M8130 Algebraic topology, tutorial 03, 2024_10.10.2024 Exercise 1. Show dd = 0. Use formula e^+1 o^ = o e\, where i ^ j. The definition force Cn(X), a: An -> X, is 2=0 i f h - Saw p Ay ^ ^(^1 chceme, £>poab&t ke* $ a, (m á> h ratify vrcholy O -1 1 -1 O f ~1 <1 O ^Ý-whoiA magici W0 AT, V% A/o ^ M8130 Algebraic topology, tutorial 03, 2024 10.10.2024 Exercise 3. Simplicial complex, model of torus, compute differentials and homology. Worm km i met' Zoh&cH&hi' ei'toph'ct'i'lni'ko (couple™ < Sipoaba'me -sy'wpl/c(a\w\ hovnoloqi'e. \ /4 ^ "TT^* 2 {/Vu M8130 Algebraic topology, tutorial 03, 2024 10.10.2024 Exercise 4. Prove the first criterion of homotopy equivalence. _ r Y A £ • V4 —> X ^° jr /fidf sttednicivi w ho 1*10 topic, /7 y* r pro to e-ifiHwae T a6 \somotofie- ^e%i M8130 Algebraic topology, tutorial 03, 2024 10.10.2024 Exercise 5. S2 V S1 ~ S2/S° (using First criterion) S V S ST/S 1/lvcLhiA /we Al- 3 AMC^*"*^ frAji M {e ***** X - Vb ~ M81S0 Algebraic topology, tutorial 03, 2024_ 10.10.2021 Exercise 6. Let i: A X is a cofibration, show X/A ~ X U CA = Ci. (using First criterion) (tu CA{ OA) 2 5X/{x0!*),t e /} = SX A/ (4i t) ~tit%) M8130 Algebraic topology, tutorial 03, 2024_10.10.2024 Exercise 8. There is a lemma, that says: Given the following diagram, where rows are long exact sequences and m is iso, tf„ —Ln —M„ —^ -> L„_i -> Mre_! we gei a font? exact sequence where dt = hom 1 o g. Show exactness in Ln © Kn and in Ln. -> b^'—> 0 (J r--> f.(e) tt H -V AO X k^ - lJ:\ i - ,11/14.11 —^__:> n ■ i í,c) £vaktnoců v i o Tj^^ h» (jt-t) £ ker 3* Obrace ha /'utluče. Mech b' bé ker d* £ L M* -> C j.-* O ±- X. -í a ^—> £{k)-lo ^-' O Zr eyaké-HPGér/' , X £c) ~ O . Potom (£-f) ( b,*) Ä /.íb)-f ff) -Mtíl-UtÚ-tH