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Exercise 1. Show ∂∂ = 0. Use formula εin+1 ◦ εjn = εj+1
n+1 ◦ εin, where i < j. The de�nition

for σ ∈ Cn(X), σ : ∆n → X, is

∂σ =
n∑

i=0

(−1)i σ ◦ εin.

Solution. Easily workout

∂(∂σ) = ∂
( n+1∑

i=0

(−1)i σ ◦ εin+1

)
=

n+1∑
i=0

(−1)i ∂(σ ◦ εin+1) =

=
n+1∑
i=0

(−1)i
(∑

j<i

(−1)jσ ◦ εin+1 ◦ εjn +
∑
j>i

(−1)j−1σ ◦ εin+1 ◦ εj−1
n

)
=

=
n+1∑
i=1

∑
j<i

(−1)i(−1)jσ ◦ εin+1 ◦ εjn +
n∑

i=1

∑
j>i

(−1)j+i−1σ ◦ εin+1 ◦ εj−1
n ,

now, with proper reindex and shift, this yields εin+1 ◦ εjn = εj+1
n+1 ◦ εin = εjn+1 ◦ εi−1

n , both
sums are of the same elements but with opposite signs. Hence, ∂∂ = 0.

Exercise 2. Simplicial homology of ∂∆2.

Solution. Chain complex of this simplicial homology is C0 = Z[v0, v1, v2] = Z ⊕ Z ⊕ Z,
C1 = Z[a0, a1, a2] = Z⊕ Z⊕ Z. So

0 → C1
∂−→ C0 → 0,

where we want to determine ∂ and we know ∂a0 = v2 − v1, ∂a1 = v2 − v0, ∂a2 = v1 − v0.
Using simple linear algebra, we study generators ker ∂ and im∂: 1 0 0 0 −1 1

0 1 0 −1 0 1
0 0 1 −1 1 0

 ∼

 1 0 0 0 −1 1
0 1 0 −1 0 1
1 −1 1 0 0 0

 ,

therefore ker ∂ has a generator a0 − a1 + a2 and im∂ has two generators −v1 + v2 and

−v0 + v2. We get H0 =
Z[v0, v1, v2]

Z[−v1 + v2,−v0 + v2]
=

Z[−v1 + v2, v0 + v2, v2]

Z[−v1 + v2,−v0 + v2]
= Z[v0] = Z and

H1 = ker ∂ = Z[a0 − a1 + a2] = Z.

Exercise 3. Simplicial complex, model of torus, compute di�erentials and homology.
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Solution. Again, we get simplicial chain complex C∗ formed by free abelian groups gener-
ated by equivalence classes of simplicies. Note a1, a2 are actually one generator, same for
b1, b2. All the vertices are also equivalent. We choose the orientation and �x it.

Thus we get C0 = Z[v] = Z, C1 = Z[a, b, c] = Z⊕Z⊕Z, C2 = Z[e, f ] = Z⊕Z, C3 = 0, and
the following holds: ∂a = 0, ∂b = 0, ∂c = 0, as well as ∂e = a+b−c, ∂f = c−a−b, ∂(e+f) =
0, so we get ker ∂ = Z[e+ f ], im∂ = Z[a+ b− c].

Let T be the torus. Then

H2(T ) = ker ∂2 = Z[e+ f ] = Z,

H1(T ) = Z[a, b, c]/Z[a+ b− c] =
Z[a, b, a+ b− c]

Z[a+ b− c]
= Z[a, b] = Z⊕ Z,

H0(T ) = ker ∂0 = Z.

Exercise 4. Prove the �rst criterion of homotopy equivalence.

Solution. We take h : A× I → A, on A×{0} it is identity on A and constant on A×{1}.

X × I X

X/A× I X/A

f

q×idI q

f̄

and �nd g : X/A → X. De�ne f̄(x, t) = f(x, t), f̄([x], t) = [f(x, t)]. If we de�ne g : X/A →
A, [x] 7→ f(x, 1), then it is well de�ned. Now we want to show, that the compositions are
homotopy equivalent to the identities.

g◦q ∼ idX : g(q(x)) = g([x]) = f(x, 1), just the way we de�ned it, so f is the homotopy,
as f(−, 0) = idX and f(−, 1) = g ◦ q,

q ◦ g ∼ idX/A: q(g([x])) = q(f(x, 1)) = [f(x, 1)] = f̄([x], 1) and idX/A = f̄([x], 0), so in
this case the map f̄ is homotopy.
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Exercise 5. S2 ∨ S1 ≃ S2/S0 (using First criterion)

Solution. In the picture (hopefully) above, A is a segment as well as B, so contractible
in itself. Clearly S2 ∨ S1 = X/B and S2/S0 = X/A and X ≃ X/A and X ≃ X/B by
criterion, therefore X/A ≃ X/B and we are done.

Exercise 6. Let i : A ↪→ X is a co�bration, show X/A ≃ X ∪ CA = Ci. (using First
criterion)

Solution. We know CA ↪→ X ∪ CA is a co�bration using homework 1, exercise 2, with
Y = CA. Then by criterion X ∪ CA ≃ X ∪ CA/CA. Also X/A is homeomorphic to
X ∪ CA/CA (see picture above), which concludes the result.

Exercise 7. Application of the criterion: two types of suspensions, unreduced and reduced.
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Unreduced suspension: SX = X × I/ ∼, where (x1, 0) ∼ (x2, 0), (x1, 1) ∼ (x2, 2).
Reduced suspension: ΣX = SX/{x0} × I = (X, x0) ∧ (S1, s0)
(this might be a homework)
The criterion says, that if {x0} ↪→ X is a co�bration, then SX ≃ ΣX.

I ≃ {(x0, t), t ∈ I} ⊆ SX −→ SX/{x0, t), t ∈ I} = ΣX

Exercise 8. Given the following diagram, where rows are long exact sequences and m is
an iso

Kn Ln Mn Kn−1 Ln−1 Mn−1

Kn Ln Mn Kn−1 Ln−1 Mn−1

i

f

j

g

h

m

ī j̄

we get a long exact sequence

Kn
(i,f)−→ Ln ⊕Kn

g−ī−→ Ln
∂∗−→ Kn−1 −→ · · ·

We can denote ∂∗ = h ◦m−1 ◦ j̄.
Show exactness in Ln ⊕ K̄n and also in L̄n.

Solution. We have (g − ī) ◦ (i, f) = īf − gi = 0 obviously. For x ∈ Ln, y ∈ K̄n we have
(g − ī)(x, y) = 0, so g(x) = ī(y). Now, let x be such that j(x) = 0, then there is z ∈ Kn

such that i(z) = x. Then, suppose g(x) = a ∈ L̄n, then by m being iso we know j̄(a) = 0,
so exists y ∈ K̄n such that ī(y) = a. Since f(z) and y have the same image, their di�erence
has a preimage, i.e. exists b ∈ M̄n+1 such that b 7→ y − f(z). By iso then there exists
c 7→ z, or denote h(c) = z. Now, all of this is much easier with a picture (that I don't
draw). Compute now:
f(z + c) = f(z) + y − f(z) = y and i(z + h(c)) = i(z) = x, and we are done.

Exactness in L̄n is easier. It holds ∂ ◦ (g − ī) = 0, so take x ∈ ker ∂ (also, x ∈ L̄n).
Now, x 7→ a, by iso there is b in the upper row that maps to zero. Then there exists y
such that y 7→ b. Now we can work with x− g(y). There exists also z such that, obviously,
z 7→ x − g(y) 7→ a − a = 0. Get x = g(y) + ī(z) = g(y) − ī(−z), that is we needed to
express x as this di�erence, hence we are done.


