Exercise 1. Show $\partial \partial = 0$. Use formula $\varepsilon_{n+1}^i \circ \varepsilon_n^j = \varepsilon_{n+1}^{j+1} \circ \varepsilon_n^i$, where i < j. The definition for $\sigma \in C_n(X)$, $\sigma \colon \Delta^n \to X$, is

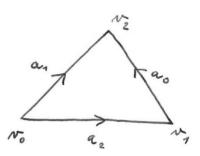
$$\partial \sigma = \sum_{i=0}^{n} (-1)^i \, \sigma \circ \varepsilon_n^i.$$

Solution. Easily workout

$$\begin{split} \partial(\partial\sigma) &= \partial\Big(\sum_{i=0}^{n+1} (-1)^i \,\sigma\circ\varepsilon_{n+1}^i\Big) = \sum_{i=0}^{n+1} (-1)^i \,\partial(\sigma\circ\varepsilon_{n+1}^i) = \\ &= \sum_{i=0}^{n+1} (-1)^i \Big(\sum_{j< i} (-1)^j \sigma\circ\varepsilon_{n+1}^i \circ\varepsilon_n^j + \sum_{j> i} (-1)^{j-1} \sigma\circ\varepsilon_{n+1}^i \circ\varepsilon_n^{j-1}\Big) = \\ &= \sum_{i=1}^{n+1} \sum_{j< i} (-1)^i (-1)^j \sigma\circ\varepsilon_{n+1}^i \circ\varepsilon_n^j + \sum_{i=1}^n \sum_{j> i} (-1)^{j+i-1} \sigma\circ\varepsilon_{n+1}^i \circ\varepsilon_n^{j-1}, \end{split}$$

now, with proper reindex and shift, this yields $\varepsilon_{n+1}^i \circ \varepsilon_n^j = \varepsilon_{n+1}^{j+1} \circ \varepsilon_n^i = \varepsilon_{n+1}^j \circ \varepsilon_n^{i-1}$, both sums are of the same elements but with opposite signs. Hence, $\partial \partial = 0$.

Exercise 2. Simplicial homology of $\partial \Delta^2$.



Solution. Chain complex of this simplicial homology is $C_0 = \mathbb{Z}[v_0, v_1, v_2] = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, $C_1 = \mathbb{Z}[a_0, a_1, a_2] = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. So

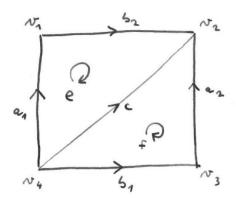
$$0 \to C_1 \xrightarrow{\partial} C_0 \to 0$$
,

where we want to determine ∂ and we know $\partial a_0 = v_2 - v_1$, $\partial a_1 = v_2 - v_0$, $\partial a_2 = v_1 - v_0$. Using simple linear algebra, we study generators ker ∂ and im ∂ :

$$\left(\begin{array}{cc|cc|c} 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & 0 \end{array}\right) \sim \left(\begin{array}{cc|cc|c} 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & -1 & 1 & 0 & 0 & 0 \end{array}\right),$$

therefore $\ker \partial$ has a generator $a_0 - a_1 + a_2$ and $\operatorname{im} \partial$ has two generators $-v_1 + v_2$ and $-v_0 + v_2$. We get $H_0 = \frac{\mathbb{Z}[v_0, v_1, v_2]}{\mathbb{Z}[-v_1 + v_2, -v_0 + v_2]} = \frac{\mathbb{Z}[-v_1 + v_2, v_0 + v_2, v_2]}{\mathbb{Z}[-v_1 + v_2, -v_0 + v_2]} = \mathbb{Z}[v_0] = \mathbb{Z}$ and $H_1 = \ker \partial = \mathbb{Z}[a_0 - a_1 + a_2] = \mathbb{Z}$.

Exercise 3. Simplicial complex, model of torus, compute differentials and homology.



Solution. Again, we get simplicial chain complex C_* formed by free abelian groups generated by equivalence classes of simplicies. Note a_1, a_2 are actually one generator, same for b_1, b_2 . All the vertices are also equivalent. We choose the orientation and fix it.

Thus we get $C_0 = \mathbb{Z}[v] = \mathbb{Z}$, $C_1 = \mathbb{Z}[a, b, c] = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, $C_2 = \mathbb{Z}[e, f] = \mathbb{Z} \oplus \mathbb{Z}$, $C_3 = 0$, and the following holds: $\partial a = 0$, $\partial b = 0$, $\partial c = 0$, as well as $\partial e = a + b - c$, $\partial f = c - a - b$, $\partial (e + f) = 0$, so we get $\ker \partial = \mathbb{Z}[e + f]$, $\operatorname{im} \partial = \mathbb{Z}[a + b - c]$.

Let T be the torus. Then

$$H_2(T) = \ker \partial_2 = \mathbb{Z}[e+f] = \mathbb{Z},$$

$$H_1(T) = \mathbb{Z}[a,b,c]/\mathbb{Z}[a+b-c] = \frac{\mathbb{Z}[a,b,a+b-c]}{\mathbb{Z}[a+b-c]} = \mathbb{Z}[a,b] = \mathbb{Z} \oplus \mathbb{Z},$$

$$H_0(T) = \ker \partial_0 = \mathbb{Z}.$$

Exercise 4. Prove the first criterion of homotopy equivalence.

Solution. We take $h: A \times I \to A$, on $A \times \{0\}$ it is identity on A and constant on $A \times \{1\}$.

$$X \times I \xrightarrow{f} X$$

$$q \times \mathrm{id}_{I} \downarrow \qquad \qquad q \downarrow$$

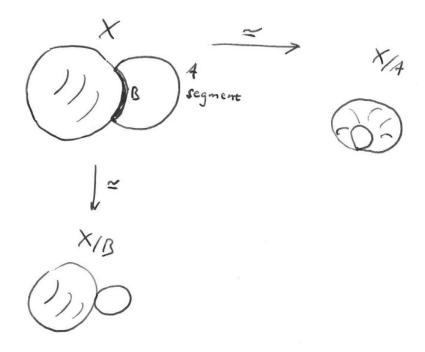
$$X/A \times I \xrightarrow{\bar{f}} X/A$$

and find $g: X/A \to X$. Define $\bar{f}(x,t) = f(x,t)$, $\bar{f}([x],t) = [f(x,t)]$. If we define $g: X/A \to A$, $[x] \mapsto f(x,1)$, then it is well defined. Now we want to show, that the compositions are homotopy equivalent to the identities.

 $g \circ q \sim \mathrm{id}_X$: g(q(x)) = g([x]) = f(x, 1), just the way we defined it, so f is the homotopy, as $f(-,0) = \mathrm{id}_X$ and $f(-,1) = g \circ q$,

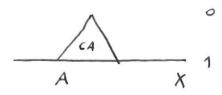
 $q \circ g \sim \operatorname{id}_{X/A}$: $q(g([x])) = q(f(x,1)) = [f(x,1)] = \bar{f}([x],1)$ and $\operatorname{id}_{X/A} = \bar{f}([x],0)$, so in this case the map \bar{f} is homotopy.

Exercise 5. $S^2 \vee S^1 \simeq S^2/S^0$ (using First criterion)



Solution. In the picture (hopefully) above, A is a segment as well as B, so contractible in itself. Clearly $S^2 \vee S^1 = X/B$ and $S^2/S^0 = X/A$ and $X \simeq X/A$ and $X \simeq X/B$ by criterion, therefore $X/A \simeq X/B$ and we are done.

Exercise 6. Let $i: A \hookrightarrow X$ is a cofibration, show $X/A \simeq X \cup CA = Ci$. (using First criterion)



Solution. We know $CA \hookrightarrow X \cup CA$ is a cofibration using homework 1, exercise 2, with Y = CA. Then by criterion $X \cup CA \simeq X \cup CA/CA$. Also X/A is homeomorphic to $X \cup CA/CA$ (see picture above), which concludes the result.

Exercise 7. Application of the criterion: two types of suspensions, unreduced and reduced.

Unreduced suspension: $SX = X \times I/\sim$, where $(x_1,0) \sim (x_2,0)$, $(x_1,1) \sim (x_2,2)$.

Reduced suspension: $\Sigma X = SX/\{x_0\} \times I = (X, x_0) \wedge (S^1, s_0)$

(this might be a homework)

The criterion says, that if $\{x_0\} \hookrightarrow X$ is a cofibration, then $SX \simeq \Sigma X$.

$$I \simeq \{(x_0, t), t \in I\} \subseteq SX \longrightarrow SX/\{x_0, t\}, t \in I\} = \Sigma X$$

Exercise 8. Given the following diagram, where rows are long exact sequences and m is an iso

$$K_{n} \xrightarrow{i} L_{n} \xrightarrow{j} M_{n} \xrightarrow{h} K_{n-1} \longrightarrow L_{n-1} \longrightarrow M_{n-1}$$

$$f \downarrow \qquad \qquad g \downarrow \qquad \qquad m \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\overline{K}_{n} \xrightarrow{\overline{i}} \overline{L}_{n} \xrightarrow{\overline{j}} \overline{M}_{n} \longrightarrow \overline{K}_{n-1} \longrightarrow \overline{L}_{n-1} \longrightarrow \overline{M}_{n-1}$$

we get a long exact sequence

$$K_n \xrightarrow{(i,f)} L_n \oplus \overline{K}_n \xrightarrow{g-\overline{i}} \overline{L}_n \xrightarrow{\partial_*} K_{n-1} \longrightarrow \cdots$$

We can denote $\partial_* = h \circ m^{-1} \circ \bar{j}$.

Show exactness in $L_n \oplus \bar{K}_n$ and also in \bar{L}_n .

Solution. We have $(g - \bar{i}) \circ (i, f) = \bar{i}f - gi = 0$ obviously. For $x \in L_n, y \in \bar{K}_n$ we have $(g - \bar{i})(x, y) = 0$, so $g(x) = \bar{i}(y)$. Now, let x be such that j(x) = 0, then there is $z \in K_n$ such that i(z) = x. Then, suppose $g(x) = a \in \bar{L}_n$, then by m being iso we know $\bar{j}(a) = 0$, so exists $y \in \bar{K}_n$ such that $\bar{i}(y) = a$. Since f(z) and y have the same image, their difference has a preimage, i.e. exists $b \in \bar{M}_{n+1}$ such that $b \mapsto y - f(z)$. By iso then there exists $c \mapsto z$, or denote h(c) = z. Now, all of this is much easier with a picture (that I don't draw). Compute now:

$$f(z+c) = f(z) + y - f(z) = y$$
 and $i(z+h(c)) = i(z) = x$, and we are done.

Exactness in \bar{L}_n is easier. It holds $\partial \circ (g - \bar{i}) = 0$, so take $x \in \ker \partial$ (also, $x \in \bar{L}_n$). Now, $x \mapsto a$, by iso there is b in the upper row that maps to zero. Then there exists y such that $y \mapsto b$. Now we can work with x - g(y). There exists also z such that, obviously, $z \mapsto x - g(y) \mapsto a - a = 0$. Get $x = g(y) + \bar{i}(z) = g(y) - \bar{i}(-z)$, that is we needed to express x as this difference, hence we are done.