M8130 Algebraic topology, tutorial 05, 2024_ 24. 10. 2024 Exercise 1. Prove that Sn has a nonzero vector field if and only if n is odd. Sir ( X„ O ~ ( 1 ~ *') { /MN srty f ■ r-pr f^fS ho wo top u A> S*°* Cotr2 —^ h U^) =- V tot -t fO) ^ir a toot * - wz«n + ifo)i"^H =1 t - r A ft/ 0 - _ ^6._ Pn? n itf^e' reLh. pole, &%(&hu$e, £ V c*1,----- ^2^ ) '*= (*2/~>// V"*^"' ^2^^.] M81S0 Algebraic topology, tutorial 05, 2024 24. 10. 2024 Exercise 2. Compute homology groups of oriented two dimensional surfaces using a suitable structure of CW- complex. 1+ dirt^ ^Zrzlepime s4 * i°tQ W a, = o &] v &>l u..... 4>1. V Jb 1 . »1 % =■ j -tOYUS b. a* u/ 0 o ~7> ~7 (ty) & 2 (u) 9' Mod&l joro a =4 CL, 8£= s' nA - 1 f ,9 0' S1 zobY&zettl Stupyie Z f 0 louche 3 r & 4 (1 O „0 1 4a £.©2 © 72. M8130 Algebraic topology, tutorial 05, 2024_H- 10- 2024 Exercise 3. Have f:Sn^Sn map of degree k. (such map always exists). Let X = Dn+1 Uf Sn and compute homology of X and the projection p: X -4 X/Sn in homology. £ca/c%) : 0 —> Ji —y0 - - —? & 14» CI) = 2 //* 00- ^ * *k It*,, C*) = (9 SI «) = ^(.i)*yk I 7e (dentin , p? h&hob" a&vetdtor M8130 Algebraic topology, tutorial 05, 2024_ 24. 10. 2024 Let X be a topological space with finitely generated homological groups and let H{(X) = 0 for each sufficiently large i. Every finitely generated abelian group can be written as Z @ Z © • • • © Z © Tor, where Tor denote torsion part of the group. The number k is V fc— iimes called the rank 0/ i/ie group. Euler characteristic x of X is defined by: CO X(X) = ^2(-l)iiankHi(X) {Z i = 0 n Thus x(Sn) = 1- (-l)n. 0, otherwise. Exercise 4. Let (C*,<9) 6e a c/iam complex with homology H*(C+). Prove that = X{C*), where 00 x(CO = 53(-l)irankCi. s==0 Ha!me. krdéLocr aníthi' posloupnost 0—? 2.1 c—-> ^ —> í2-~ MmA----- - . M8130 Algebraic topology, tutorial 05, 2024 24. 10. 2024 Let X be a topological space with finitely generated homological groups and let Hi{X) = 0 for every sufficiently large i. Let f: X —> X be a continuous map. Map f induces ho-momorphism on the chain complex /*: C*(X) —f C*{X) and on the homologiy groups H*f: H*(X) H*(X), where HJ(TorH*(X)) C TovH*(X). Thus it induces homomor-phism H*f: Hm(X)/ToiH.(X) -> H*(X)/Tor Hm{X). Since Ht,(X)/ ToyH*(X) = Z €B Z 0 ■ • • ® Z, map .H*/ can oe written as a matrix, thus we rank if. (X) can compute its trace. So we can define the Lefschetz number of a map f: 00 L(f) = J2(-l)i^Hif. Similarly to the case of the Euler characteristic, it can be proved that1 00 00 ^(-l)itr^/ = ^(-l)itr/i. 8=0 i—0 Theorem. If L{f) 7^ 0, then f has a fixed point. Exercise 5. Use the theorem above to show, that every continuous map f on Dn and RPn where n is even has a fixed point. r . ps-^jj" tic CD4") - £ To je and fit' ftowewq ve 6^ - / » - • i t»Wlf lad &oho, Be. 4s S C et'} ^J-2_ í sude. o £. o Pr>a-k- L Ĺ f) - .A, { cX:2—>£L) - i fro V) lithe co heitľ pr in the statement, that there is a nonzero vector field on M if and only if x{M) = 0. hefiuio^e! beetle vvbh. fool&. Ir&s/W vowi'd Y {£) = ft-CXttl) ft