where X = S1 t S2 and x0 ∈ S1 and x1 ∈ S2. Then π1(X, x0) =
π1(S

1) = Z but π1(X, x1) = π1(S
2) = 0. If distinguished points are not path connected,

homotopy groups can be di�erent, so consider now ω a curve connecting x0 and x1, ω : I →
X, ω(0) = x0 and ω(1) = x1. We have πn(X, x0) → πn(X, x1) f : I

n → X, ∂In 7→ x0,
g : In → X, ∂In 7→ x1, as seen in Figure 1, x0 − x1 segments. Proofs with pillows!

Denote action f 7→ ω · f , then f1 ∼ f2 ⇒ ω · f1 ∼ ω · f2. We are not satisfying algebraist
at the moment, only geometers. Let us try to do something about that.

Figure 2 shows other pillow and that ω1 ∼ ω2 ⇒ ω1 · f ∼ ω2 · f , we can imagine the
segment as in Figure 2, two curves.
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Map given by ω is a bijection ω : x0 → x1, ω2(ω1f) ∼ (ω1ω2)f , ω
−1(ωf) ∼ (ωω−1)f ' f ,

so the map πn(X, x0)→ πn(X, x1) is bijection. Figure 3 tries to explain homomorphism.
We get that x0, x1 are in the same path component and if ω : x0 → x1 is a curve, then

πn(X, x0) → πn(X, x1) is an isomorphism. In particular, if X is simply connected, then
every curve gives the same isomorphism.


